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Complex Numbers
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Basic Properties of Complex 
Numbers
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Euler’s Formula
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It is easy to prove the fundamental relationship:

cos sin

To see this, set
cos sin

We can derive and solve a differential equation for 
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To determine , evaluate cos sin  at 1;
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Polar Representation
Consider the complex number :

cos sin
rectangular form: 
polar form: 

Many computations including multiplication and
division are much easier to do in polar form.
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Algebraic Operations
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Consider two complex numbers
,

addition: 

multiplication: 

division: 

s x j y s x j y
s s x x j y y

s s x x y y j x y x y

s s x y
x x y y j x y x ys s s

s s s x y

= + = +

+ = + + +

= − + +

⇒ = +

+ + − +
= =

+



Functions of a Complex variable
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A function  of  a complex variable  can be thought of as
a mapping from one complex plane -plane  to another -plane .
The function  is  at a point  the -plane if its derivative 
exists 
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at all points in a neighborhood of .
The function  is called a  if it is the ratio of two polynomials
in , e.g.
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Singularities
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If a function  is not analytic at a point , then  is
a . 
If a function  is not analytic at a point ,  but is analytic
at every other point in a neighborhood of  then  is an
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 singular point.
1Example:  has an isolated singular point at 0

If  is a rational function, then the only singularities are the
roots of the denominator (called poles).
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MATLAB Functions

Function Returns
imag imaginary part of a complex number
real real part of a complex number
abs magnitude of a complex number
angle angle of a complex number
conj conjugate of a complex number



Advanced Topics ~ Defer

• Cauchy’s Residue Theorem
• Principle of the Argument



Summary
• Complex numbers

Rectangular and polar forms
Basic algebra

• Euler’s formula
• Functions of a complex variable

Rational functions
Singularities & poles

• MATLAB tools


