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 What is nonlinear control?
 Linearization

 Why nonlinear control?
 Some examples



Resources
Professor Harry G. Kwatny
Office: 151-A Tel: 895-2356 e-mail: hkwatny@coe.drexel.edu
URL: http://www.pages.drexel.edu/faculty/hgk22
Text Books & Software:

Kwatny, H. G. and Blankenship, “Nonlinear Control & Analytical
Mechanics,” Birkhauser, 2000 – Obtain update from H. Kwatny
Mathematica, Student Version 5.0

Requirements:
Problem sets
Final: Take-home project

Other References.
1. Slotine, J-J. E. and Li, W., “Applied Nonlinear Control,” Prentice-Hall, 1991.
2. Vidyasagar, M., “Nonlinear Systems Analysis 2nd edition,” Prentice-Hall, 1993.
3. Isidori, Alberto, “Nonlinear Control Systems-3rd edition,” Springer-Verlag, 1995.
4. Nijmeijer, H. and H. J. van der Schaft, 1990: Nonlinear Dynamical Control

Systems. Springer–Verlag.
5. Khalil, H. K., 1996: Nonlinear Systems-2nd edition. MacMillan.
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MEM 636 ~ Part I
 Introduction

 Course Overview, Using Mathematica
 Nonlinear Dynamics, Stability

 The State Space, Equilibria & Stability, Hartman-Grobman Theorem
 Stability ~ Liapunov Methods

 Geometric Foundations
 Manifolds, Vector Fields & Integral Curves
 Distributions, Frobenius Theorem & Integral Surfaces
 Coordinate Transformations

 Controllability & Observability
 Controllability & Observability, Canonical Forms

 Stabilization via Feedback Linearization
 Linearization via Feedback
 Stabilization using IO Linearization, Gain Scheduling

 Robust & Adaptive Control
 Tracking & Disturbance Rejection



General Model of Nonlinear System
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Special Case: Linear System

 Most real systems are nonlinear
 Sometimes a linear approximation is 

satisfactory
 Linear systems are much easier to analyze
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Linear Systems are Nice
1. Superposition Principle: A linear combination of any two solutions 

for a linear system is also a solution.
2. Unique Equilibrium: Recall that an equilibrium is a solution x(t), 

with u(t) = 0, for which x is constant. A generic Linear system has a 
unique (isolated) equilibrium at the origin x(t) = 0 and its stability is 
easily determined. 

3. Controllability: There are known necessary and sufficient 
conditions under which a control exists to steer the state of a linear 
system from any initial value to any desired final value in finite time.

4. Observability: There are known necessary and sufficient conditions 
under which the system’s state history can be determined from its 
input and output history. 

5. Control design tools: A variety of controller and observer design 
techniques exist for linear systems (including classical techniques, 
pole placement, LQR/LQG, Hinf, etc.)



Why Nonlinear Control
 Contemporary control problems require it,

 Robotics, ground vehicles, propulsion systems, electric power systems, aircraft & 
spacecraft, autonomous vehicles, manufacturing processes, chemical & material 
processing,…

 Smooth (soft) nonlinearities
 the system motion may not remain sufficiently close to an equilibrium point that the 

linear approximation is valid. 
 Also, linearization often removes essential physical effects – like Coriolis forces.
 The optimal control may make effective use of nonlinearities
 Robotics, process systems, spacecraft

 Non-smooth (hard) nonlinearities
 Saturation, backlash, deadzone, hysteresis, friction, switching

 Systems that are not linearly controllable/observable may be 
controllable/observable in a nonlinear sense
 Nonholonomic vehicles (try parking a car with a linear controller), underactuated 

mechanical systems (have fewer controls than dof), compressors near stall, ground 
vehicles near directional stability limit

 Systems that operate near instability (bifurcation points)
 Power system voltage collapse, aircraft stall & spin, compressor surge & rotating stall, 

auto directional, cornering & roll stability
 Parameter adaptive & intelligent systems are inherently nonlinear



Linearization 1: linear approximation near an 
equilibrium point
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Linearization 2
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Some Examples of Nonlinear 
Systems



Example 1: Fully-Actuated Robotic 
System
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Models always look like:
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the computed 'torque method.' We will generalize it.     

Decoupling Stabilizing

coordinates
quasi-velocities

q
p



Example 2

,  velocityV

, headingψ

,  rudderδ

,  sideslipβ
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linear system is not controllable! In particular, 

0,  so it is not possible to steer from the 
origin along the -axis

x y

x Ax Bu A B

y
y

Ψ

 
 = + = = ⇒ 
  

=





Velocities in inertial 
coordinates

Velocities in body 
coordinates

If the boat has a 
keel, typically, we 
have sideslip v=0.



Example 2, cont’d

( ) ( )1 2

But, of course, if you allow large motions you can steer to a point 
0, , 0. How?

Try this:   cos , sin
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The system appears not to be 
linearly uncontrollable but 
nonlinearly controllable!!

By coordinating the rudder and 
forward speed, we  can cause 
the vehicle to move along the y-
axis.



Example 3: Drive Motor & Load with Non-
smooth Friction
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• The problem is to accurately 
position the load.

• The problem becomes even 
more interesting if the friction 
parameters are uncertain. 
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Example 4: Automobile – Multiple 
Equilibria
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Example 5 – Simple 1 dof Rotation
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Example 6 - GTM
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GTM Equilibrium Surface
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Straight and Level Flight Analysis



Nonlinear Equilibrium Structure Analysis of Upset Using GTM 
(1)

Coordinated Turn Analysis

Coordinated turn of GTM @ 85 fps

Coordinated turn of GTM @ 87 fps

Coordinated turn of GTM @ 90 fps
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Nonlinear Equilibrium Structure Analysis of Upset Using GTM 
(2)

Coordinated Turn Analysis

21Techno-Sciences, Inc. Proprietary
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