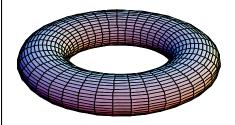
Vector Fields, Flows, & Distributions

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University



Outline

- Vector fields & flows
- Lie Bracket
- Distributions
- Controllability
 - Controllability Distributions
 - Controllability Rank Condition
 - Examples

Vector Fields

- **Definition:** A *vector field* v on M is a map which assigns to each point $p \in M$, a tangent vector $v(p) \in TM_p$. It is a C^k -vector field if for each $p \in M$ there exist local coordinates (U, φ) such that each component $v_i(x)$, i=1,...,m is a C^k function for each $x \in \varphi(U)$.
- **Definition:** An *integral curve* of a vector field v on M is a parameterized curve $p = \phi(t)$, $t \in (t_1, t_2) \subset R$ whose tangent vector at any point coincides with v at that point.

In local coordinates, the vector field is written as

a vector
$$v(x) = \begin{bmatrix} v_1(x) \\ v_2(x) \\ \vdots \\ v_n(x) \end{bmatrix}$$

Flow Function

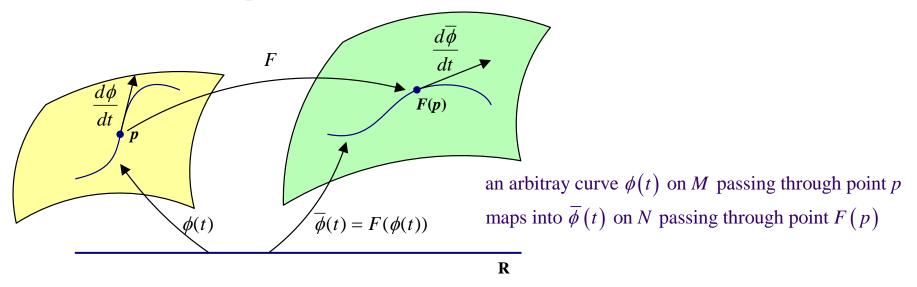
Definition: Let *v* be a smooth vector field on M and denote the parameterized maximal integral curve through $p \in M$ by $\Psi(t,p)$ and $\Psi(0,p)=p$. $\Psi(t,p)$ is called the *flow generated by v*.

Properties of flows:

• satisfies ode
$$\frac{d}{dt}\Psi(t,p) = v(\Psi(t,p)), \quad \Psi(0,p) = p$$

• semigroup property $\Psi(t_2, \Psi(t_1, p)) = \Psi(t_1 + t_2, p)$

Differential Map

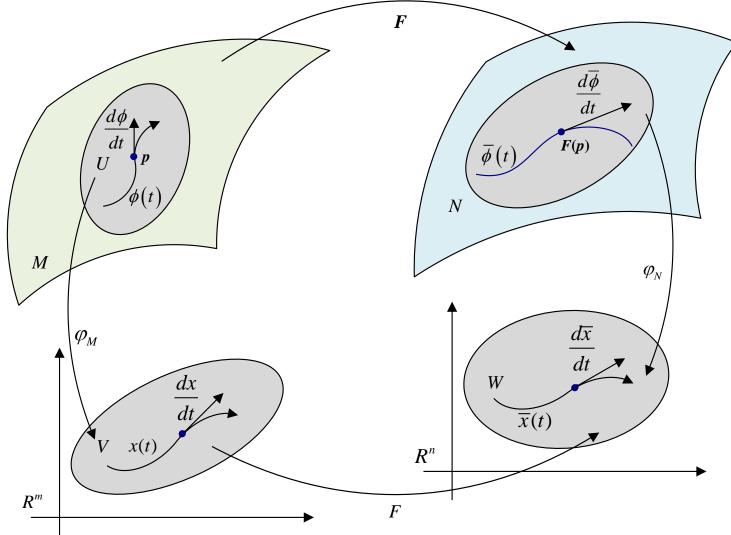


Given the map $F: M \to N$, the *differential map* is the induced mapping

$$F_*: TM_p \to TN_{F(p)}$$

that takes tangent vectors into tangent vectors.

