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Basics of Nonlinear ODE’s



Dynamical Systems
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A solution on a time interval ,  is a function

( ) :[ ,  ]  that satisfies the ode.

n

n

n

d x t f x t t x R t R
dt
d x t f x t x R t R
dt

t t t

x t t t R

= ∈ ∈

= ∈ ∈

∈

→



Vector Fields and Flow

( )
We can visualize an individual solution as a graph ( ) : . 
For autonomous systems it is convenient to think of  

as a vector field on  -  ( ) assigns a vector to each point
in . As  varies,
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( )
 a solution ( ) traces a path through 

tangent to the field . 
These curves are often called trajectories or orbits. 
The collection of all trajectories in  is called the flow
of the vector field
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Van der Pol
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Lipschitz Condition
The existence and uniqueness of solutions depend on properties
of the function . In many applications ( , ) has continuous 
derivatives in . We relax this - we require that  is  in .
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The Lipschitz Condition
 A Lipschitz continuous function is limited in how 

fast it can change,
 A line joining any two points on the graph of this 

function will never have a slope steeper than its 
Lipschitz constant L,

 The mean value theorem can be used to prove 
that any differentiable function with bounded 
derivative is Lipschitz continuous, with the 
Lipschitz constant being the largest magnitude 
of the derivative.



Examples: Lipschitz
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Local Existence & Uniqueness
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 (Local Existence and Uniqueness) Let ( , ) be 
piece-wise continuous in  and satisfy the Lipschitz condition
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The Flow of a Vector Field
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Example: Flow of a Linear Vector Field
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Invariant Set
A set of points  is invariant with respect to the
vector field  if trajectories beginning in  remain in 
both forward and backward in time.

Examples of invariant sets:
any entire trajectory (equili

nS R
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brium points, limit cycles)
collections of entire trajectories



Example: Invariant Set
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Limit Points & Sets
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A point  is called an -limit point of the trajectory
,  if there exists a sequence of time values 

such that
lim ,

 is said to be an -limit point of ,  if there exists a 
sequence 
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The set of all -limit points of the trajectory through  is the
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Introduction to Lyapunov 
Stability Analysis



Lyapunov Stability
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Two Simple Results
The origin is asymptotically stable only if it is isolated.

The origin of a linear system
         

is stable if and only if 0

It is asymptotically stable if and only if, in addition
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Example: Non-isolated Equilibria
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Positive Definite Functions
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A function :  is said to be
 positive definite if 0 0 and 0, 0

 positive semi-definite if 0 0 and 0, 0

 negative (semi-) definite if  is positive (semi-) definite
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Lyapunov Stability Theorem
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Example: Linear System
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where

0 is stable (Hurwitz) : bounded 0

So we can specify , compute  and test .
Or, specify  and solve Lyapunov equation for  and test
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Example: Rotating Rigid Body

( )
, ,   body axes;  , ,   angular velocities in body coord's;
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Rigid Body, Cont’d
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A state , ,  is an equilibrium point if

any two of the angular velocity components are zero,  
i.e., the , ,  axes are all equilibrium points.
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Rigid Body, Cont’d
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Energy does not work for 0. Obvious? 
So, how do we find Lyapunov function? 
We want 

0,0,0 =0, 

, , 0 if , , 0,0,0  and , , some neighborhood ofthe origin
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Rigid Body, Cont’d

 This is one approach to finding candidate Lyapunov functions
 The first order PDE usually has many solutions
 The method is connected to traditional ‘first integral’ methods to 

the study of stability in mechanics
 Same method can be used to prove stability for spin about z-axis, 

but spin about y-axis is unstable – why? 
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LaSalle Invariance Theorem
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Example: LaSalle’s Theorem
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Lagrangian Systems
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Lagrange-Poincare Systems
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Example, Cont’d
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First Integrals
( )

( )

( ) ( ) ( ) ( )
const

 A  of the differential equation
,

is a scalar function ,  tha ant along trajectort is , i.e.,

, ,
, , 0

 For simplicity, consider the

ies

x f x t

x t

x t x t
x t f x

first inte

t

g

x

ral

t

ϕ

ϕ ϕ
ϕ

=

∂ ∂
= + ≡

∂ ∂

Definition :

Observation :





( ) ( )
( ) ( )

( )

( )
0

1

2 0

1

 autonomous case . Suppose  is a first integral 

and , ,  are arbitrary independent functions on a neighborhhod of the point , i.e.,

det 0

Then we can define coordi

n

n x x

x f x x

x x x

x

x
x

ϕ

ϕ ϕ

ϕ

ϕ
=

=

…

 
∂   ≠ ∂   





( ) ( ) ( )
( )1

1 1

nate transformation ,  via

 0 constant

The problem has been reduced to solving 1 differential equations.
x z

x z
x

z x z f x z z
x

n
ϕ

ϕ
ϕ

−=

→

∂ 
= ⇒ = ⇒ = ⇒ ≡ ∂ 

−

 



Noether’s Theorem
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Chetaev’s Method
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Chetaev Instability Theorem
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Example, Rigid Body, Cont’d
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Consider the rigid body with spin about the -axis (intermediate inertia), 0, ,0
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Stability of Linear Systems - Summary
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a) if their exists a positive definite pair of matrices ,
    that satisfy 
        (Lyapunov equation)
    the origin is asym

