Dynamical Systems & Lyapunov Stability

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University

Outline

- Ordinary Differential Equations
 - Existence & uniqueness
 - Continuous dependence on parameters
 - Invariant sets, nonwandering sets, limit sets
- Lyapunov Stability
 - Autonomous systems
 - Basic stability theorems
 - Stable, unstable & center manifolds
 - Control Lyapunov function

Basics of Nonlinear ODE's

Dynamical Systems

 $\frac{d}{dt}x(t) = f(x(t),t), \quad x \in \mathbb{R}^{n}, t \in \mathbb{R} \quad \text{non-autonomous}$ $\frac{d}{dt}x(t) = f(x(t)), \quad x \in \mathbb{R}^{n}, t \in \mathbb{R} \quad \text{autonomous}$ $\text{A solution on a time interval } t \in [t_{0}, t_{1}] \text{ is a function}$ $x(t):[t_{0}, t_{1}] \rightarrow \mathbb{R}^{n} \text{ that satisfies the ode.}$

Vector Fields and Flow

- We can visualize an individual solution as a graph $x(t): t \to R^n$.
- For autonomous systems it is convenient to think of f (x) as a vector field on Rⁿ f(x) assigns a vector to each point in Rⁿ. As t varies, a solution x(t) traces a path through Rⁿ tangent to the field f (x).
- These curves are often called trajectories or orbits.
- The collection of all trajectories in *Rⁿ* is called the flow of the vector field *f*(*x*).

Auto at Constant Speed

Van der Pol

Damped Pendulum

Lipschitz Condition

The existence and uniqueness of solutions depend on properties of the function f. In many applications f(x,t) has continuous derivatives in x. We relax this - we require that f is **Lipschitz** in x. **Def**: $f : \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz on an open subset $D \subset \mathbb{R}^n$ if each point $x_0 \in D$ has a neighborhood U_0 such that $\|f(x) - f(x_0)\| \le L \|x - x_0\|$

for some constant *L* and all $x \in U_0$

Note: C^0 (continuous) functions need not be Lipschitz, C^1 functions always are.

The Lipschitz Condition

- A Lipschitz continuous function is limited in how fast it can change,
- A line joining any two points on the graph of this function will never have a slope steeper than its Lipschitz constant *L*,
- The mean value theorem can be used to prove that any differentiable function with bounded derivative is Lipschitz continuous, with the Lipschitz constant being the largest magnitude of the derivative.

Examples: Lipschitz

Local Existence & Uniqueness

Proposition (Local Existence and Uniqueness) Let f(x,t) be piece-wise continuous in t and satisfy the Lipschitz condition $||f(x,t) - f(y,t)|| \le L ||x - y||$ for all $x, y \in B_r = \{x \in R^n |||x - x_0|| < r\}$ and all $t \in [t_0, t_1]$. Then there exists $\delta > 0$ such that the differential equation with initial condition

 $\dot{x} = f(x,t), \quad x(t_0) = x_0 \in B_r$ has a unique solution over $[t_0, t_0 + \delta].$

The Flow of a Vector Field

 $\dot{x} = f(x), \quad x(t_0) = x_0 \Rightarrow x(x_0, t)$ this notation indicates 'the solution of the ode that passes through x_0 at t = 0' More generally, let $\Psi(x, t)$ denote the solution that passes through x at t = 0. The function $\Psi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ satisfies

$$\boxed{\frac{\partial \Psi(x,t)}{\partial t} = f(\Psi(x,t)), \quad \Psi(x,0) = x}$$

 Ψ is called the flow or flow function of the vector field f

Example: Flow of a Linear Vector Field

$$\dot{x} = Ax \Rightarrow \frac{\partial \Psi(x,t)}{\partial t} = A\Psi(x,t) \Rightarrow \Psi(x,t) = e^{At}x$$

Example:

$$x \in \mathbb{R}^{3}, \quad A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad \Psi(x,t) = \begin{bmatrix} x_{1} \cos(t) + x_{2} \sin(t) \\ x_{2} \cos(t) - x_{1} \sin(t) \\ e^{-t} x_{3} \end{bmatrix}$$

Invariant Set

A set of points $S \subset \mathbb{R}^n$ is invariant with respect to the vector field f if trajectories beginning in S remain in S both forward and backward in time.