Analysis using Local Coordinates



Lie Derivative

Definition: Let v(x) denote a vector field on M and F(x) a mapping from M to Rⁿ, both in local coordinates. Then the *Lie derivative of order* 0,...,*k is*

$$L_{v}^{0}(F) = F, \quad L_{v}^{k}(F) = \frac{\partial L_{v}^{k-1}}{\partial x}v$$

Example:

$$F(x) = Bx, B \in \mathbb{R}^{m \times n}, v(x) = Ax, A \in \mathbb{R}^{m \times m}$$
$$L_{v}^{0}(F) = Bx, L_{v}^{1}(F) = \frac{\partial Bx}{\partial x} Ax = BAx$$
$$L_{v}^{2}(F) = \frac{\partial BAx}{\partial x} Ax = BA^{2}x, \quad L_{v}^{3}(F) = \frac{\partial BA^{2}x}{\partial x} Ax = BA^{3}x$$

Series Expansion Along Trajectory

Suppose x(t) satisfies $\dot{x} = v(x)$, $x(0) = x_0$. Let $f : \mathbb{R}^n \to \mathbb{R}^p$ be any smooth function

$$f(x(t)) = f(x_0) + \left[\frac{d}{dt}f(x(t))\right]_{t=0}t + \frac{1}{2}\left[\frac{d^2}{dt^2}f(x(t))\right]_{t=0}t^2 + \cdots$$

$$\frac{d}{dt}f(x(t)) = \frac{\partial f}{\partial x}v(x) = L_{v}^{1}(f)$$
$$\frac{d^{2}}{dt^{2}}f(x(t)) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}v(x)\right)v(x) = L_{v}^{2}(f)$$

$$f(x(t)) = f(x_0) + L_v^1(f)\Big|_{x=x_0} t + \frac{1}{2}L_v^2(f)\Big|_{x=x_0} t^2 + \cdots$$

Series Representation of Exp Map

Thus, for any smooth f

$$f(x(t)) = \sum_{k=0}^{\infty} \frac{t^{k}}{k!} L_{v}^{k}(f) \Big|_{x=x_{0}}$$

For $f(x) = x$

$$x(t) = \sum_{k=0}^{\infty} \frac{t^{k}}{k!} L_{\nu}^{k}(x) \Big|_{x=x_{0}} \Longrightarrow \Psi(t, x_{0}) = \sum_{k=0}^{\infty} \frac{t^{k}}{k!} L_{\nu}^{k}(x) \Big|_{x=x_{0}}$$

which motivates the notation

$$\Psi(t, x_0) = e^{tv} x_0 = \sum_{k=0}^{\infty} \frac{t^k}{k!} L_v^k(x) \Big|_{x=x_0} \text{ or, more simply } e^{tv} x_0 = \sum_{k=0}^{\infty} \frac{t^k}{k!} L_v^k(x_0) \Big|_{x=x_0}$$

Exponential Map Properties

We have adopted the notation

$$e^{t\mathbf{v}}x_0 \coloneqq \Psi(t, x_0)$$

The motivation for this is that the flow satisfies the three basic properties ordinarily associated with exponentiation – from properties of $\Psi(t,p)$.

 $e^{0 \cdot v} x_0 = x_0$ boundary condition $\frac{d}{dt} e^{tv} x_0 = v(e^{tv} x_0)$ differential equation $e^{(t_1+t_2)v} x_0 = e^{t_2v} e^{t_1v} x_0$ semi-group property

Example: general linear field

$$v(x) = Ax$$

$$L_{\nu}^{0}(x) = x, L_{\nu}^{1}(x) = Ax, L_{\nu}^{2}(x) = A^{2}x, L_{\nu}^{3}(x) = A^{3}x, \dots$$

$$\downarrow \downarrow$$

$$e^{tv}x_{0} == \sum_{k=0}^{\infty} \frac{t^{k}}{k!} L_{v}^{k}(x) \Big|_{x=x_{0}} = \left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}x_{0}\right) = e^{At}x_{0}$$

