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Basics of Nonlinear ODE’s
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Dynamical Systems

—x(t)= f(x(t),t), xeR" teR non-autonomous

—x(t)= (x(t)) xeR"teR  autonomous

A solution on a time interval t € [t,t, ] is a function
x(t) :[t,, t,] > R" that satisfies the ode.




Vector Fields and Flow

e We can visualize an individual solution as a graph x(t) :t — R".

e FOr autonomous systems it is convenient to think of f (x)
as a vector field on R" - f(x) assigns a vector to each point
iIn R". As t varies, a solution x(t) traces a path through R"
tangent to the field f (x).

e These curves are often called trajectories or orbits.

e The collection of all trajectories in R" is called the flow
of the vector field f (x).




Auto at Constant Speed
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Van der Pol
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Damped Pendulum
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Lipschitz Condition

The existence and uniqueness of solutions depend on properties
of the function f. In many applications f (x,t) has continuous
derivatives in X. We relax this - we require that f is In X.

Def : f :R" — R" is locally Lipschitz on an open subset D < R"
If each point x, € D has a neighborhood U, such that

| (%)= (x)]<Lfx=x]
for some constant L and all x e U,

Note: C° (continuous) functions need not be Lipschitz, C* functions
always are.




The Lipschitz Condition

e A Lipschitz continuous function is limited in how
fast it can change,

e A line joining any two points on the graph of this
function will never have a slope steeper than its
Lipschitz constant L,

e The mean value theorem can be used to prove

that any differentiable function with bounded

derivative Is Lipschitz continuous, with the
Lipschitz constant being the largest magnitude

of the derivative.




Examples: Lipschitz

4 f(x)=2, xe[-37]/

0
----------------

: -Xe[0,4]




Local Existence & Unigueness

Proposition (Local Existence and Uniqueness) Let f (x,t) be
piece-wise continuous in t and satisfy the Lipschitz condition

[f ()= f (v )< Lix-y]
forall x,y € B, Z{XE R"

[x=x[<r} and all t e[t,,t,]. Then

there exists o > 0 such that the differential equation with initial
condition

x=f(xt), x(t,)=x,€B,
has a unique solution over [t,,t, + J]




The Flow of a Vector Field

x=f(x), x(t,)=x%, = X(X,,t) this notation indicates
'the solution of the ode that passes through x, att =0
More generally, let ¥ (x,t) denote the solution that passes

through x at t =0. The function ¥ : R" xR — R" satisfies

a\PétX’t) = f(¥(x,t)), ¥(x,0)=x

Y is called the or of the vector field f




Example: Flow of a Linear Vector Field

X = A= aq’(gtx’t) - A¥ (x,t) = [W(x.t) = e*X
Example:
(0 1 0 [ %, cos(t)+X,sin(t)]
xeR) A=|-1 0 0|, WY(xt)=|x,cos(t)—xsin(t)
|0 e X,




Invariant Set

A set of points S < R" is invariant with respect to the
vector field f If trajectories beginning in S remain in S
both forward and backward in time.

Examples of invariant sets:
any entire trajectory (equilibrium points, limit cycles)
collections of entire trajectories




Example: Invariant Set

» each of the three trajectories
shown are invariant sets

* the x;-X, plane is an invariant
set




Limit Points & Sets

A point g € R" is called an w-limit point of the trajectory
¥ (t, p) if there exists a sequence of time values t, — +o
such that

tlklmo‘lf(tk, P)=0
q is said to be an a-limit point of ¥ (t, p) If there exists a
sequence of time values t, — —co such that

tkILr[]oo‘P(tk, p)=q
The set of all w-limit points of the trajectory through p is the
o-limit set, and the set of all a-limit points is the a-limit set.

For an example see invariant set
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Introduction to Lyapunov
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Lyapunov Stability ﬁ%
x=f(x), f(0)=0, %J #
f :D — R" (locally Lipschitz)

The origin is

°a equilibrium point if for each £ >0, thereisa §(&)>0
such that
| x(0)| <5 =|x(t)| <& vt>0
. If it Is not stable, and
o If & can be chosen such that
H X(O)H <= limx(t)—>0

t—>w




Two Simple Results

The origin is asymptotically stable only if it is isolated.

