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Abstract

In the present paper analysis and simulation are per-
formed for a simplest model of a skateboard. We sup-
pose that the rider control is absent during the motion.
Equations of motion of the model are presented and
their stability analysed in brief.
Modelica implementation of the skateboard dynamics
is described as well. Its main featured outlined, and
the verification procedures explained. It is pointed out
the skateboard can behave in dynamical sense likewise
the known example of the rattleback.
Keywords: skateboard; nonholonomic constraints;
normal form; contact models, dynamical verification

1 Introduction

Nowadays the skateboarding, the art of riding on a
skateboard, is one of the most popular sports. Nev-
ertheless serious researches concerning dynamics and
stability of a skateboard are almost absent. At the
late 70th – early 80th of the last century Mont Hub-
bard [1, 2] proposed two mathematical models de-
scribing the motion of a skateboard with the rider. To
derive equations of motion of the models he used the
principal theorems of dynamics. In our paper we give
the further development of the models proposed by
Hubbard to have an additional possibility to verify the
engineering solutions for this type of a vehicle.
Simultaneously to give the further move in field of
the sportswear appliances development we created and
verified a dynamical model of the skateboard. The
model was developed on Modelica, and it is easy to
improve it in different directions to be able to inves-
tigate the regular riding technique or the interesting
tricks performed by the experts while the skateboard-
ing shows.
The skateboard typically consists of a board, two
trucks and four wheels, see Figure 1. The modern

Figure 1: The Skateboard Side View

boards are usually from 78 to 83 cm long, 17 to 21 cm
wide and 1 to 2 cm thick. The most essential elements
of a skateboard are the trucks, connecting the axles to
the board. Angular motion of both the front and rear
axles is constrained to be about their respective non-
horizontal pivot axes, thus causing a steering angle of
the wheels whenever the axles are not parallel to the
plane of the board, see Figure 2. The vehicle is steered
by making use of this kinematic relationship between
steering angles and tilt of the board. In addition, there
is a torsional spring, which exerts a restoring torque
between the wheelset and the board proportional to the
tilt of the board with respect to the wheelset, Figure 3.
We denote the stiffness of this spring byk1.

Figure 2: The Skateboard Top View
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Figure 3: The Skateboard Front/Rear View

2 The Problem Formulation.
Equations of Motion.

We assume that the rider, modeled as a rigid body, re-
mains perpendicular with respect to the board. There-
fore, when the board tilts throughγ, the rider tilts
through the same angle relative to the vertical. Let us
introduce an inertial coordinate systemOXYZ in the
ground plane. LetFR= a is a distance between two
axle centersF andR of a skateboard. The position of
a lineFR with respect to theOXYZ-system is defined
by X andY coordinates of its center and by the angle
θ between this line and theOX-axis, see Figure 4.

Figure 4: The Basic Coordinate Systems.

The tilt of the board causes the rotation of front wheels
clockwise throughδ f and the rotation of rear wheels
anticlockwise throughδr , Figures 2, 4. The wheels of
a skateboard are assumed to roll without lateral slid-
ing. This condition is modeled by constraints, which
may be shown to be nonholonomic

Ẏcos(θ−δ f )−Ẋ sin(θ−δ f )+
1
2

aθ̇cosδ f = 0,

Ẏcos(θ+δr)−Ẋ sin(θ+δr)−
1
2

aθ̇cosδr = 0.
(1)

Under these conditions velocities of a pointsF andR

will be directed horizontally and perpendicularly to the
axles of wheels and there is a pointP on the lineFR
which has zero lateral velocity. Its forward velocity we
denote byu. It may be shown, that (see e. g. [1] – [6])

u =−aθ̇cosδ f cosδr

sin(δ f +δr)
,

FP =
asinδ f cosδr

sin(δ f +δr)
, θ̇ =−usin(δ f +δr)

acosδ f cosδr
. (2)

Using results obtained in [5, 6] we conclude that the
steering anglesδ f andδr are related to the tilt of the
board by the following equations

tanδ f = tanλ f sinγ, tanδ f = tanλ f sinγ, (3)

whereλ f andλr are the fixed angles which the front
and rear axes make with the horizontal, Figure 1. Us-
ing constraints (3) we can rewrite equations (1) as fol-
lows

Ẋ=ucosθ+
(tanλ f − tanλr)

2
usinγsinθ,

Ẏ=usinθ− (tanλ f − tanλr)
2

usinγcosθ.
(4)

Expressions (2) become

FP=
atanλ f

tanλ f +tanλr
, θ̇=−(tanλ f +tanλr)

a
usinγ.