Example: Affine Field

$$v(x) = Ax + b$$

$$L_{v}^{1}(x) = Ax + b$$

$$L_{v}^{k}(x) = L_{v}^{1}(A^{k-1}x + A^{k-2}b) = A^{k}x + A^{k-1}b$$

$$e^{tv}x = \sum_{k=0}^{\infty} \frac{t^{k}}{k!}L_{v}^{k}(x) = \left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!}A^{k}x + \sum_{k=0}^{\infty} \frac{t^{k}}{k!}A^{k-1}b\right) = e^{At}x + e^{At}A^{-1}b$$

Lie Bracket

Definition: If v,w are vector fields on M, then their *Lie bracket* [v,w] is the unique vector field defined in local coordinates by the formula

$$[v,w] = \frac{\partial w}{\partial x}v - \frac{\partial v}{\partial x}w$$

Property:

$$\frac{dw(\Psi(t,x))}{dt}\Big|_{t=0} = [v,w]\Big|_{x} - \frac{\text{The rate of change of }}{w \text{ along the flow of } v}$$

Lie Bracket Interpretation

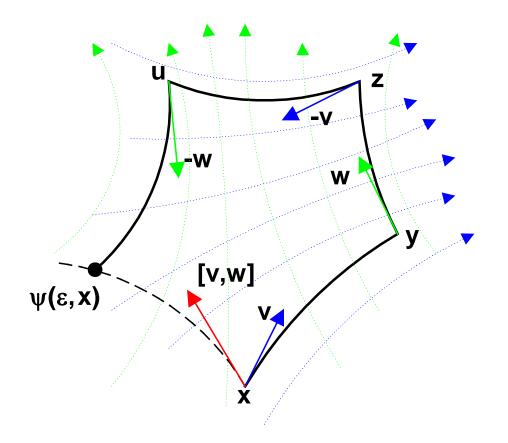
Let us consider the Lie bracket as a commutator of flows. Beginning at point x in M follow the flow generated by v for an infinitesimal time which we take as for convenience. This takes us to point $\sqrt{\varepsilon}$

$$y = \exp(\sqrt{\varepsilon} \mathbf{v}) x$$

Then follow w for the same length of time, then -v, then -w. This brings us to a point ψ given by

$$\psi(\varepsilon, x) = e^{-\sqrt{\varepsilon}\mathbf{w}} e^{-\sqrt{\varepsilon}\mathbf{v}} e^{\sqrt{\varepsilon}\mathbf{w}} e^{\sqrt{\varepsilon}\mathbf{v}} x$$

Lie Bracket Interpretation Continued



 $\frac{d}{d\varepsilon}\Psi(0^+,x) = [v,w]_x$

Iterated Lie Bracket

We recursively define higher order Lie Brackets:

$$ad_{v}^{0}(w) = w$$
$$ad_{v}^{k} = \left[v, ad_{v}^{k-1}(w)\right]$$

Distributions

 v_1, \dots, v_r is a set of vector fields on M $\Delta_p = \operatorname{span} \{ v(p)_1, \dots, v_r(p) \}$ is a subspace of TM_p

Definition: A *smooth distribution* Δ on M is a map which assigns to each point $p \in M$, a subspace of the tangent space to M at p, $\Delta_p \subset TMp$ such that Δ_p is the span of a set of smooth vector fields $v_1, ..., v_r$ evaluated at p. We write $\Delta = span\{v_1, ..., v_r\}$.

Definition: An *integral submanifold* of a set of vector fields $v_1,..,v_r$ is a submanifold N \subset M whose tangent space TNp is spanned by $\{v_1(p),..,v_r(p)\}$ for each $p \in N$. The set of vector fields is *(completely) integrable* if through every point $p \in$ M there passes an integral submanifold.