Examples of invariant sets:

any entire trajectory (equilibrium points, limit cycles) collections of entire trajectories

Example: Invariant Set

0.5 X_1 X_1 $\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix}$ $\frac{d}{dt}$ -0.5 0.1 x3 -0.1 • each of the three trajectories shown are invariant sets -1 • the x_1 - x_2 plane is an invariant -0.5 set 0 0.5

1

 \mathbf{x}^2

Limit Points & Sets

A point $q \in \mathbb{R}^n$ is called an ω -limit point of the trajectory $\Psi(t, p)$ if there exists a sequence of time values $t_k \to +\infty$ such that

 $\lim_{t_k\to\infty}\Psi(t_k,p)=q$

q is said to be an α -limit point of $\Psi(t, p)$ if there exists a

sequence of time values $t_k \rightarrow -\infty$ such that

 $\lim_{t_k\to\infty}\Psi(t_k,p)=q$

The set of all ω -limit points of the trajectory through p is the ω -limit set, and the set of all α -limit points is the α -limit set.

Introduction to Lyapunov Stability Analysis

Lyapunov Stability

 $\dot{x} = f(x), \quad f(0) = 0,$ $f: D \to R^n (locally Lipschitz)$ The origin is

• a stable equilibrium point if for each $\varepsilon > 0$, there is a $\delta(\varepsilon) > 0$ such that

$$\left\| x(0) \right\| < \delta \Longrightarrow \left\| x(t) \right\| < \varepsilon \ \forall t > 0$$

- unstable if it is not stable, and
- \bullet asymptotically stable if δ can be chosen such that

$$x(0) \| < \delta \Longrightarrow \lim_{t \to \infty} x(t) \to 0$$

Two Simple Results

The origin is asymptotically stable only if it is isolated.

The origin of a linear system

 $\dot{x} = Ax$

is stable if and only if $\left\| e^{At} \right\| \le N < \infty \ \forall t > 0$

It is asymptotically stable if and only if, in addition

$$\left\|e^{At}\right\| \to 0, t \to \infty$$

Example: Non-isolated Equilibria

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -|x_2| x_1 - x_2 \end{bmatrix}$$

All points on the x_1 axis are equilibrium points

 x^2

Positive Definite Functions

A function $V: \mathbb{R}^n \to \mathbb{R}$ is said to be

- positive definite if V(0) = 0 and $V(x) > 0, x \neq 0$
- positive semi-definite if V(0) = 0 and $V(x) \ge 0$, $x \ne 0$
- negative (semi-) definite if -V(x) is positive (semi-) definite
- radially unbounded if $V(x) \to \infty$ as $||x|| \to \infty$

For a quadratic form: $V(x) = x^T Q x$, $Q = Q^T$ the following are equivalent

- V(x) is positive definite
- the eigenvalues of Q are positive
- the principal minors of Q are positive

Lyapunov Stability Theorem

V(x) is called a Lyapunov function relative to the flow of $\dot{x} = f(x)$ if it is positive definite and nonincreasing with respect to the flow:

$$V(0) = 0, \quad V(x) > 0 \text{ for } x \neq 0$$
$$\dot{V} = \frac{\partial V(x)}{\partial x} f(x) \le 0$$

Theorem : If there exists a Lyapunov function on some neighborhood D of the origin, then the origin is stable. If \dot{V} is negative definite on D then it is asymptotically stable.

Example: Linear System

So we can specify *Q*, compute *P* and test *P*. Or, specify *P* and solve Lyapunov equation for *Q* and test *Q*.

Example: Rotating Rigid Body

x, y, z body axes; $\omega_x, \omega_y, \omega_z$ angular velocities in body coord's; diag (I_x, I_y, I_z) $I_x \ge I_y \ge I_z > 0$ inertia matrix $\dot{\omega}_x = -\left(\frac{I_z - I_y}{I_z}\right)\omega_z \omega_y = a\omega_z \omega_y$ $\dot{\omega}_{y} = -\left(\frac{I_{x} - I_{z}}{I_{y}}\right)\omega_{x}\omega_{z} = -b\omega_{x}\omega_{z} \quad \text{note } a, b, c > 0$ $\dot{\omega}_{z} = -\left(\frac{I_{y} - I_{x}}{I}\right)\omega_{y}\omega_{x} = c\omega_{y}\omega_{x}$

Rigid Body, Cont'd

Equilibrium requires:

$$0 = a\omega_z \omega_y$$

$$0 = -b\omega_x \omega_z \quad a, b, c > 0 \implies$$

$$0 = c\omega_y \omega_x$$

A state $(\overline{\omega}_x, \overline{\omega}_y, \overline{\omega}_z)$ is an equilibrium point if any two of the angular velocity components are zero, i.e., the $\omega_x, \omega_y, \omega_z$ axes are all equilibrium points.

