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Introduction

e Course Overview, Using Mathematica

Nonlinear Dynamics, Stability

e The State Space, Equilibria & Stability, Hartman-Grobman Theorem
e Stability ~ Liapunov Methods

Geometric Foundations

e Manifolds, Vector Fields & Integral Curves

e Distributions, Frobenius Theorem & Integral Surfaces
e Coordinate Transformations

Controllability & Observability

e Controllability & Observability, Canonical Forms
Stabilization via Feedback Linearization

e Linearization via Feedback
e Stabilization using IO Linearization, Gain Scheduling

Robust & Adaptive Control
Tracking & Disturbance Rejection



General Model of Nonlinear System

.

input u (t) X(t) output y(t)
—P> SyStem I

state

x=f(x,u) state equation
y=h(x,u) output equation
xeR", ueR", yeR"




Special Case: Linear System

Nonlinear System Linear System
x=f(xu) X = Ax+ Bu
y:h(x,u) y =Cx+ Du

e Most real systems are nonlinear

e Sometimes a linear approximation Is
satisfactory

e Linear systems are much easier to analyze




Linear Systems are Nice
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1. Superposition Principle: A linear combination of any two solutions
for a linear system is also a solution.

2. Unique Equilibrium: Recall that an equilibrium is a solution x(t),
with u(t) = 0, for which x is constant. A generic Linear system has a
unigque (isolated) equilibrium at the origin x(t) = 0 and its stability is
easily determined.

3. Controllability: There are known necessary and sufficient
conditions under which a control exists to steer the state of a linear
system from any initial value to any desired final value in finite time.

4. Observability: There are known necessary and sufficient conditions
under which the system’s state history can be determined from its
input and output history.

5. Control design tools: A variety of controller and observer design
techniques exist for linear systems (including classical techniques,
pole placement, LQR/LQG, H,, etc.)



Why Nonlinear Control

e Contemporary control problems require fit,

Robotics, ground vehicles, propulsion systems, electric power systems, aircraft &
spacecraft, autonomous vehicles, manufacturing processes, chemical & material
processing,...

e Smooth (soft) nonlinearities

the system motion may not remain sufficiently close to an equilibrium point that the
linear approximation is valid.

Also, linearization often removes essential physical effects — like Coriolis forces.
The optimal control may make effective use of nonlinearities
Robotics, process systems, spacecraft
e Non-smooth (hard) nonlinearities
Saturation, backlash, deadzone, hysteresis, friction, switching
e Systems that are not linearly controllable/observable may be
controllable/observable in a nonlinear sense

Nonholonomic vehicles (try parking a car with a linear controller), underactuated
mechanical systems (have fewer controls than dof), compressors near stall, ground
vehicles near directional stability limit

e Systems that operate near instability (bifurcation points)

Power system voltage collapse, aircraft stall & spin, compressor surge & rotating stall,
auto directional, cornering & roll stability

e Parameter adaptive & intelligent systems are inherently nonlinear
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Linearization 1: linear approximation near an
equilibrium point
The general nonlinear system in standard form, involves the state
vector X, input vector u, and output vectory.

x = f (x,u) state equations

y =h(x,u) output equations
A set of values (x,,U,, Y,) Is called an equilibrium point
If they satisfy:

0= f (X,Up)

Yo = h(XO’UO)
We are interested in motions that remain close to the equilibrium
point.




Linearization 2

Define: x(t) =X, +Sx(t),u(t)=u, +Su(t),y(t)=y, +5y(t)
Sx = f (%, +0x(t),uy +u(t))
Yo +0Y(t)=h(X, +5x(t),u, +5u(t))
Now, construct a Taylor series for f ,h

8f(xo,uo)5x+8f(x0,uo)
OX ou

8h(x0,uo)5x+6h(x0,u0)
OX ou

Notice that f (x,,u,) =0 and h(x,,u,)=Y,, so

. O (%,Ug) of (X, Uy)