Involutive Distributions

Definition: A system of smooth vector fields $\{v_1,..,v_r\}$ on M is *in involution* if there exist smooth real valued functions $c_k^{ij}(p)$, $p \in M$ and i,j,k = 1,..,r such that for each i,j

$$\left[v_i, v_j\right] = \sum_{k=1}^r c_k^{ij} v_k$$

Proposition: (Froebenius) Let $\{v_1,...,v_r\}$ be an involutive system of vector fields with dim $[span\{v_1,...,v_r\}]=k$ on M. Then the system is integrable with all integral manifolds of dimension k.

Proposition: (Hermann) Let $\{v_1,...,v_r\}$ be a system of smooth vector fields on M. Then the system is integrable if and only if it is in involution.

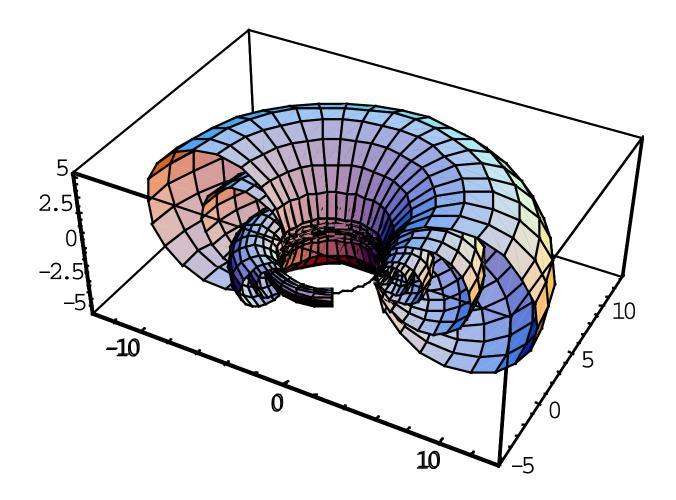
Example

$$M = R^{3} \quad \Delta = \operatorname{span}\{v, w\} \quad v = \begin{bmatrix} -y \\ x \\ 0 \end{bmatrix} \quad w = \begin{bmatrix} 2zx \\ 2yz \\ z^{2} + 1 - x^{2} - y^{2} \end{bmatrix}$$

 $[v,w] \equiv 0$ so the distribution Δ is completely integrable. The distribution is singular because $\dim \Delta = 2$ everywhere <u>except</u> on the z-axis x = 0, y = 0 and on the circle $x^2 + y^2 = 1, z = 0$ where $\dim \Delta = 1$ The z-axis and the circle are one-dimensional integral manifolds. All others are the tori:

$$T_{c} = \left\{ (x, y, z) \in \mathbb{R}^{3} \left| (x^{2} + y^{2})^{-1/2} (x^{2} + y^{2} + z^{2} + 1) = c > 2 \right\}$$

Example



Invariant Distributions

Definition: A distribution $\Delta = \{v_1, \dots, v_r\}$ on *M* is *invariant* with respect to a vector field *f* on M if the Lie bracket $[f, v_i]$, for each $i = 1, \dots, r$ is a vector field of Δ .

Notation: $[f, \Delta] = \text{span}\{[f, v_i], i = 1, ..., r\}$

that Δ is invariant with respect to f may be stated $[f,\Delta] \subset \Delta$.

In general

 $\Delta + [f,\Delta] = \Delta + \operatorname{span}\{[f,v_i], i=1,..,r\} = \operatorname{span}\{v_1,..,v_r,[f,v_1],..,[f,v_r]\}$

Involutive Closure ~ 1

- Problem 1: find the smallest distribution with the following properties
 - It is nonsingular
 - It contains a given distribution Δ
 - It is involutive
 - It is invariant w.r.t. a given set of vector fields, τ_1, \ldots, τ_q

$$\left\langle au_{1},\ldots au_{q}\left|\Delta
ight
angle$$

Algorithm

Algorithm for Problem 1:

