MEM 255 Introduction to Control Systems Review: Complex Numbers

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics

Drexel University

Outline

- Definition, & Representation
- Basic Properties
- Euler's Formula
- Algebraic Operations
- Functions of a Complex Variable
- MATLAB Functions

Complex Numbers

- A complex number is defined as
 - s = x + j y (or x + i y)

where $j = \sqrt{-1}$ (or $i = \sqrt{-1}$) is the **imaginary operator**

and x, y are real numbers.

• x is the real part of $s: x = \operatorname{Re} s$

y is the imaginary part of s: y = Im s

• ρ, θ defined by $x = \rho \cos \theta$, $y = \rho \sin \theta$ are called the magnitude and angle of *s*, respectively. Note

$$\rho = |s| = \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1}(y/x)$$

• $s^* = x - jy$ is called the **complex conjugate** of s

Basic Properties of Complex Numbers

$$(s^*)^* = s (s_1 \pm s_2)^* = s_1^* \pm s_2^* (\frac{s_1}{s_2})^* = \frac{s_1^*}{s_2^*} (s_1 s_2)^* = s_1^* s_2^* \text{Re } s = \frac{s + s^*}{2}, \quad \text{Im } s = \frac{s - s^*}{2} \\ ss^* = |s|^2$$

Euler's Formula

It is easy to prove the fundamental relationship:

 $e^{j\theta} = \cos\theta + j\sin\theta$

To see this, set

$$A(\theta) = \cos\theta + j\sin\theta$$

We can derive and solve a differential equation for A

$$\frac{dA}{d\theta} = -\sin\theta + j\cos\theta = j(\cos\theta + j\sin\theta) = jA$$
$$\frac{dA}{A} = jd\theta \Rightarrow \ln A = j\theta + c \text{ where } c \text{ is a constant of integration}$$
$$\Rightarrow A = e^{j\theta + c} = e^{j\theta}e^{c}$$

To determine c, evaluate $e^{j\theta}e^{c} = \cos\theta + j\sin\theta$ at $\theta = 1$;

 $\Rightarrow e^{c} = 1 \Rightarrow c = 0$

Polar Representation

Consider the complex number s:

 $s = x + jy = \rho \cos \theta + j\rho \sin \theta = \rho e^{j\theta}$ rectangular form: s = x + jypolar form: $s = \rho e^{j\theta}$

Many computations including multiplication and division are much easier to do in polar form.

Algebraic Operations

Consider two complex numbers

 $s_{1} = x_{1} + jy_{1}, \quad s_{2} = x_{2} + jy_{2}$ addition: $s_{1} + s_{2} = (x_{1} + x_{2}) + j(y_{1} + y_{2})$ multiplication: $s_{1}s_{2} = (x_{1}x_{2} - y_{1}y_{2}) + j(x_{1}y_{2} + x_{2}y_{1})$ $\Rightarrow s_{1}s_{1}^{*} = x_{1}^{2} + y_{1}^{2}$ division: $\frac{s_{1}}{s_{2}} = \frac{s_{1}}{s_{2}}\frac{s_{2}^{*}}{s_{2}^{*}} = \frac{(x_{1}x_{2} + y_{1}y_{2}) + j(-x_{1}y_{2} + x_{2}y_{1})}{x_{2}^{2} + y_{2}^{2}}$

Functions of a Complex variable

A function F of a complex variable s can be thought of as a mapping from one complex plane (s-plane) to another (F-plane). The function F is **analytic** at a point s_0 the s-plane if its derivative dF/dsexists at all points in a neighborhood of s_0 . The function F is called a **rational function** if it is the ratio of two polynomials in s, e.g.

$$F(s) = \frac{(s+1)(s-2)}{(s+2)(s^2+9)}$$

Singularities

- If a function F(s) is not analytic at a point s_0 , then s_0 is a singular point.
- If a function F(s) is not analytic at a point s_0 , but is analytic at every other point in a neighborhood of s_0 then s_0 is an **isolated** singular point.

Example: $F(s) = \frac{1}{s}$ has an isolated singular point at s = 0If F(s) is a rational function, then the only singularities are the roots of the denominator (called poles).

MATLAB Functions

Function	Returns
imag	imaginary part of a complex number
real	real part of a complex number
abs	magnitude of a complex number
angle	angle of a complex number
conj	conjugate of a complex number

Advanced Topics ~ Defer

- Cauchy's Residue Theorem
- Principle of the Argument

Summary

- Complex numbers
 - Rectangular and polar forms
 - Basic algebra
- Euler's formula
- Functions of a complex variable
 - Rational functions
 - Singularities & poles
- MATLAB tools