(5)
Suppose that the board of the skateboard is located on
the distanceh above the lineFR. The length of the
board is also equal toa. The board center of mass is
located in its center. As to the rider we suppose that
the rider center of mass is not located above the board
center of mass, but it is located over the central line
of the board on a distanced from the front truck. Let
l be the height of the rider center of mass above the
point P. Other parameters for the problem are:mb is
the mass of the board,mr is the mass of the rider;Ibx,
Iby, Ibz are the principal central moments of inertia of
the board;Irx, Iry, Irz are the principal central moments
of inertia of the rider. We introduce also the following
parameters:

Ix = Ibx+ Irx, Iy = Iby+ Iry, Iz = Ibz+ Irz.

It can be proved, see [5], that the variablesu and γ
satisfy the following differential equations

(
A+(C−2D)sin2 γ+K sin4 γ

)
u̇+(

C−3D+3K sin2 γ
)

uγ̇sinγcosγ+
B

(
γ̈cosγ− γ̇2sinγ

)
sinγ = 0,

Eγ̈+
(
D−K sin2 γ

)
u2sinγcosγ+

k1γ− (mbh+mr l)gsinγ+
B(u̇sinγ+uγ̇cosγ)cosγ = 0.

(6)
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Here A, . . ., E, K are functions of the parameters,
namely

A = mb +mr ,
E = Ix +mbh2 +mr l2,

B =
mbh

2
(tanλ f − tanλr)+

mr l
a

((a−d) tanλ f −d tanλr) ,

C =
mb

4
(tanλ f − tanλr)

2+

Iz
a2 (tanλ f + tanλr)

2+
mr

a2 ((a−d) tanλ f −d tanλr)
2 ,

D =
(tanλ f + tanλr)

a
(mbh+mr l) ,

K =
(tanλ f + tanλr)

2

a2

(
Iy +mbh2 +mr l

2− Iz
)
.

Thus, equations (4–6) form the closed DAE system for
the skateboard motion.

3 Stability of the Skateboard
Straight-Line Motion

Equations(6) have a particular solution

u = u0 = const, γ = 0, (7)

which corresponds to a uniform straight-line motion of
the skateboard. The stability conditions of this partic-
ular solution have the following form [1]-[6]:

Bu0 > 0, Du2
0 +k1− (mbh+mr l)g > 0. (8)

From the first condition of (8) we can conclude that
the stability of motion (7) depends on its direction. If
one direction of motion is stable the opposite direc-
tion is necessary unstable. Such a behavior is peculiar
to many nonholonomic systems. First of all, we can
mention here the classical problem the rattleback mo-
tion (aka wobblestone or celtic stone, see e. g. [7]-[9]).
In this problem the stability of permanent rotations of
a rattleback also depends on the direction of rotation.
Suppose that the coefficientB is positive,B > 0. Then
for u0 > 0 the skateboard moves in “stable” direction,
and foru0 < 0 it moves in “unstable” direction. When
u0 = 0 the skateboard is in equilibrium position on the
plane. The necessary and sufficient condition for sta-
bility of this equilibrium have a form [1]-[6]:

k1− (mbh+mr l)g > 0. (9)

Assuming that condition (9) holds, let us consider the
behavior of the system near the equilibrium position.
Solving equations (6) with respect to ˙u and γ̈ and as-
suming thatu, γ and γ̇ are small, we can write equa-
tions of perturbed motion taking into account the terms
which are quadratic inu, γ andγ̇ as follows

u̇ =
BΩ2

A
γ2, γ̈+Ω2γ =−Buγ̇

E
, (10)

where we introduce the following notation

Ω2 =
k1− (mbh+mr l)g

E
.

