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MEM 636 ~ Part I
 Introduction

 Course Overview, Using Mathematica
 Nonlinear Dynamics, Stability

 The State Space, Equilibria & Stability, Hartman-Grobman Theorem
 Stability ~ Liapunov Methods

 Geometric Foundations
 Manifolds, Vector Fields & Integral Curves
 Distributions, Frobenius Theorem & Integral Surfaces
 Coordinate Transformations

 Controllability & Observability
 Controllability & Observability, Canonical Forms

 Stabilization via Feedback Linearization
 Linearization via Feedback
 Stabilization using IO Linearization, Gain Scheduling

 Robust & Adaptive Control
 Tracking & Disturbance Rejection



General Model of Nonlinear System
state

( )input u t ( )output y t( )x t
System

( )
( )

, state equation
, output equation

, ,n m q

x f x u
y h x u

x R u R y R

=
=

∈ ∈ ∈





Special Case: Linear System

 Most real systems are nonlinear
 Sometimes a linear approximation is 

satisfactory
 Linear systems are much easier to analyze
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Linear Systems are Nice
1. Superposition Principle: A linear combination of any two solutions 

for a linear system is also a solution.
2. Unique Equilibrium: Recall that an equilibrium is a solution x(t), 

with u(t) = 0, for which x is constant. A generic Linear system has a 
unique (isolated) equilibrium at the origin x(t) = 0 and its stability is 
easily determined. 

3. Controllability: There are known necessary and sufficient 
conditions under which a control exists to steer the state of a linear 
system from any initial value to any desired final value in finite time.

4. Observability: There are known necessary and sufficient conditions 
under which the system’s state history can be determined from its 
input and output history. 

5. Control design tools: A variety of controller and observer design 
techniques exist for linear systems (including classical techniques, 
pole placement, LQR/LQG, Hinf, etc.)



Why Nonlinear Control
 Contemporary control problems require it,

 Robotics, ground vehicles, propulsion systems, electric power systems, aircraft & 
spacecraft, autonomous vehicles, manufacturing processes, chemical & material 
processing,…

 Smooth (soft) nonlinearities
 the system motion may not remain sufficiently close to an equilibrium point that the 

linear approximation is valid. 
 Also, linearization often removes essential physical effects – like Coriolis forces.
 The optimal control may make effective use of nonlinearities
 Robotics, process systems, spacecraft

 Non-smooth (hard) nonlinearities
 Saturation, backlash, deadzone, hysteresis, friction, switching

 Systems that are not linearly controllable/observable may be 
controllable/observable in a nonlinear sense
 Nonholonomic vehicles (try parking a car with a linear controller), underactuated 

mechanical systems (have fewer controls than dof), compressors near stall, ground 
vehicles near directional stability limit

 Systems that operate near instability (bifurcation points)
 Power system voltage collapse, aircraft stall & spin, compressor surge & rotating stall, 

auto directional, cornering & roll stability
 Parameter adaptive & intelligent systems are inherently nonlinear



Linearization 1: linear approximation near an 
equilibrium point
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The general nonlinear system in standard form, involves the state 
vector , input vector , and output vector .
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We are interested in motions that remain close to the equilibrium
point.
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Linearization 2
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Some Examples of Nonlinear 
Systems



Example 1: Fully-Actuated Robotic 
System
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Models always look like:
kinematics:
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, , ,  a linear system! 
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an - more algebra. This is called 
the computed 'torque method.' We will generalize it.     

Decoupling Stabilizing

coordinates
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Example 2

,  velocityV

, headingψ
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( ) ( )ze about the origin , , = 0,0,0  to get

1 0
, 0, 0 0 The 

0 1
linear system is not controllable! In particular, 

0,  so it is not possible to steer from the 
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Velocities in inertial 
coordinates

Velocities in body 
coordinates

If the boat has a 
keel, typically, we 
have sideslip v=0.



Example 2, cont’d

( ) ( )1 2

But, of course, if you allow large motions you can steer to a point 
0, , 0. How?

Try this:   cos , sin

x y y
t tu t u t
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The system appears not to be 
linearly uncontrollable but 
nonlinearly controllable!!

By coordinating the rudder and 
forward speed, we  can cause 
the vehicle to move along the y-
axis.



Example 3: Drive Motor & Load with Non-
smooth Friction

K 1
s

1

1J s

ϕ ω1 1( )

1
s

1

2J s

ϕ ω2 2( )

u
-

- ω 1ω 2 θ 1θ 2

Drive Motor Inertial LoadShaft

• The problem is to accurately 
position the load.

• The problem becomes even 
more interesting if the friction 
parameters are uncertain. 
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Example 4: Automobile – Multiple 
Equilibria

θ
•

x

Y

XSpace Frame

θ

y

VVs = V

Body Frame
u

β

v

rF

lF



a

b

δ

m J,

131.5 132 132.5 133
Vs

-2

-1

1

2


131.5 132 132.5 133
Vs

-0.75

-0.5

-0.25

0.25

0.5

0.75



( )

( )

, , , ,

equilibria: set 0,  (a parameter)
solve for , ,

0 , , ,0,

s s d

s s

d

s d

d V F V F
dt

V V
F

F V F

ω
ω β δ

β

δ
ω β

ω β

 
  = 
  

= =

=



Example 5 – Simple 1 dof Rotation
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Example 6 - GTM
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GTM Equilibrium Surface
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Straight and Level Flight Analysis



Nonlinear Equilibrium Structure Analysis of Upset Using GTM 
(1)

Coordinated Turn Analysis

Coordinated turn of GTM @ 85 fps

Coordinated turn of GTM @ 87 fps

Coordinated turn of GTM @ 90 fps
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Nonlinear Equilibrium Structure Analysis of Upset Using GTM 
(2)

Coordinated Turn Analysis
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