T

T T T

T

x Ax
V x x Px

V x x A P PA x x Qx

P Q

A P PA Q

=

=

⇒ = + = −

+ = −





ptotically stable.
b) if  has at least one negative eigenvalue and 0,  the 
    origin is unstable.
c) if the origin is asymptotically stable then for any 0,  
there is a unique solution, P 0,  of the Lya

P Q

Q

>

>
> punov equation.

sufficient
condition

necessary
condition



Second Order Systems

( )

( ) [ ]

( )

1 1
2 2

Consider the system
0, 0, 0, 0

,

,

,

Some interesting generalizations:
1) 0,   2) ,   3) 

T T T

T T

T T T T

T

T T

Mx Cx Kx M M C C K K

E x x x Mx x Kx

d E x x x Mx x Kx x Cx Kx x Kx
dt
d E x x x Cx
dt

C C C K K

+ + = = > = > = >

= +

= + = − + +

= −

≥ ≠ ≠

 

  

      

  

The anti-symmetric terms correspond to ‘gyroscope’ 
forces – they are conservative.

The anti-symmetric terms correspond to 
‘circulatory’ forces (transfer conductances 
in power systems) – they are non-
conservative.



Example
 Assume uniform damping
 Assume e=0
 Designate Gen 1 as swing bus
 Eliminate internal bus 4

1 2

3

V1, δ1

V4, δ4
4

V3, δ3

-ja

-jb

-jc

-jd

e-jf

( ) ( )
( ) ( )

1 1 1 13 1 12 1 2

2 2 2 12 1 2 23 2

1 2 1 2 3 1 1 2 1 2 3 1

sin sin

sin sin
, , ,

P b b

P b b
P P P P P P

θ γθ θ θ θ

θ γθ θ θ θ
θ δ δ θ δ δ

+ = ∆ − − −

+ = ∆ + − −

= − = − ∆ = − ∆ = −

 

 



Example Cont’d
 This is a Lagrangian system with

 To study stability choose total energy as 
Lyapunov function 

( ) ( ) ( ) ( )

( ) ( ) [ ]
1 2 1 1 2 2 13 1 12 1 2 23 2

2 2
1 2 1 2 1 2

, cos cos cos
1, ,
2

U P P b b b

T Q

θ θ θ θ θ θ θ θ

ω ω ω ω γω γω

= −∆ −∆ − − − −

= + = − −

G. V. Arononvich and N. A. Kartvelishvili, "Application of Stability Theory to Static and 
Dynamic Stability Problems of Power Systems," presented at Second All-union Conference 
on Theoretical and Applied mechanics, Moscow, 1965.

( ) ( )

( ) ( ) ( )
( )

1 2 1 2

2 2
1 2

1 2 1 2

1 2

, ,

0
Note: 0,0 0 and , 0 , 0

Equilibria corresponding to ,  a local minimum are stable.

V T U

V
T T

U

ω ω θ θ

γω γω
ω ω ω ω

θ θ

= +

= − − ≤

= > ∀ ≠ ⇒





Example, Cont’d
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-3 -2 -1 0 1 2 3
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2
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( )
1 2

1 2

Since  and  we should consider
,  as a function on a torus :U U R

π θ π π θ π
θ θ

− ≤ < − ≤ <

→T

1 2 12 13 230,  0,  1,  1,  1P P b b b= = = = =



Example, Cont’d
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2 -3 -2 -1 0 1 2 3
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Example Cont’d
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Example Cont’d
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Control Lyapunov Function

( )
( )

Consider the controlled system
, ,  containing x=0,

Find  such that all trajectories beginning in  converge to 0. 
 A control Lyapunov function (CLF) is a function :  wit

n mx f x u x D R u R

u x D x
V D R

= ∈ ⊂ ∈

=

→Definition :



( ) ( )

( ) ( ) ( )( )

( )

h
0 0,  0, 0,  such that

0 , , 0

 (Artsteins Theorem) A differentiable CLF exists iff there 
exists a 'regular' feedback control .

V V x x
Vx D u x V x f x u x
x

u x

= > ≠

∂
∀ ≠ ∈ ∃ = <

∂
Theorem :





Example
( )

( ) ( )

2 3
0 1

3
0 12

2 2 2 2

Consider the nonlinear mass-spring-damper system:

, 1

1
1

suppose the target state is 0, 0,
1Define , 0. A CLF candidate is
2

v q m q v bv k q k q u

v
qd

k q k q bv uvdt m q

v q

r v q V rα α

= + + + + =

 
   =   − − − +   + 

= =

= + > =

 

( ) ( )

( ) ( )( )

3
20 1

2

3
3 20 1

0 12

. This is positive definite wrt the target state

, 0
1

0 1
1

 closed loop  

u bv k q k qV rr v q v v q v
m q

u bv k q k q q v u bv k q k q m q q v
m q

q vd
v v qdt

α α κ κ

α κ α κ

κ α

 − − − = = + = + = − > 
+  

 − − − + = − ≤ ⇒ = + + − + + 
+  

  
⇒ =  − −  



 


 


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