Nonlinear Control Theory Introduction

Harry G. Kwatny

Department of Mechanical Engineering & **Mechanics**

Drexel University

Outline

- Course resources
- Overview
- What is nonlinear control?
	- **Linearization**
- Why nonlinear control?
- Some examples

Resources

Professor Harry G. Kwatny

Office: 151-A Tel: 895-2356 e-mail: hkwatny@coe.drexel.edu URL: <http://www.pages.drexel.edu/faculty/hgk22>

Text Books & Software:

Kwatny, H. G. and Blankenship, "Nonlinear Control & Analytical Mechanics," Birkhauser, 2000 – Obtain update from H. Kwatny *Mathematica,* Student Version 5.0

Requirements:

Problem sets

Final: Take-home project

Other References.

- 1. Slotine, J-J. E. and Li, W., "Applied Nonlinear Control," Prentice-Hall, 1991.
- 2. Vidyasagar, M., "Nonlinear Systems Analysis 2nd edition," Prentice-Hall, 1993.
- 3. Isidori, Alberto, "Nonlinear Control Systems-3rd edition," Springer-Verlag, 1995.
- 4. Nijmeijer, H. and H. J. van der Schaft, 1990: *Nonlinear Dynamical Control Systems*. Springer–Verlag.
- 5. Khalil, H. K., 1996: *Nonlinear Systems-2nd edition*. MacMillan.

MEM 636 ~ Part I

- Introduction
	- *Course Overview, Using Mathematica*
- Nonlinear Dynamics, Stability
	- *The State Space, Equilibria & Stability, Hartman-Grobman Theorem*
	- *Stability ~ Liapunov Methods*
- Geometric Foundations
	- *Manifolds, Vector Fields & Integral Curves*
	- *Distributions, Frobenius Theorem & Integral Surfaces*
	- *Coordinate Transformations*
- Controllability & Observability
	- *Controllability & Observability, Canonical Forms*
- Stabilization via Feedback Linearization
	- *Linearization via Feedback*
	- *Stabilization using IO Linearization, Gain Scheduling*
- *Robust & Adaptive Control*
- *Tracking & Disturbance Rejection*

General Model of Nonlinear System

Special Case: Linear System

Nonlinear System Linear System

- $\begin{aligned}\n\dot{x} &= f(x, u) \\
y &= h(x, u) \\
y &= Cx + Du\n\end{aligned}$ $y = h(x, u)$ $y = Cx + Du$
- Most real systems are nonlinear
- Sometimes a linear approximation is satisfactory
- Linear systems are much easier to analyze

Linear Systems are Nice

- 1. **Superposition Principle**: A linear combination of any two solutions for a linear system is also a solution.
- 2. **Unique Equilibrium**: Recall that an *equilibrium* is a solution *x*(*t*), with *u*(*t*) = 0, for which *x* is constant. A generic Linear system has a unique (isolated) equilibrium at the origin $x(t) = 0$ and its stability is easily determined.
- 3. **Controllability**: There are known necessary and sufficient conditions under which a control exists to steer the state of a linear system from any initial value to any desired final value in finite time.
- 4. **Observability**: There are known necessary and sufficient conditions under which the system's state history can be determined from its input and output history.
- 5. **Control design tools**: A variety of controller and observer design techniques exist for linear systems (including classical techniques, pole placement, LQR/LQG, H_{inf}, etc.)

Why Nonlinear Control

- Contemporary control problems require it,
	- Robotics, ground vehicles, propulsion systems, electric power systems, aircraft & spacecraft, autonomous vehicles, manufacturing processes, chemical & material processing,…
- Smooth (soft) nonlinearities
	- the system motion may not remain sufficiently close to an equilibrium point that the linear approximation is valid.
	- Also, linearization often removes essential physical effects like Coriolis forces.
	- The optimal control may make effective use of nonlinearities
	- Robotics, process systems, spacecraft
- Non-smooth (hard) nonlinearities
	- Saturation, backlash, deadzone, hysteresis, friction, switching
- Systems that are not linearly controllable/observable may be controllable/observable in a nonlinear sense
	- Nonholonomic vehicles (try parking a car with a linear controller), underactuated mechanical systems (have fewer controls than dof), compressors near stall, ground vehicles near directional stability limit
- Systems that operate near instability (bifurcation points)
	- Power system voltage collapse, aircraft stall & spin, compressor surge & rotating stall, auto directional, cornering & roll stability
- Parameter adaptive & intelligent systems are inherently nonlinear

Linearization 1: linear approximation near an equilibrium point

The general nonlinear system in standard form, involves the state vector x , input vector u , and output vector y .

