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Abstract . 1 7] s
5 /]
In the present paper analysis and simulation are pe /1};- -- _PT_)E_ —;Lf— % 4
1

formed for a simplest model of a skateboard. We suj
pose that the rider control is absent during the motiol < >
Equations of motion of the model are presented ar...
their stability analysed in brief.

Modelica implementation of the skateboard dynamics
is described as well. Its main featured outlined, and
the verification procedures explained. It is pointed obbards are usually from 78 to 83 cm long, 17 to 21 cm
the skateboard can behave in dynamical sense likewigge and 1 to 2 cm thick. The most essential elements
the known example of the rattleback. of a skateboard are the trucks, connecting the axles to
Keywords: skateboard; nonholonomic constraintshe board. Angular motion of both the front and rear
normal form; contact models, dynamical verificationaxles is constrained to be about their respective non-
horizontal pivot axes, thus causing a steering angle of
the wheels whenever the axles are not parallel to the
plane of the board, see Figure 2. The vehicle is steered

Nowadays the skateboarding, the art of riding onbg mgking use of thisf kinematic relationship_between
skateboard, is one of the most popular sports. Na}germg'angles apd tilt of the board. In addlitlon, there
ertheless serious researches concerning dynamics'§r1adtors'onal spring, which exerts a reston_ng torque
stability of a skateboard are almost absent. At tﬁgtweenthe wheglset and the board proportlor_1al to the
late 70th — early 80th of the last century Mont Hu It of the board W_lth respect t_o the_wheelset, Figure 3.
bard [1, 2] proposed two mathematical models d}é\le denote the stifiness of this spring ky

scribing the motion of a skateboard with the rider. To

derive equations of motion of the models he used the D}T—
principal theorems of dynamics. In our paper we give Né}
the further development of the models proposed by
Hubbard to have an additional possibility to verify the
engineering solutions for this type of a vehicle. gp
Simultaneously to give the further move in field of a
the sportswear appliances development we created and
verified a dynamical model of the skateboard. The
model was developed on Modelica, and it is easy to
improve it in different directions to be able to inves- M@’
tigate the regular riding technique or the interesting R —

tricks performed by the experts while the skateboard- D\ /
ing shows.

The skateboard typically consists of a board, two Figure 2: The Skateboard Top View
trucks and four wheels, see Figure 1. The modern

Figure 1: The Skateboard Side View

1 Introduction
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will be directed horizontally and perpendicularly to the

axles of wheels and there is a polon the lineFR
Lx which has zero lateral velocity. Its forward velocity we

denote byu. It may be shown, that (see e. g. [1] - [6])

, 0cosds COSH
m __ 8UC0osof COSoy
o ¢ T T NG e

_asindscosd ,  usin(df + &) @
h ~ sin(®+&)’ acosd;cosd;
k Using results obtained in [5, 6] we conclude that the
1

steering angled; andd, are related to the tilt of the

board by the following equations
Figure 3: The Skateboard Front/Rear View y geq

tand; =tanA¢ siny, tand; = tank; siny, 3)

2 The Problem Formulation. whereA; andA; are the fixed angles which the front
Equations of Motion. and rear axes make with the horizontal, Figure 1. Us-

ing constraints (3) we can rewrite equations (1) as fol-
We assume that the rider, modeled as a rigid body, fews

mains perpendicular with respect to the board. There- (tanh s — tamh,)

fore, when the board tilts throughp the rider tilts X=ucosd + usinysin®,
through the same angle relative to the vertical. Letus . : (tanA¢ —tank;) . ()
introduce an inertial coordinate systgdXY Zin the Y=usin— fusmycose.
ground plane. LeFR = a is a distance between tWQExpressions (2) become

axle center$ andR of a skateboard. The position of

a line FRwith respect to th©XY Zsystem is defined pp_  8@Mr o (tam;+tank) usiny.
by X andY coordinates of its center and by the angle tank ¢ +-tanh,’ a