The origin of a linear system
X = AX
Is stable if and only if HeAtH <N<woVt>0
It is asymptotically stable if and only if, in addition

le*]| = 0,t > o0




Example: Non-isolated Equilibria

X, X _ _
All points on the x, axis are
—‘Xz‘ X, — equilibrium points
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Positive Definite Functions

A function V : R" — R is said to be

e positive definite if V (0)=0and V (x)>0, x#0

e positive semi-definite if V (0)=0and V (x) >0, x =0

e negative (semi-) definite if —V (x) is positive (semi-) definite

e radially unbounded if V (x) — o as ||x| — o




Lyapunov Stability Theorem

V (x) is called a Lyapunov function relative to the flow of
x = f (x) ifitis positive definite and nonincreasing with
respect to the flow:

V(0)=0, V(x)>0 forx=0
oV (x)
OX
Theorem : If there exists a Lyapunov function on some

V =

f(x)<0

neighborhood D of the origin, then the origin is stable. If V
IS negative definite on D then it is asymptotically stable.




Example: Linear System
X = AX
V(x)=x'Qx, Q"=Q>0
V =x"Ox+x"Qx =X (QA+ ATQ)X:_XT Dy
where QA+ ATQ =—p < Lyapunov Equation

P > 0= Ais stable (Hurwitz) : He’*t H bounded vVt >0

So we can specify Q, compute P and test P.
Or, specify P and solve Lyapunov equation for Q and test Q.




Example: Rotating Rigid Body

X,¥,Z body axes; o, ,®,,®, angular velocities in body coord’s;

diag(l,.1,.1,) I, =1,>1,>0 inertia matrix

X — 'y =

|, -1
. . y .
w, =— | 0,0, =aw,0,

X

o, =—| — |o,0, =—bo o, notea,b,c>0

W, =— w,0, =Co,0,




Rigid Body, Cont’d

Equilibrium requires:

0=an,, Astate (@,,,,, ) is an equilibrium point if
O=-bow,eo, abc>0 = s any two of the angular velocity components are zero,
0=co,o, Le., the o, 0, w, axes are all equilibrium points.

"

Consider a point (&,,0,0). Shift o, > o, +®,.
w, =aw,0, 1
o, =-b( o, +o,) o,

@, =c( o, +a_)x)a)y




Rigid Body, Cont’d

Energy does not work for @, = 0. Obvious?
So, how do we find Lyapunov function?

We want
V(0,0,0)=0,
V(a,, 0, 0,)>0if (0,0, )=(0,0,0) and (e,,e,, o, )< D (some neighborhood ofthe origin)
V <0

Lets look at all functions that satisfy V = 0, i.e., that satisfy the pde:

s;)lx aw,m, + aa;/y (—b( o, +6X)a)z)+ 882)/2 c(o +o,)o,=0

All solutions take the form:

2 — 2 —
ba,” +2bw,o, +aw,” —co? +2co, b, +a,’
2a ’ 2a

V(a)x,a)y,a)z)z CA+bB+(CA—bB)

2 2

2 _1 8b2C2a_)X2
a

o’ +cw’ +bw,’ ] +hot.




Rigid Body, Cont’d
Clearly,
V (0)=0,V >0 on aneighborhood D of 0

V=0
—> spin about x-axis Is stability

e This is one approach to finding candidate Lyapunov functions
e The first order PDE usually has many solutions

e The method is connected to traditional ‘first integral’ methods to
the study of stability in mechanics

e Same method can be used to prove stability for spin about z-axis,
but spin about y-axis is unstable — why?




| aSalle Invariance Theorem

Theorem : Suppose V :R" — R is C* and let Q_ denote a
component of the region

{X e R" ( )< C}
Suppose Q, is bounded and within Q_,V (x) < 0. \
Let E be the set of points within Q_ where V (x) =0, N~/

Let M be the largest invariant set within E. |
= every sol'n beginning in Q_ tends to M. -

as { — oo,




Example: LaSalle’s Theorem

d|x | X
dt|x, | |-m7kx,—m™cx, |

1 1
V(xl,xz):amxzerakxi2

Av

V (X, %, ) =—CX;