 $\dot{x} = f(x, u)$ state equations

 $y = h(x, u)$ output equations

A set of values (x_0, u_0, y_0) is called an **equilibrium point** if they satisfy:

$$
0 = f\left(x_0, u_0\right)
$$

$$
y_0 = h\left(x_0, u_0\right)
$$

We are interested in motions that remain close to the equilibrium point.

Linearization 2

Define:
$$
x(t) = x_0 + \delta x(t), u(t) = u_0 + \delta u(t), y(t) = y_0 + \delta y(t)
$$

\n
$$
\delta \dot{x} = f(x_0 + \delta x(t), u_0 + \delta u(t))
$$
\nThe equations become:
\n
$$
y_0 + \delta y(t) = h(x_0 + \delta x(t), u_0 + \delta u(t))
$$

Now, construct a Taylor series for f, h

$$
f(x_0 + \delta x, u_0 + \delta u) = f(x_0, u_0) + \frac{\partial f(x_0, u_0)}{\partial x} \delta x + \frac{\partial f(x_0, u_0)}{\partial u} \delta u + hot
$$

\n
$$
h(x_0 + \delta x, u_0 + \delta u) = h(x_0, u_0) + \frac{\partial h(x_0, u_0)}{\partial x} \delta x + \frac{\partial h(x_0, u_0)}{\partial u} \delta u + hot
$$

\nNotice that $f(x_0, u_0) = 0$ and $h(x_0, u_0) = y_0$, so
\n
$$
\delta x = \frac{\partial f(x_0, u_0)}{\partial x} \delta x + \frac{\partial f(x_0, u_0)}{\partial u} \delta u
$$

\n
$$
\delta y = \frac{\partial h(x_0, u_0)}{\partial x} \delta x + \frac{\partial h(x_0, u_0)}{\partial u} \delta u
$$

\n
$$
\delta y = C\delta x + D\delta u
$$

Some Examples of Nonlinear Systems

Example 1: Fully-Actuated Robotic System

If we want to regulate position, we c an - more algebra. This is called the computed 'torque method.' We will generalize it.

Example 2, cont'd

But, of course, if you allow large motions you can steer to a point $x = 0, y = \overline{y}, \psi = 0$. How?

The system appears not to be linearly uncontrollable but nonlinearly controllable!!

By coordinating the rudder and forward speed, we can cause the vehicle to move along the yaxis.

Example 3: Drive Motor & Load with Nonsmooth Friction

Example 4: Automobile – Multiple Equilibria

Example 5 – Simple 1 dof

A stabilizing controller is easily obtained via

Lyapunov design $u = -y - \omega \Rightarrow u = -\sin \theta - \omega$

Example 6 - GTM

 $\dot{x} = V \cos \gamma$

 $\dot{\theta} = q$

 $\dot{z} = V \sin \gamma$

$$
\dot{V} = \frac{1}{m} \Big(T \cos \alpha - \frac{1}{2} \rho V^2 SC_D \left(\alpha, \delta_e, q \right) - mg \sin \gamma \Big)
$$
\n
$$
\dot{\gamma} = \frac{1}{mV} \Big(T \sin \alpha + \frac{1}{2} \rho V^2 SC_L \left(\alpha, \delta_e, q \right) - mg \cos \gamma \Big)
$$
\n
$$
\dot{q} = \frac{M}{I_y}, \quad M = \Big(\frac{1}{2} \rho V^2 SC_{C_m} \left(\alpha, \delta_e, q \right) + \frac{1}{2} \rho V^2 SC_{C_Z} \left(\alpha, \delta_e, q \right) \Big(x_{\text{c}\text{gref}} - x_{\text{cg}} \Big) - mg x_{\text{cg}} + l_t T \Big)
$$
\n
$$
\alpha = \theta - \gamma
$$

GTM Equilibrium Surface

Straight and Level Flight Analysis

Nonlinear Equilibrium Structure Analysis of Upset Using GTM (1)

Coordinated Turn Analysis

Nonlinear Equilibrium Structure Analysis of Upset Using GTM (2)

Coordinated Turn Analysis