Note, that the linear terms in the second equation of
the system (10) have a form which corresponds to
a normal oscillations. For investigation of nonlin-
ear system (10) we reduce it to a normal form [10].
To obtain the normal form of the system (10) first of
all we make a change of variables and introduce two
complex-conjugate variablesz1 andz2 such that

γ =
z1−z2

2i
, γ̇ =

z1 +z2

2
Ω, u = z3.

In variableszk, k = 1,2,3 the linear part of the system
(10) has a diagonal form and the derivation of its nor-
mal form reduces to separating of resonant terms from
the nonlinearities in the right-hand sides of the trans-
formed system (10). Finally, the normal form of the
system (10) may be written as follows

ż1 = iΩz1−
B

2E
z1z3,

ż2 = −iΩz2−
B

2E
z2z3,

ż3 =
BΩ2

2A
z1z2.

Introducing real polar coordinates according to the for-
mulae

z1 = ρ1(cosσ+ i sinσ) ,
z2 = ρ1(cosσ− i sinσ) ,
z3 = ρ2

we obtain from the system (10) the normalized system
of equations of perturbed motion which is then split
into two independent subsystems:

ρ̇1 =− B
2E

ρ1ρ2, ρ̇2 =
BΩ2

2A
ρ2

1, (11)

σ̇ = Ω. (12)

Terms of order higher than the second in (11) and those
higher than the first inρk, k = 1,2 in (12) have been
omitted here.
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In theε-neighborhood of the equilibrium position the
right-hand sides of equations (11) and (12) differ from
the respective right-hand sides of the exact equations
of perturbed motion by quantities of orderε3 andε2

respectively. The solutions of the exact equations are
approximated by the solutions of system (11–12) with
an error ofε2 for ρ1, ρ2 and of orderε for σ over time
interval of order 1/ε. Restricting the calculations to
this accuracy, we will consider the approximate system
(11–12) instead of the complete equations of perturbed
motion.
Equation (12) is immediately integrable, and we obtain

σ = Ωt +σ0.

System (11) describes the evolution of the amplitude
ρ1 of the board oscillations and also the evolution of
the velocityρ2 of a the skateboard straight-line mo-
tion. One can see that this system has the first integral

Eρ2
1 +

A
Ω2 ρ2

2 = An2
1, (13)

wheren1 is a constant, specified by initial conditions.
We will use this integral for solving of the system (11)
and for finding the variablesρ1 andρ2 as functions of
time: ρ1 = ρ1(t), ρ2 = ρ2(t). Expressingρ2

1 from the
integral (13) and substitute it to the second equation of
the system (11) we get

ρ̇2 =
B

2E

(
Ω2n2

1−ρ2
2

)
. (14)

The general solution of equation (14) has the following
form:

ρ2(t) =
Ωn1

(
1−n2exp

(
−BΩn1

E t
))

(
1+n2exp

(
−BΩn1

E t
)) , (15)

wheren2 is a nonnegative arbitrary constant. Now, us-
ing the integral (13), we can find the explicit form of
the functionρ1(t) in the following way

ρ1(t) = 2n1

√
An2

E

exp
(
−BΩn1

2E t
)

1+n2exp
(
−BΩn1

E t
) . (16)

Let us consider the properties of the solutions (15),
(16) of system (11) and their relations to the properties
of the skateboard motion. System (11) has an equilib-
rium position

ρ1 = 0, ρ2 = Ωn1. (17)

These particular solutions can be obtained from gen-
eral functions (15–16) if we suppose in that functions

n2 = 0. An arbitrary constantn1 can be both positive
and negative. The positive values of this constant cor-
respond to the skateboard straight-line motions with
small velocity in “stable” direction and the negative
ones do in “unstable” direction. Indeed, if we linearize
equations (11) near the equilibrium position (17) we
get

ρ̇1 =− B
2E

Ωn1ρ1, ρ̇2 = 0.