Consider a point $(\overline{\omega}_x, 0, 0)$. Shift $\omega_x \to \omega_x + \overline{\omega}_x$. $\dot{\omega}_x = a\omega_z \omega_y$ $\dot{\omega}_y = -b(\omega_x + \overline{\omega}_x)\omega_z$ $\dot{\omega}_z = c(\omega_x + \overline{\omega}_x)\omega_y$ $\overline{\omega} = \begin{bmatrix} \overline{\omega}_x \\ 0 \\ 0 \end{bmatrix}$

Rigid Body, Cont'd

Energy does not work for $\overline{\omega}_x \neq 0$. Obvious? So, how do we find Lyapunov function? We want

$$V(0,0,0)=0,$$

 $V(\omega_x, \omega_y, \omega_z) > 0 \text{ if } (\omega_x, \omega_y, \omega_z) \neq (0,0,0) \text{ and } (\omega_x, \omega_y, \omega_z) \in D \text{ (some neighborhood of the origin)}$
 $\dot{V} \leq 0$

Lets look at all functions that satisfy $\dot{V} = 0$, i.e., that satisfy the pde:

$$\frac{\partial V}{\partial \omega_x} a \omega_z \omega_y + \frac{\partial V}{\partial \omega_y} \left(-b \left(\omega_x + \overline{\omega}_x \right) \omega_z \right) + \frac{\partial V}{\partial \omega_z} c \left(\omega_x + \overline{\omega}_x \right) \omega_y = 0$$

All solutions take the form:

$$f\left(\frac{b\omega_{x}^{2}+2b\omega_{x}\overline{\omega}_{x}+a\omega_{y}^{2}}{2a},\frac{-c\omega_{x}^{2}+2c\omega_{x}\overline{\omega}_{x}+a\omega_{z}^{2}}{2a}\right)$$

$$V\left(\omega_{x},\omega_{y},\omega_{z}\right)=cA+bB+\left(cA-bB\right)^{2}=\frac{1}{2}\left(\frac{8b^{2}c^{2}\overline{\omega}_{x}^{2}}{a^{2}}\omega_{x}^{2}+c\omega_{y}^{2}+b\omega_{z}^{2}\right)+h.o.t.$$

Rigid Body, Cont'd

Clearly,

$$V(0) = 0, V > 0$$
 on a neighborhood D of 0
 $\dot{V} = 0$

 \Rightarrow spin about *x*-axis is stability

- This is one approach to finding candidate Lyapunov functions
- The first order PDE usually has many solutions
- The method is connected to traditional 'first integral' methods to the study of stability in mechanics
- Same method can be used to prove stability for spin about z-axis, but spin about y-axis is unstable – why?

LaSalle Invariance Theorem

Theorem : Suppose $V : \mathbb{R}^n \to \mathbb{R}$ is \mathbb{C}^1 and let Ω_c denote a component of the region

 $\left\{ x \in \mathbb{R}^n \left| V(x) < c \right\} \right\}$

Suppose Ω_c is bounded and within Ω_c , $\dot{V}(x) \le 0$. Let *E* be the set of points within Ω_c where $\dot{V}(x) = 0$, Let *M* be the largest invariant set within *E*. \Rightarrow every sol'n beginning in Ω_c tends to *M*. as $t \to \infty$.

Example: LaSalle's Theorem

Lagrangian Systems

$$\frac{d}{dt} \frac{\partial L(\dot{x}, x)}{\partial \dot{x}} - \frac{\partial L(\dot{x}, x)}{\partial x} = Q^{T}$$

$$x \in R^{n} \text{ generalized coordinates}$$

$$\dot{x} = dx / dt \text{ generalized velocities}$$

$$L : P^{2n} \rightarrow P \text{ is the Lagrangian } L(\dot{x})$$

 $\dot{x} = dx / dt$ generalized velocities $L: R^{2n} \to R$ is the Lagrangian, $L(\dot{x}, x) = T(\dot{x}, x) - U(x)$ kinetic energy: $T(\dot{x}, x) = \frac{1}{2} \dot{x}^T M(x) \dot{x}$ total energy: $V(x, \dot{x}) = T(\dot{x}, x) + U(x)$