0 between this line and theX-axis, see Figure 4. (5)

Suppose that the board of the skateboard is located on

the distancéh above the lind=R. The length of the

board is also equal ta. The board center of mass is

located in its center. As to the rider we suppose that

the rider center of mass is not located above the board

center of mass, but it is located over the central line

of the board on a distanakfrom the front truck. Let

| be the height of the rider center of mass above the

point P. Other parameters for the problem am; is

the mass of the boardy is the mass of the ridetjy,

Iny, Ibz are the principal central moments of inertia of
Figure 4: The Basic Coordinate Systems.  the boardj, lry, Iz are the principal central moments

of inertia of the rider. We introduce also the following

The tilt of the board causes the rotation of front whegbarameters:

clockwise throughds and the rotation of rear wheels o | - | L] |

anticlockwise througl®,, Figures 2, 4. The wheels of X~ 'oxTloe  ly=loyFly, 1z =Toz+ lrz.

a skateboard are assumed to roll without lateral slid-can be proved, see [5], that the variablesndy

ing. This condition is modeled by constraints, whicgatisfy the following differential equations

may be shown to be nonholonomic _ AN
(A+(C—2D)sirfy+Ksin'y) i+

Y cos(6—5¢)—X sin(6—3; )+}a6coséf =0, (C—3D+ 3K"sm2y) Uysinycosy+
. - 12 _ (1) B (ycosy—y?siny)siny = 0, ©)
Y cos(6+8) —X sin(6+3) - 5aBcosd; = 0. Ey+ (D —Ksinfy) u?sinycosy+
k1y — (mph+myl) gsiny+-
Under these conditions velocities of a poift&indR B(usiny+uycosy)cosy = O.
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Here A, ..., E, K are functions of the parametersAssuming that condition (9) holds, let us consider the
namely behavior of the system near the equilibrium position.
Solving equations (6) with respect toandy and as-
A = mp+m, suming that, y andy are small, we can write equa-
E = Ik+mh?+ml? tions of perturbed motion taking into account the terms
B — @(tanAf —tanh,) + which are quadratic in, y andy as follows
ml . BQ? iy Buy
?((a—d)tan)\f—dtan)\r), u:Ty27 y+Q2y:_?uy7 (20)
_ ™ _ 2
c = 4 (tanks —tanh,)” + where we introduce the following notation
IZ 2
?(tan)\f +tanA;) + 07— ki — (mph+ml)g
%((a—d)tan)\f —dtam\)?, E
(tanAt +tanA;) Note, that the linear terms in the second equation of
D = f(mbm mdl), the system (10) have a form which corresponds to
(tanks +tan)\r)2 ) ) a normal oscillations. For investigation of nonlin-
K = a2 (ly+mh*+mi%—1z).  eqr system (10) we reduce it to a normal form [10].

_ To obtain the normal form of the system (10) first of
Thus, equations (4-6) form the closed DAE system fall we make a change of variables and introduce two

the skateboard motion. complex-conjugate variables andz, such that
1—2r . A+
o Y= —, Y= Q, u=z.
3 Stability of the Skateboard 2i 2
Straight-Line Motion In variablesz, k = 1,2, 3 the linear part of the system
_ _ _ (10) has a diagonal form and the derivation of its nor-
Equations(6) have a particular solution mal form reduces to separating of resonant terms from

the nonlinearities in the right-hand sides of the trans-

U=Up=const y=0, () formed system (10). Finally, the normal form of the

. , i . i stystem (10) may be written as follows
which corresponds to a uniform straight-line motion o

the skateboard. The stability conditions of this partic- s 07 Ez .
ular solution have the following form [1]-[6]: b= 17 E®
22 = —iQZz — =273,
Bup >0, Dui+ki—(mh+ml)g>0. (8) BO? 2E
3 = ﬁzlzz.

From the first condition of (8) we can conclude that
the stability of motion (7) depends on its direction. khtroducing real polar coordinates according to the for-
one direction of motion is stable the opposite diremulae

tion is necessary unstable. Such a behavior is peculiar 21 = pi(coso+isino),
to many nonholonomic systems. First of all, we can z = pa(coso—isino),
mention here the classical problem the rattleback mo- Z3 = P2

tion (aka wobblestone or celtic stone, see e. g. [7]-[9))e obtain from the system (10) the normalized system

In this problem the stability of permanent rotations @ff equations of perturbed motion which is then split
a rattleback also depends on the direction of rotatiofhto two independent subsystems:

Suppose that the coefficieBtis positive,B > 0. Then

for up > 0 the skateboard moves in “stable” direction, . B . BQ? , (11)
and forugp < 0 it moves in “unstable” direction. When P1="2gP1P2, P2= 7 "P1,
Up = 0 the skateboard is in equilibrium position on the -
- I o=Q. (12)
plane. The necessary and sufficient condition for sta-
bility of this equilibrium have a form [1]-[6]: Terms of order higher than the second in (11) and those
higher than the first ipy, k = 1,2 in (12) have been
ki — (mph+myl)g > 0. (9) omitted here.
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In the e-neighborhood of the equilibrium position the, = 0. An arbitrary constan; can be both positive
right-hand sides of equations (11) and (12) differ froand negative. The positive values of this constant cor-
the respective right-hand sides of the exact equatisaspond to the skateboard straight-line motions with
of perturbed motion by quantities of ordet ande? small velocity in “stable” direction and the negative
respectively. The solutions of the exact equations amees do in “unstable” direction. Indeed, if we linearize
approximated by the solutions of system (11-12) wilguations (11) near the equilibrium position (17) we
an error ofe? for py, p» and of ordek for o over time get

m'FervaI of order ;Ms_. Rest_rlctlng the calc_ulatlons to D1 = ——Qnpy, P2 = 0.

this accuracy, we will consider the approximate system 2E

(11-12) instead of the complete equations of perturb&us, forn; > 0 the equilibrium position (17) is stable
motion. and forn; < 0 it is unstable.

Equation (12) is immediately integrable, and we obtakrvolution of the functiongp; and p2 gives the com-
plete description of behavior of a skateboard with
0 = Qt+0o. small velocities. Let us suppose, that at initial in-

System (11) describes the evolution of the amplituﬁ@nt the system is near the stable equilibrium position

p1 of the board oscillations and also the evolution 4p1>0) andp2(0) > 0, i. e. n; < 1. The case of

the velocityp, of a the skateboard straight-line mo-™® ~ 0,1z > 1 s similar to the case of, <0, <1,

tion. One can see that this system has the first integWé]'Ch will be investigated peIOVY' These initial con-
ditions correspond to the situation correspond to the

A .
Ep% i - p% — ArZ, (13) skateboard to take the small velocity
. . I iy 1-m
wheren; is a constant, specified by initial conditions. P2(0) = Qn11+n2

We will use this integral for solving of the system (11)

and for finding the variablegs; andp, as functions of in the “stable” direction at initial instant. Then in the
time: p1 = p1 (1), p2 = p2(t). Expressing? from the course of time the “amplitudegd; of the board oscilla-
integral (13) and substitute it to the second equationtefns decreases monotonically from its initial value

the system (11) we get )
m /A
0) = —
Q%2 — p3) . (14) PO =TV E

rgo zero, while the velocity of a skatebogrglincreases
|ﬂ absolute value. In the limit the skateboard moves
in stable direction with a constant veloci9n,;, see
Qny (1— Ny exp(—%t)) Figure 5-6.

; (15)
(1+ Ny exp(—%t))

wheren; is a nonnegative arbitrary constant. Now, us-
ing the integral (13), we can find the explicit form of
the functionp (t) in the following way

BQn;
expl — t
o (t) = 2y 2 ) . @6)
E BQn
1+n; exp(—?lt)

001

pz = E (
The general solution of equation (14) has the followi
form:

p2(t) =

Let us consider the properties of the solutions (15),
(16) of system (11) and their relations to the properties °
of the skateboard motion. System (11) has an equilib- ‘

rium position

Figure 5: Evolution of the Amplitude; of the Board
p1=0, p2=Qn. (17) Oscillations in Time for the Casg > 0,np < 1.

These particular solutions can be obtained from geBuppose now that at initial instant the system is near
eral functions (15-16) if we suppose in that functiorike unstable equilibrium position; < 0. Suppose
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Figure 6: Evolution of the "Velocityp, of the Skate-

board in Time for the Case, > 0, ny < 1. Figure 7: Evolution of the Amplitude; of the Board

Oscillations in Time for the Cagg < 0,np < 1.

again, that at initial instant; < 1, i. e. p2(0) < 0.

The casen; < 0, np > 1 is similar to the casa; > 0,

n, < 1 which was considered above. These initial con- .,

ditions correspond to the situation if at initial instant

the skateboard takes the small velocity
1-—ny

0 — Qn o 100 200 300 400 500
p2(0) 10

in “unstable” direction. In this case the limit of the =
system motions is the same as far(0) > 0 but the
evolution of the motion is entirely different. For

Eln(ny)

BQm Figure 8: Evolution of the "Velocityp, of the Skate-
the absolute value of the oscillation “amplitudp; board in Time for the Case, < 0,n; < 1.
increases monotonically and the skateboard moves in
unstable direction with decreasing velocity. At the i
stantt = t, the velocity vanishes and the oscillation ) .
samplitude” p; reaches its maximum absolute value ~ Validation

O<t<t, =

Implementation and Experimental

A Evidently an analytic modeling and a numeric simula-
P1 (t*) =N/ —=. . . . .
E tion may be useful to predict the dynamical properties
of the sports equipment, the skateboard in our case. To

Whent > t, the skateboard already moves in stab¥erify a possibility of the behavior described above,
direction with an increasing absolute value of its vé-€. an asymmetry property of stability depending on
locity and the oscillation amplitude decreases monib€ rider relocation on the board, an attempt was un-
tonically. Thus wherp,(0) < 0 during the time of dertaken to create the model of this device, see Fig-
evolution of the motion a change in the direction dfre 9.

motion of the skateboard occurs, see Figure 7-8. Theachieve the goal announced we used an approach
similar nonlinear effects, like the change of the m@nd components applied earlier to the one else sports
tion direction, were observed earlier in other probleragpliance: the snakeboard [11]. However, we have a
of nonholonomic mechanics, for example in a claserious differences with the snakeboard model now.
sical problem of dynamics of the rattleback [7]-[9])First, we used a spheroids of different shapes instead
Thus, we describe here the basic features of the swh4deal disks. That seems more natural and allows
plest skateboard model dynamics, proposed in [1,t8]consider as a wheels more plausible models of the
and developed by us. elastic bodies rolling in future. The main current dif-
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Figure 9: The Skateboard Model Animation

ference is that we applied the Hertz model and it
volumetric modification for the contact of the wheel
and the floor [12]. This made it possible to avoid en
tirely an application of the compliances artificially in-

troduced to the snakeboard model in [11].

wheelset is not vertical and allows the rider an effec-
tive possibility to maneuver along the road. Besides to
ensure the stable riding the manufacturers frequently
equip their skateboards by an elastic connections the
wheelset axle and the board. Such a construct includes
two springs of a high stiffness. An example of the
so-called "Seismic" truck invented by D. Gesmer and
M. Haug [13] see in Figure 11. The whole skateboard
visual model including the spring elements is shown
in Figure 12.

The wheelset model, see in Figure 10 its visual mode;,

thus equipped by the objects of a simple revolute
joint classFixedJoint  instead of the joint model
SpringJoint  with elastic compliance along its axis.

The joint connects the wheel with the shaft of the

wheelset axis.