Lagrangian Systems

d JL(X, x) B oL(X,x) o
dt ox OX

X € R" generalized coordinates
X = dx / dt generalized velocities

L:R*" > R is the Lagranglan L(%x)=T(%x)-U(x)

kinetic energy: T (X,x)=31%x"M (x)X
total energy: V (x, %) =T (X, ) U (x)




Lagrange-Poincare Systems
d 8L(p,x)_8L(p,x):QT

dt op OX
L(p.X)=T(p.x)-U(x), T(p.x)=3p M(x)p

6L(p,x): p™M (x), d oL(p.Xx) _ TM
op dt op

X=p,

, op' M (x) oM (x)p oU (x)
TM T . nT
P (X)+ P OX P OX T OX




Example %
==

x2 X12 .0
(=%, T="2U =
=% 2 1+ x?
_ ‘ _ |
Xl
Al B B
Xy 2?2 2 —————
(@) e=—
X, X
V(x)=-2+—5,V(x)=—cx,<0forc>0
2 1+X
Notice that

o the level sets are unbounded for V (x) — constant >1

oV (x) is not radially unbounded




Example, Cont’d




First Integrals

Definition : A first integral of the differential equation
x=f(xt)
is a scalar function ¢(x,t) that is constant along trajectories, i.e.,

p(xt)= aq”é;"t) f (x)+ ag”((;’t) ~0

Observation : For simplicity, consider the autonomous case x = f (x). Suppose ¢, (x) is a first integral

and ¢, (x),...,, (X) are arbitrary independent functions on a neighborhhod of the point x,, i.e.,

()
deti : =0

OX 0. (x)

- —X:XO

Then we can define coordinate transformation x — z, via

z:go(x):>z':{a%(x) f(x)} — 7, =0= z, = constant
X
x=¢1(z)

The problem has been reduced to solving n—1 differential equations.

Drexel
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Noether’'s Theorem

If the Lagrangian is invariant under a smooth 1 parameter
change of coordinates, h, : M — M, s € R, then the Lagrangian

system has a first integral

_ oL dn, (9)
op ds

®(p,q)

s=0

T( ) 1[v ] M+m mécosé@ || v U(q) a4 cosd
y = a , e —
P4 2 micos®  me? ) q J

0, -
T g M+m mécosé ||V s 0 -ml@sing || v
g " L+x micosd mi* ||@| |imlwsind Fmivsing || o
' narsno] o]
+ =

-mg/sing| | 0

X+5s
hS(X,Q):{ 0 ] (D(p’CI):(M +m)V " Momentum in X
direction




Chetaev’s Method

Consider the system of equations

x=f(xt), f(0,t)=0
We wish to study the stability of the equilibrium point x = 0.
Obviously, if ¢(x,t) is a first integral and it is also a positive definite
function, then V (x,t) = ¢ (x,t) establishes stability. But suppose ¢(x,t)
IS not positive definite?

0.

Suppose the system has k first integrals ¢, (x,t),...,¢, (x,t) such that ¢, (0,t)
Chetaev suggested the construction of Lyapunov functions of the form:

V(xt)=>" ap (x1)+> Be?(xt)




Chetaev Instability Theorem

Let D be a neighborhood of the origin. Suppose there is a function
V(x):D — R and aset D, = D such that
1) V (x) isC* on D,
2) the origin belongs to the boundary of D,, oD,
3)V(x)>0,V(x)>00nD,
4) on the boundary of D, inside D, i.e., on dD, "D,V (x)=0

D

Then the origin iIs unstable.

o

Oh




Example, Rigid Body, Cont'd

Consider the rigid body with spin about the y-axis (intermediate inertia), @ = (O, a_)y,O)T

®, = aw, (a)y +a_)y)
Shifted equations: o, = -bw,o,
W, = C(a)y +a_)y)a)x

Attempts to prove stability fails. So, try to prove instability.