OX=—0 — OX+— —ou 5% = ASx+ Bou

8h(x0,uo)5x+(’Bh(xo,uo)éu 5y =Csx+ Désu
OX ou

The equations become:

ou + hot

f (X +IX,Uy+u)=f(X,Uy)+

h(X, +8X, Uy +8u) =h(x,,U, )+ Su + hot

oy =
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Some Examples of Nonlinear
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Example 1: Fully-Actuated Robotic
System

Models always look like:

kinematics: g=V(aq)p

dynamics: M (q)p+C(q,p)p+F(a,p)
detM (q)=0 Vg

If we want to regulate velocity, choose

u=|C(q,p)p+F(a p)|+M(q)v=|p=yv, alinear system!

u

Decoupling Stabilizing

If we want to regulate position, we can - more algebra. This is called
the computed 'torque method.' We will generalize it.




Example 2

o, rudder
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Velocities in inertial Velocities in body
coordinates coordinates

[, sideslip

N

V, velocity

v, heading

If the boat has a
keel, typically, we

have sideslip v=0.

Ny

X cosy —siny 0|l u
Kinematics: y |=|siny cosy O]V
W 0 0 1(|r

Consider u, =u and u, =r to be control inputs
and suppose v =0.

X cosy 0
y |=|siny |u,+|0|u,
W 0 1

Linearize about the origin (x, y,'¥)=(0,0,0) to get
1 0

X=Ax+Bu, A=0,B=|0 0|=The

0 1
linear system is not controllable! In particular,
y =0, so it is not possible to steer from the
origin along the y-axis



Example 2, cont’'d

But, of course, if you allow large motions you can steer to a point
X=0,y=VY,y =0. How?

Try th_is: u, (t)=cos (ﬂ—ﬂ u,(t)=sin (”—tj

-

0.4

0.2

Inpul 1: uirms]
1

: The system appears not to be
Foror vt v = linearly uncontrollable but
nonlinearly controllable!!

y M)
= m
W T

By coordinating the rudder and
forward speed, we can cause
the vehicle to move along the y-
axis.
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Example 3: Drive Motor & Load with Non-
smooth Friction

\AS

Coupling Drive Motor Shaft Inertial Load
Gearbox
Load -
1 o, 1 |6, 1 o, 1
ol - u 3 — 4@—> K E -
{ motor 1116 2 S - 1 S
5.9e-5 4 kgm2
kgm2 , \
1.69e-4 > v 6.
kgmz \6 72e4 Nm/rad 0, (502) | %(wl)
5.4e4 Nmirad 1 14e-3
(output) kgm2
Friction, F
4
F .
=] Slape = p * The problem is to accurately
"k position the load.
-
Velocity, ¥ * The problem becomes even

more interesting if the friction
parameters are uncertain.
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Example 4. Automobile — Multiple

—|V, |=F(®,V,,.6,F,)

equilibria: set § =0,V, =V, (a parameter)
solve for o, S, F,
0=F(w\V,,50F,)

0

0.5
0.5t
0.5} :

2 131.5 1:? 25 13

¢
131.5 125 133 05t -
2t 05}t
0.5

2




Example 5 — Simple 1 dof
b=a
_ X=C0S6

replace 8 by x,y — { .
y=sIné

X=—Yo
Y = Xw

w=U

X°+y° =1
A stabilizing controller is easily obtained via
Lyapunov designu=-y-o=U=-SIn0—w




Example 6 - GTM

0 =q
X =V cosy
z2=Vsiny

Y =%(T cosa —1 pV?SC, (e, 6,,q)—mgsin 7/)

y = (Tsina+%pVZSCL(Ot,5e,CI)—m9C037)

, M =(%pVZSECm (2.6,,9)+2 pV?STC, (,6,,0) (Xegret —Xeg )~ MY X, +ItT)




GTM Equilibrium Surface

Straight and Level Flight Analysis
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Nonlinear Equilibrium Structure Analysis of Upset Using GTM
(1)

Coordinated Turn Analysis

Coordinated turn of GTM @ 85 fps

Coordinated turn of GTM @ 90 fps

Coordinated turn of GTM @ 87 fps

20




Nonlinear Equilibrium Structure Analysis of Upset Using GTM
(2)

Coordinated Turn Analysis
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