E
o Ro.d1
d I8

Figure 10: The Wheelset Visual Model

LeftWheels
RightWheels

Figure 12: The Skateboard Visual Model

The visual model of the spring connection see in Fig-
ure 13. Here tne sidé of a particular spring ele-
ments,Springl andSpring2 |, is connected with the
wheelset axle model, while thgsides of these objects
merge to one point producing one total effort. Further
the modeBpring is a usual spatial spring element re-
sisting both the compression and the stretch. Its Mod-

We saw above that in difference with the snakebozglica code has the following easy to read form:
an axis of the joint connection of the board and the

The Modelica Association
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model Spring
extends Constraint;
/lundeformed spring length
parameter  Sl.Length I;
/Ispring stiffness
parameter Real c;
/ffixed point on Body A
parameter  Sl.Position[3] rA ;
/ffixed point on Body B
parameter  Sl.Position[3] rB;
[ffixed point on Body A in abs. syst.
Sl.Position[3] RA;
[/lfixed point on Body B in abs. syst.
Sl.Position[3] RB;
Sl.Length[3] RAB;
Sl.Length deltal;
equation
RA = InPortA.r + InPortA.T*rA,
RB = InPortB.r + InPortB.T*rB;

OutPortA.P = RA;
OutPortB.P = RB;
RAB = RB - RA;
deltal = sqrt ((RAB -

*RAB/ sqrt (RAB*RAB))*
(RAB - I*RAB/ sqrt (RAB*RAB)));
OutPortB.F = -c*deltal*RAB/
sqrt (RAB*RAB);
OutPortB.M =  zeros (3);
end Spring;

«©«
—
2]

©

«Q
N

-
e T

ﬁ

Figure 13: The Spring Connection Visual Model

to it rigidly, by the constraint of the clagdgid .

A various numeric experiments performed with the
skateboard model under consideration. In particular,
to verify the dynamic effect of the stability of mo-
tion asymmetry, being similar to the stability asym-
metry of the rattleback rotation, the cylinder playing
a role of the rider motionlessly standing on the board
was shifted to the right away from the board masscen-
ter. In this case according to results outlined above if
one pushes the whole skateboard to the right then the
skateboard will keep this motion all the time of simu-
lation. Otherwise, if one directs an initial skateboard
velocity to the left then soon the skateboard would
stop its translatory motion and then will start it to the
right direction thus demonstrating instability of the left
translatory motions, see the board masscenter velocity
x-coordinate depending on the time in Figure 14 and
the corresponding 2D-plot of the board masscexter
coordinate itself in Figure 15.

Board w[1]
0.020

ams4

00104

0.005 4

[mi=]

0,000~

-0.003

-0.010

-0o1s T T T T T T T T T T

Figure 14: The Skateboard Velocity

Board +[1]
03

024

0.1

[m]

0.0

-0

Let us continue a description of the skateboard visual

model in Figure 12. It is quite natural for the rider to Figure 15: The Skateboard Position

be included into the vehicle dynamics. In our case the

rider reduced simply to the cylinder standing perpeRemark that the skateboard model built up turned out
dicular to the board top surface and being connectedbe quite effective dynamic “toy” allowing to sim-
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ulate the skateboard roll overs, tumbling, jumps, anf#] Kuleshov A. S., Mathematical Model of a Skate-
bouncing over the road. It is clear to simulate a con-
trol of such motion the rider model has to be far more
complicated.

[5]

5 Conclusions

An analytic analysis and numeric experimentation per-
formed on the skateboard dynamics allow us to havﬁi]
simultaneously several conclusions:

e The analytic analysis results showing acceptable

consistence with the numeric simulations of the
models created using the physical oriented ap-
proach still remains an effective tool to investi-[7]
gate the skateboard dynamics.

On the other hand the model itself can be veri-
fied reliably enough using the proper constructeds]
analytical tools.

Modelica turned out to be useful instrument in
field of sporting and more wider in field of biome- [9]
chanical applications.

And finally the nearest plans for the future work are
about to investigate the complicated types of the skaltfo]
board motion including in particular the jumps.
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