Consider V (a)x @, @, ) = 0,0,
Let B, = {(a)x,a)y,a)z)
so thatV >0 on D, and V =0 on oD,

Y :aa)zz(a)y+a_)y)+c(a)y+a_)y)a)f =(a)y+a_)y)(aa)22+0a)x2)

W, + @, + o < rZ} and D, ={(a)x,a)y,a)z)e B, |, >A05a)Z >O}

N

We can take 1’ <@, = o, +@, > 0¥ (0,,0,.0,)< B, >~

in which case V >0 on D, = instability




Stability of Linear Systems - Summary

Consider the linear system

X = AX
e
Choose V (x)=x"Px ——
=V (x)=x' (AT P+ PA) X=X QX / condition
a) If their exists a positive definite pair of matrices P,Q
that satisfy

A'P+PA=-Q (Lyapunov equation)
the origin is asymptotically stable.
b) If P has at least one negative eigenvalue and Q > 0, the

origin is unstable. _~ | necessary

¢) if the origin is asymptotically stable then for any Q >0, |_condition
there is a unique solution, P > 0, of the Lyapunov equation.




Second Order Systems

Consider the system

MX+CX+Kx=0,M"=M>0,C"=C>0,K"=K>0

E (% X)=1x"Mx+1x"Kx

dt
9 E (%,x) = —x"Cx
dt

Some interesting generalizations:
1)C>0, 2)C" #C, 3)K' =K

AN

/

iE(>‘<,x)=>'<T|\/|5<'+xTK>'<=—>‘<T [CX + Kx]+ x" KX

The anti-symmetric terms correspond to
‘circulatory’ forces (transfer conductances
In power systems) — they are non-

conservative.

| The anti-symmetric terms correspond to ‘gyroscope’
forces — they are conservative.
Drexel
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Example

e Assume uniform damping

e Assume e=0

e Designate Gen 1 as swing bus
e Eliminate internal bus 4

6, +y6, = AP, —by,sin(6,) - by, sin (6, - 6,)
0, + 70, = AP, + b, sin (6, — 6,) b, sin(6,)
‘91 :52_51"92 :53_51’A|31 = Pz_Pl’Apz = P3_F)1




Example Cont’d

e This Iis a Lagrangian system with
U (6,,0,)=-AP6, — AP0, —b, cos(6,)—b, cos(6, —6,)—b,, cos(6,)
T(a)l,a)z):%(a)f+a)22), Q:[_Va)l _7502]

e To study stability choose total energy as

Lyapunov function
V=T(o,0,)+U(6,0,)
V = —yw’ —yo? <0
Note: T (0,0)=0and T (e, @,) >0V (@, @,) 20 =

Equilibria corresponding to U (4,, 6, ) a local minimum are stable.

G. V. Arononvich and N. A. Kartvelishvili, "Application of Stability Theory to Static and
Dynamic Stability Problems of Power Systems," presented at Second All-union Conference
on Theoretical and Applied mechanics, Moscow, 1965.




Example, Cont’d

Since —z <6, <x and —x <6, < we should consider
U (6,,6,) asafunctiononatorusU : 5 — R

P=0 P =0 b, =1

Drexel
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Example, Cont’d

3f
2l
1l
N op
at
21
3l
-3 2 -1

P=25P=0b,=1b,=1b,=1

$E
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Example Cont’d

N

[

3f
N op
at
21
3l
-3 2 -1 Dol 1

P =r/15 P, =0,b,=1b,=1 b, =1

. e
. 2
e A
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Example Cont’d
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Control Lyapunov Function

Consider the controlled system

x=f(x,u), xeDcR" containing x=0,u e R"
Find u(x) such that all trajectories beginning in D converge to x = 0.
Definition : A control Lyapunov function (CLF) is a function V : D — R with
V(0)=0, V(x)>0,x=0, such that

vx#0eD,3u(x) \/(x):%—\;f(x,u(x))<0

Theorem : (Artsteins Theorem) A differentiable CLF exists iff there
exists a 'regular' feedback control u(x).




Example

Consider the nonlinear mass-spring-damper system:

V=4, m(1+% )V +bv+ kg +kg° =u
_ ' _
£ e
dt| v _W(—koq—kﬂ —bV+U)_

suppose the target state isv=0, g =0,

Define r* =v* + aq®, o > 0. A CLF candidate isV = % r®. This is positive definite wrt the target state

u—bv—k,q—
1+q

V=rt=(V+aq)v

{u bv—-k,q - qu }

(1+q

3
k1q +0{CI}=—KV2, x>0

~kv<0 = |u=bv+k,g+kg®—m(1+0°)(aq+xv)

= closed loop —{ }z
dt| v
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