Thus, forn1 > 0 the equilibrium position (17) is stable
and forn1 < 0 it is unstable.
Evolution of the functionsρ1 and ρ2 gives the com-
plete description of behavior of a skateboard with
small velocities. Let us suppose, that at initial in-
stant the system is near the stable equilibrium position
(n1 > 0) and ρ2(0) ≥ 0, i. e. n2 ≤ 1. The case of
n1 > 0, n2 > 1 is similar to the case ofn1 < 0, n2 < 1,
which will be investigated below. These initial con-
ditions correspond to the situation correspond to the
skateboard to take the small velocity

ρ2(0) = Ωn1
1−n2

1+n2

in the “stable” direction at initial instant. Then in the
course of time the “amplitude”ρ1 of the board oscilla-
tions decreases monotonically from its initial value

ρ1(0) =
2n1

1+n2

√
An2

E

to zero, while the velocity of a skateboardρ2 increases
in absolute value. In the limit the skateboard moves
in stable direction with a constant velocityΩn1, see
Figure 5–6.

Figure 5: Evolution of the Amplitudeρ1 of the Board
Oscillations in Time for the Casen1 > 0, n2 ≤ 1.

Suppose now that at initial instant the system is near
the unstable equilibrium positionn1 < 0. Suppose
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Figure 6: Evolution of the "Velocity"ρ2 of the Skate-
board in Time for the Casen1 > 0, n2 ≤ 1.

again, that at initial instantn2 < 1, i. e. ρ2(0) < 0.
The casen1 < 0, n2 > 1 is similar to the casen1 > 0,
n2 < 1 which was considered above. These initial con-
ditions correspond to the situation if at initial instant
the skateboard takes the small velocity

ρ2(0) = Ωn1
1−n2

1+n2

in “unstable” direction. In this case the limit of the
system motions is the same as forρ2(0) ≥ 0 but the
evolution of the motion is entirely different. For

0 < t < t∗ =
E ln(n2)
BΩn1

the absolute value of the oscillation “amplitude”ρ1

increases monotonically and the skateboard moves in
unstable direction with decreasing velocity. At the in-
stantt = t∗ the velocity vanishes and the oscillation
“amplitude” ρ1 reaches its maximum absolute value

ρ1(t∗) = n1

√
A
E

.

When t > t∗ the skateboard already moves in stable
direction with an increasing absolute value of its ve-
locity and the oscillation amplitude decreases mono-
tonically. Thus whenρ2(0) < 0 during the time of
evolution of the motion a change in the direction of
motion of the skateboard occurs, see Figure 7–8. The
similar nonlinear effects, like the change of the mo-
tion direction, were observed earlier in other problems
of nonholonomic mechanics, for example in a clas-
sical problem of dynamics of the rattleback [7]-[9]).
Thus, we describe here the basic features of the sim-
plest skateboard model dynamics, proposed in [1, 2]
and developed by us.

Figure 7: Evolution of the Amplitudeρ1 of the Board
Oscillations in Time for the Casen1 < 0, n2 ≤ 1.

Figure 8: Evolution of the "Velocity"ρ2 of the Skate-
board in Time for the Casen1 < 0, n2 ≤ 1.

4 Implementation and Experimental
Validation

Evidently an analytic modeling and a numeric simula-
tion may be useful to predict the dynamical properties
of the sports equipment, the skateboard in our case. To
verify a possibility of the behavior described above,
i. e. an asymmetry property of stability depending on
the rider relocation on the board, an attempt was un-
dertaken to create the model of this device, see Fig-
ure 9.
To achieve the goal announced we used an approach
and components applied earlier to the one else sports
appliance: the snakeboard [11]. However, we have a
serious differences with the snakeboard model now.
First, we used a spheroids of different shapes instead
of ideal disks. That seems more natural and allows
to consider as a wheels more plausible models of the
elastic bodies rolling in future. The main current dif-
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Figure 9: The Skateboard Model Animation

ference is that we applied the Hertz model and its
volumetric modification for the contact of the wheel
and the floor [12]. This made it possible to avoid en-
tirely an application of the compliances artificially in-
troduced to the snakeboard model in [11].
The wheelset model, see in Figure 10 its visual model,
thus equipped by the objects of a simple revolute
joint classFixedJoint instead of the joint model
SpringJoint with elastic compliance along its axis.
The joint connects the wheel with the shaft of the
wheelset axis.

