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Vector Fields
Definition: A vector field v on M is a map which assigns to each 
point p∈M, a tangent vector v(p)∈TMp.  It is a Ck-vector field if for 
each p∈M there exist local coordinates (U,ϕ) such that each 
component vi(x), i=1,..,m is a Ck function for each x∈ϕ(U).
Definition: An integral curve of a vector field v on M is a
parameterized curve p=φ(t), t∈(t1,t2)⊂R whose tangent vector at
any point coincides with v at that point.
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Flow Function
Definition: Let v be a smooth vector field on M and denote the
parameterized maximal integral curve through p∈M by Ψ(t,p)
and Ψ(0,p)=p. Ψ(t,p) is called the flow generated by v.
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Properties of flows:

• satisfies ode

• semigroup property



Differential Map
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Given the map , the differential map is the induced
mapping

that takes tangent vectors into tangent vectors.
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Analysis using Local Coordinates
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Lie Derivative
Definition: Let v(x) denote a vector field on M and F(x) a 
mapping from M to Rn, both in local coordinates. Then 
the Lie derivative of order 0,…,k is
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Series Expansion Along Trajectory
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Series Representation of Exp Map
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Exponential Map Properties

We have adopted the notation

( )0 0: ,te x t x= Ψv

The motivation for this is that the flow satisfies the three 
basic properties ordinarily associated with exponentiation –
from properties of Ψ(t,p).
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Example: general linear field

( )
( ) ( ) ( ) ( )

( )
0

0 1 2 2 3 3

0 0 0
0 0

, , , ,

! !

v v v v

k k
tv k k At

v
k kx x

v x Ax

L x x L x Ax L x A x L x A x

t te x L x A x e x
k k

∞ ∞

= ==

=

= = = =

⇓

 
== = = 

 
∑ ∑





Example: Affine Field
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Lie Bracket

Definition: If v,w are vector fields on M, then their Lie bracket
[v,w] is the unique vector field defined in local coordinates by
the formula
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w along the flow of v



Lie Bracket Interpretation

Let us consider the Lie bracket as a commutator of flows. Beginning at point x in
M follow the flow generated by v for an infinitesimal time which we take as
for convenience. This takes us to point

Then follow w for the same length of time, then -v, then -w. This brings us to a
point ψ given by

ε

xy )exp( vε=

( , )x e e e e xε ε ε εψ ε − −= w v w v



Lie Bracket Interpretation Continued
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Iterated Lie Bracket
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We recursively define higher order Lie 
Brackets:



Distributions
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Definition: A smooth distribution ∆ on M is a map which assigns to each
point p∈M, a subspace of the tangent space to M at p, ∆p⊂TMp such that ∆p
is the span of a set of smooth vector fields v1,..,vr evaluated at p. We write
∆=span{v1,..,vr}.

Definition: An integral submanifold of a set of vector fields v1,..,vr is a
submanifold N⊂M whose tangent space TNp is spanned by {v1(p),..,vr(p)}
for each p∈N. The set of vector fields is (completely) integrable if through
every point p∈M there passes an integral submanifold.



Involutive Distributions
Definition: A system of smooth vector fields {v1,..,vr} on M is in
involution if there exist smooth real valued functions ck

ij(p), p∈M and
i,j,k = 1,..,r such that for each i,j
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Proposition: (Froebenius)  Let {v1,..,vr} be an involutive system of vector 
fields with dim [span{v1,..,vr}]=k on M.  Then the system is integrable with 
all integral manifolds of dimension k.

Proposition: (Hermann) Let {v1,..,vr} be a system of smooth vector fields
on M. Then the system is integrable if and only if it is in involution.
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so the distribution ∆ is completely integrable. The distribution is 
singular because                     everywhere except on the z-axis                        
and on the circle                                   where                      The z-axis and the 
circle are one-dimensional integral manifolds. All others are the tori:
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Invariant Distributions

Definition: A distribution on M is invariant with respect to a
vector field f on M if the Lie bracket [f,vi], for each is a vector field of
∆.
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that ∆ is invariant with respect to f may be stated   [f,∆]⊂ ∆.

In general 

∆+[f,∆] = ∆+span{[f,vi], i=1,..,r } = span{v1,..,vr,[f,v1],..,[f,vr]}



Involutive Closure ~ 1

 Problem 1: find the smallest distribution 
with the following properties
 It is nonsingular
 It contains a given distribution ∆
 It is involutive
 It is invariant w.r.t. a given set of vector fields, 
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Algorithm
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Algorithm for Problem 1:
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