Lagrange-Poincare Systems

$$\dot{x} = p, \quad \frac{d}{dt} \frac{\partial L(p, x)}{\partial p} - \frac{\partial L(p, x)}{\partial x} = Q^{T}$$

$$L(p, x) = T(p, x) - U(x), \quad T(p, x) = \frac{1}{2} p^{T} M(x) p$$

$$\frac{\partial L(p, x)}{\partial p} = p^{T} M(x), \quad \frac{d}{dt} \frac{\partial L(p, x)}{\partial p} = \dot{p}^{T} M(x) + p^{T} \frac{\partial p^{T} M(x)}{\partial x}$$

$$\dot{p}^{T} M(x) + p^{T} \frac{\partial p^{T} M(x)}{\partial x} - p^{T} \frac{\partial M(x) p}{\partial x} + \frac{\partial U(x)}{\partial x} = Q^{T}$$

$$\dot{x} = p$$

$$M(x) \dot{p} + \left[\frac{\partial M(x) p}{\partial x} - \frac{\partial p^{T} M(x)}{\partial x}\right] p + \frac{\partial U(x)}{\partial x^{T}} = Q$$

Notice that

• the level sets are unbounded for $V(x) = \text{constant} \ge 1$

 $\circ V(x)$ is not radially unbounded

Example, Cont'd

First Integrals

Definition : A *first integral* of the differential equation $\dot{x} = f(x,t)$

is a scalar function $\varphi(x,t)$ that is constant along trajectories, i.e.,

 $\dot{\varphi}(x,t) = \frac{\partial \varphi(x,t)}{\partial x} f(x,t) + \frac{\partial \varphi(x,t)}{\partial t} \equiv 0$

Observation : For simplicity, consider the autonomous case $\dot{x} = f(x)$. Suppose $\varphi_1(x)$ is a first integral and $\varphi_2(x), \dots, \varphi_n(x)$ are arbitrary independent functions on a neighborhhod of the point x_0 , i.e.,

$$\det \frac{\partial}{\partial x} \begin{bmatrix} \varphi_1(x) \\ \vdots \\ \varphi_n(x) \end{bmatrix}_{x=x_0} \neq 0$$

Then we can define coordinate transformation $x \rightarrow z$, via

$$z = \varphi(x) \Rightarrow \dot{z} = \left[\frac{\partial \varphi(x)}{\partial x} f(x)\right]_{x = \varphi^{-1}(z)} \Rightarrow \dot{z}_1 = 0 \Rightarrow z_1 \equiv \text{constant}$$

The problem has been reduced to solving n-1 differential equations.

Noether's Theorem

 $\partial I dh(a)$

If the Lagrangian is invariant under a smooth 1 parameter change of coordinates, $h_s: M \to M$, $s \in R$, then the Lagrangian system has a first integral

$$\Phi(p,q) = \frac{\partial L}{\partial p} \frac{dn_{s}(q)}{ds} \Big|_{s=0}$$

$$T(p,q) = \frac{1}{2} \begin{bmatrix} v & \omega \end{bmatrix} \begin{bmatrix} M+m & m\ell\cos\theta \\ m\ell\cos\theta & m\ell^{2} \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}, \quad U(q) = -mg\ell\cos\theta$$

$$F \longrightarrow M \longrightarrow x \quad \begin{bmatrix} M+m & m\ell\cos\theta \\ m\ell\cos\theta & m\ell^{2} \end{bmatrix} \begin{bmatrix} \dot{v} \\ \dot{\omega} \end{bmatrix} + \begin{bmatrix} 0 & -m\ell\omega\sin\theta \\ \frac{1}{2}m\ell\nu\sin\theta \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$+ \begin{bmatrix} 0 \\ -mg\ell\sin\theta \end{bmatrix} = \begin{bmatrix} F \\ 0 \end{bmatrix}$$

 $h_{s}(X,\theta) = \begin{bmatrix} X+s\\0 \end{bmatrix}, \quad \Phi(p,q) = (M+m)v \quad -$

Momentum in X direction

=

Chetaev's Method

Consider the system of equations

 $\dot{x} = f(x,t), \quad f(0,t) = 0$

We wish to study the stability of the equilibrium point x = 0. Obviously, if $\varphi(x,t)$ is a first integral and it is also a positive definite function, then $V(x,t) = \varphi(x,t)$ establishes stability. But suppose $\varphi(x,t)$ is not positive definite?