Figure 10: The Wheelset Visual Model

We saw above that in difference with the snakeboard
an axis of the joint connection of the board and the

wheelset is not vertical and allows the rider an effec-
tive possibility to maneuver along the road. Besides to
ensure the stable riding the manufacturers frequently
equip their skateboards by an elastic connections the
wheelset axle and the board. Such a construct includes
two springs of a high stiffness. An example of the
so-called "Seismic" truck invented by D. Gesmer and
M. Haug [13] see in Figure 11. The whole skateboard
visual model including the spring elements is shown
in Figure 12.

Figure 11: The Truck with Springs

Figure 12: The Skateboard Visual Model

The visual model of the spring connection see in Fig-
ure 13. Here tne sideA of a particular spring ele-
ments,Spring1 andSpring2 , is connected with the
wheelset axle model, while theB-sides of these objects
merge to one point producing one total effort. Further
the modelSpring is a usual spatial spring element re-
sisting both the compression and the stretch. Its Mod-
elica code has the following easy to read form:
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model Spring
extends Constraint;
//undeformed spring length
parameter SI.Length l;
//spring stiffness
parameter Real c;
//fixed point on Body A
parameter SI.Position[3] rA ;
//fixed point on Body B
parameter SI.Position[3] rB;
//fixed point on Body A in abs. syst.
SI.Position[3] RA;
//fixed point on Body B in abs. syst.
SI.Position[3] RB;
SI.Length[3] RAB;
SI.Length deltal;

equation
RA = InPortA.r + InPortA.T*rA;
RB = InPortB.r + InPortB.T*rB;
OutPortA.P = RA;
OutPortB.P = RB;
RAB = RB - RA;
deltal = sqrt ((RAB -

l*RAB/ sqrt (RAB*RAB))*
(RAB - l*RAB/ sqrt (RAB*RAB)));

OutPortB.F = -c*deltal*RAB/
sqrt (RAB*RAB);

OutPortB.M = zeros (3);
end Spring;

Figure 13: The Spring Connection Visual Model

Let us continue a description of the skateboard visual
model in Figure 12. It is quite natural for the rider to
be included into the vehicle dynamics. In our case the
rider reduced simply to the cylinder standing perpen-
dicular to the board top surface and being connected

to it rigidly, by the constraint of the classRigid .
A various numeric experiments performed with the
skateboard model under consideration. In particular,
to verify the dynamic effect of the stability of mo-
tion asymmetry, being similar to the stability asym-
metry of the rattleback rotation, the cylinder playing
a role of the rider motionlessly standing on the board
was shifted to the right away from the board masscen-
ter. In this case according to results outlined above if
one pushes the whole skateboard to the right then the
skateboard will keep this motion all the time of simu-
lation. Otherwise, if one directs an initial skateboard
velocity to the left then soon the skateboard would
stop its translatory motion and then will start it to the
right direction thus demonstrating instability of the left
translatory motions, see the board masscenter velocity
x-coordinate depending on the time in Figure 14 and
the corresponding 2D-plot of the board masscenterx-
coordinate itself in Figure 15.

Figure 14: The Skateboard Velocity

Figure 15: The Skateboard Position

Remark that the skateboard model built up turned out
to be quite effective dynamic “toy” allowing to sim-
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ulate the skateboard roll overs, tumbling, jumps, and
bouncing over the road. It is clear to simulate a con-
trol of such motion the rider model has to be far more
complicated.

5 Conclusions

An analytic analysis and numeric experimentation per-
formed on the skateboard dynamics allow us to have
simultaneously several conclusions:

• The analytic analysis results showing acceptable
consistence with the numeric simulations of the
models created using the physical oriented ap-
proach still remains an effective tool to investi-
gate the skateboard dynamics.

• On the other hand the model itself can be veri-
fied reliably enough using the proper constructed
analytical tools.

• Modelica turned out to be useful instrument in
field of sporting and more wider in field of biome-
chanical applications.

And finally the nearest plans for the future work are
about to investigate the complicated types of the skate-
board motion including in particular the jumps.
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