Suppose the system has *k* first integrals $\varphi_1(x,t), \dots, \varphi_k(x,t)$ such that $\varphi_i(0,t) = 0$. Chetaev suggested the construction of Lyapunov functions of the form:

$$V(x,t) = \sum_{i=1}^{k} \alpha_i \varphi_i(x,t) + \sum_{i=1}^{k} \beta_i \varphi_i^2(x,t)$$

Chetaev Instability Theorem

Let D be a neighborhood of the origin. Suppose there is a function $V(x): D \rightarrow R$ and a set $D_1 \subset D$ such that 1) V(x) is C^1 on D, 2) the origin belongs to the boundary of D_1 , ∂D_1 , 3) $V(x) > 0, \dot{V}(x) > 0$ on D_1 , 4) on the boundary of D_1 inside D, i.e., on $\partial D_1 \cap D, V(x) = 0$

Then the origin is unstable.

Example, Rigid Body, Cont'd

Consider the rigid body with spin about the y-axis (intermediate inertia), $\overline{\omega} = (0, \overline{\omega}_y, 0)^T$

$$\dot{\omega}_{x} = a\omega_{z}\left(\omega_{y} + \overline{\omega}_{y}\right)$$

Shifted equations: $\dot{\omega}_y = -b\omega_x\omega_z$

$$\dot{\omega}_{z} = c \left(\omega_{y} + \overline{\omega}_{y} \right) \omega_{x}$$

Attempts to prove stability fails. So, try to prove instability.

Consider
$$V(\omega_x, \omega_y, \omega_z) = \omega_x \omega_z$$

Let $B_r = \{(\omega_x, \omega_y, \omega_z) | \omega_x^2 + \omega_y^2 + \omega_z^2 < r^2\}$ and $D_1 = \{(\omega_x, \omega_y, \omega_z) \in B_r | \omega_x > 0, \omega_z > 0\}$
so that $V > 0$ on D_1 and $V = 0$ on ∂D_1
 $\dot{V} = a\omega_z^2(\omega_y + \overline{\omega}_y) + c(\omega_y + \overline{\omega}_y)\omega_x^2 = (\omega_y + \overline{\omega}_y)(a\omega_z^2 + c\omega_x^2)$
We can take $r^2 < \overline{\omega}_y^2 \Rightarrow \omega_y + \overline{\omega}_y > 0 \forall (\omega_x, \omega_y, \omega_z) \in B_r$
in which case $\dot{V} > 0$ on $D_1 \Rightarrow$ instability

Stability of Linear Systems - Summary

Consider the linear system

 $\dot{x} = Ax$

Choose $V(x) = x^T P x$

 $\Rightarrow \dot{V}(x) = x^{T} (A^{T} P + P A) x \coloneqq -x^{T} Q x$

a) if their exists a positive definite pair of matrices P, Qthat satisfy

 $A^T P + PA = -Q$ (Lyapunov equation)

the origin is asymptotically stable.

b) if *P* has at least one negative eigenvalue and Q > 0, the origin is unstable.

necessary condition

c) if the origin is asymptotically stable then for any Q > 0,

there is a unique solution, P > 0, of the Lyapunov equation.

Second Order Systems

Consider the system

 $M\ddot{x} + C\dot{x} + Kx = 0, M^{T} = M > 0, C^{T} = C > 0, K^{T} = K > 0$ $\boxed{E(\dot{x}, x) = \frac{1}{2}\dot{x}^{T}M\dot{x} + \frac{1}{2}x^{T}Kx}$ $\frac{d}{dt}E(\dot{x}, x) = \dot{x}^{T}M\ddot{x} + x^{T}K\dot{x} = -\dot{x}^{T}[C\dot{x} + Kx] + x^{T}K\dot{x}$ $\boxed{\frac{d}{dt}E(\dot{x}, x) = -\dot{x}^{T}C\dot{x}}$ The anti-symmetric term

Some interesting generalizations: 1) C > 0 $C^T + C = 2$ $K^T + K$

1) $C \ge 0$, 2) $C^T \ne C$, 3) $K^T \ne K / C$

The anti-symmetric terms correspond to 'circulatory' forces (transfer conductances in power systems) – they are nonconservative.

The anti-symmetric terms correspond to 'gyroscope' forces – they are conservative.

Example

- Assume uniform damping
- Assume e=0
- Designate Gen 1 as swing bus
- Eliminate internal bus 4

$$\begin{aligned} \ddot{\theta}_1 + \gamma \dot{\theta}_1 &= \Delta P_1 - b_{13} \sin\left(\theta_1\right) - b_{12} \sin\left(\theta_1 - \theta_2\right) \\ \ddot{\theta}_2 + \gamma \dot{\theta}_2 &= \Delta P_2 + b_{12} \sin\left(\theta_1 - \theta_2\right) - b_{23} \sin\left(\theta_2\right) \\ \theta_1 &= \delta_2 - \delta_1, \theta_2 = \delta_3 - \delta_1, \Delta P_1 = P_2 - P_1, \Delta P_2 = P_3 - P_1 \end{aligned}$$

Example Cont'd

• This is a Lagrangian system with

 $U(\theta_1, \theta_2) = -\Delta P_1 \theta_1 - \Delta P_2 \theta_2 - b_{13} \cos(\theta_1) - b_{12} \cos(\theta_1 - \theta_2) - b_{23} \cos(\theta_2)$ $T(\omega_1, \omega_2) = \frac{1}{2} (\omega_1^2 + \omega_2^2), \quad Q = \begin{bmatrix} -\gamma \omega_1 & -\gamma \omega_2 \end{bmatrix}$

 To study stability choose total energy as Lyapunov function

$$V = T\left(\omega_1, \omega_2\right) + U\left(\theta_1, \theta_2\right)$$

 $\dot{V} = -\gamma \omega_1^2 - \gamma \omega_2^2 \le 0$

Note: T(0,0) = 0 and $T(\omega_1, \omega_2) > 0 \forall (\omega_1, \omega_2) \neq 0 \implies$

Equilibria corresponding to $U(\theta_1, \theta_2)$ a local minimum are stable.

G. V. Arononvich and N. A. Kartvelishvili, "Application of Stability Theory to Static and Dynamic Stability Problems of Power Systems," presented at Second All-union Conference on Theoretical and Applied mechanics, Moscow, 1965.

Example, Cont'd

Since $-\pi \le \theta_1 < \pi$ and $-\pi \le \theta_2 < \pi$ we should consider $U(\theta_1, \theta_2)$ as a function on a torus $U : \mathcal{J} \to R$

Example, Cont'd

$$P_1 = .25, P_2 = 0, b_{12} = 1, b_{13} = 1, b_{23} = 1$$

Example Cont'd

 $P_1 = \pi/15, P_2 = 0, b_{12} = 1, b_{13} = 1, b_{23} = 1$

Example Cont'd

$$P_1 = \pi / 5, P_2 = -1, b_{12} = 1, b_{13} = .5, b_{23} = 1$$

Control Lyapunov Function

Consider the controlled system

 $\dot{x} = f(x, u), \quad x \in D \subset \mathbb{R}^n \text{ containing } x=0, u \in \mathbb{R}^m$

Find u(x) such that all trajectories beginning in D converge to x = 0.

Definition : A control Lyapunov function (CLF) is a function $V : D \to R$ with $V(0) = 0, V(x) > 0, x \neq 0$, such that

$$\forall x \neq 0 \in D, \exists u(x) \quad \dot{V}(x) = \frac{\partial V}{\partial x} f(x, u(x)) < 0$$

Theorem : (Artsteins Theorem) A differentiable CLF exists iff there exists a 'regular' feedback control u(x).

Example

Consider the nonlinear mass-spring-damper system:

$$v = \dot{q}, \qquad m(1+q^{2})\dot{v} + bv + k_{0}q + k_{1}q^{3} = u$$

$$\frac{d}{dt} \begin{bmatrix} q \\ v \end{bmatrix} = \begin{bmatrix} v \\ \frac{1}{m(1+q^{2})}(-k_{0}q - k_{1}q^{3} - bv + u) \end{bmatrix}$$

suppose the target state is v = 0, q = 0,

Define $r^2 = v^2 + \alpha q^2$, $\alpha > 0$. A CLF candidate is $V = \frac{1}{2}r^2$. This is positive definite wrt the target state $\dot{V} = r\dot{r} = (\dot{v} + \alpha q)v = v \left\{ \frac{u - bv - k_0 q - k_1 q^3}{m(1 + q^2)} + \alpha q \right\} = -\kappa v^2$, $\kappa > 0$ $\left\{ \frac{u - bv - k_0 q - k_1 q^3}{m(1 + q^2)} + \alpha q \right\} = -\kappa v \le 0 \implies u = bv + k_0 q + k_1 q^3 - m(1 + q^2)(\alpha q + \kappa v)$ $\Rightarrow \text{ closed loop } \frac{d}{dt} \begin{bmatrix} q \\ v \end{bmatrix} = \begin{bmatrix} v \\ -\kappa v - \alpha q \end{bmatrix}$

