Vector Fields, Flows, & Distributions

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University

Outline

- Vector fields & flows
- Lie Bracket
- Distributions
- Controllability
	- Controllability Distributions
	- Controllability Rank Condition
	- Examples

Vector Fields

- **Definition:** A *vector field v* on *M* is a map which assigns to each point *p*∈*M*, a tangent vector $v(p) \in TM_p$. It is a *C^k-vector field* if for each $p \in M$ there exist local coordinates (U, φ) such that each component $v_i(x)$, i=1,..,m is a C^k function for each $x \in \varphi(U)$.
- **Definition:** An *integral curve* of a vector field *v* on *M* is a parameterized curve $p = \phi(t)$, $t \in (t_1, t_2) \subset R$ whose tangent vector at any point coincides with *v* at that point.

In local coordinates, the vector field is written as

$$
a \text{ vector } v(x) = \begin{bmatrix} v_1(x) \\ v_2(x) \\ \vdots \\ v_n(x) \end{bmatrix}
$$

Flow Function

Definition: Let *v* be a smooth vector field on M and denote the parameterized maximal integral curve through $p \in M$ by $\Psi(t,p)$ and $\Psi(0,p)=p$. $\Psi(t,p)$ is called the *flow generated by v*.

Properties of flows:

• satisfies ode
$$
\frac{d}{dt} \Psi(t, p) = v(\Psi(t, p)), \quad \Psi(0, p) = p
$$

• semigroup property $\Psi(t_2, \Psi(t_1, p)) = \Psi(t_1 + t_2, p)$

Differential Map

Given the map $F : M \to N$, the *differential map* is the induced mapping

$$
F_*:TM_p\to TN_{F(p)}
$$

that takes tangent vectors into tangent vectors.

Analysis using Local Coordinates

Lie Derivative

Definition: Let $v(x)$ denote a vector field on M and $F(x)$ a mapping from M to \mathbb{R}^n , both in local coordinates. Then the *Lie derivative of order* 0,…,*k is*

$$
L_{\scriptscriptstyle {\cal V}}^0\bigl(F\,\bigr)=F,\quad L_{\scriptscriptstyle {\cal V}}^k(F)=\frac{\partial L_{\scriptscriptstyle {\cal V}}^{k-1}}{\partial x}\,{\scriptscriptstyle {\cal V}}
$$

Example:

$$
F(x) = Bx, B \in R^{m \times n}, v(x) = Ax, A \in R^{m \times m}
$$

\n
$$
L_v^0(F) = Bx, L_v^1(F) = \frac{\partial Bx}{\partial x}Ax = BAx
$$

\n
$$
L_v^2(F) = \frac{\partial BAx}{\partial x}Ax = BA^2x, L_v^3(F) = \frac{\partial BA^2x}{\partial x}Ax = BA^3x
$$

Series Expansion Along Trajectory

Suppose $x(t)$ satisfies $\dot{x} = v(x)$, $x(0) = x_0$. Let $f : R^n \to R^p$ be any smooth function

$$
f(x(t)) = f(x_0) + \left[\frac{d}{dt}f(x(t))\right]_{t=0}t + \frac{1}{2}\left[\frac{d^2}{dt^2}f(x(t))\right]_{t=0}t^2 + \cdots
$$

$$
\frac{d}{dt}f\left(x(t)\right) = \frac{\partial f}{\partial x}v\left(x\right) = L_v^1\left(f\right)
$$
\n
$$
\frac{d^2}{dt^2}f\left(x(t)\right) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}v\left(x\right)\right)v\left(x\right) = L_v^2\left(f\right)
$$

$$
f(x(t)) = f(x_0) + L^1_v(f)|_{x=x_0} t + \frac{1}{2}L^2_v(f)|_{x=x_0} t^2 + \cdots
$$

Series Representation of Exp Map

Thus, for any smooth *f*

$$
f\left(x(t)\right) = \sum_{k=0}^{\infty} \frac{t^k}{k!} L_{\nu}^k \left(f\right)\Big|_{x=x_0}
$$

 $For f(x) = x$

$$
x(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} L_{\nu}^{k}(x) \Big|_{x=x_0} \implies \Psi(t, x_0) = \sum_{k=0}^{\infty} \frac{t^k}{k!} L_{\nu}^{k}(x) \Big|_{x=x_0}
$$

which motivates the notation

$$
\Psi(t, x_0) = e^{tv} x_0 = \sum_{k=0}^{\infty} \frac{t^k}{k!} L_v^k(x) \Big|_{x=x_0} \text{ or, more simply } e^{tv} x_0 = \sum_{k=0}^{\infty} \frac{t^k}{k!} L_v^k(x_0)
$$

Exponential Map Properties

We have adopted the notation

$$
e^{t\mathbf{v}}x_0:=\Psi\left(t,x_0\right)
$$

The motivation for this is that the flow satisfies the three basic properties ordinarily associated with exponentiation – from properties of $\Psi(t,p)$.

 $(e^{iv}x_0)$ $1^{\tau_1}2^{\gamma_1}$ \mathbf{r} $\boldsymbol{\rho}^{\prime_2}{}^{\gamma}$ $\boldsymbol{\rho}^{\prime_1}$ 0 $_0 - \lambda_0$ $0 - V \begin{pmatrix} c & \lambda_0 \end{pmatrix}$ $(t_1 + t_2)$ $0 - c$ c λ_0 boundary condition differential equation semi-group property $e^{0 \cdot v} x_0 = x$ $t v$ \propto t \propto t σ $(t_1 + t_2)v$ $\qquad \qquad - t_2v \, dt_1v$ *d* $e^{tv}x_0=v(e^{tv}x_0)$ *dt* $e^{(t_1+t_2)v}x_0 = e^{t_2v}e^{t_1v}x_0$ = = **v**

Example: general linear field

$$
v(x) = Ax
$$

$$
L_v^0(x) = x, L_v^1(x) = Ax, L_v^2(x) = A^2x, L_v^3(x) = A^3x, ...
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
e^{tv} x_0 = \sum_{k=0}^{\infty} \frac{t^k}{k!} L_v^k(x) \Big|_{x=x_0} = \left(\sum_{k=0}^{\infty} \frac{t^k}{k!} A^k x_0 \right) = e^{At} x_0
$$

Example: Affine Field

$$
v(x) = Ax + b
$$

\n
$$
L_v^k(x) = Ax + b
$$

\n
$$
L_v^k(x) = L_v^1(A^{k-1}x + A^{k-2}b) = A^k x + A^{k-1}b
$$

\n
$$
e^{tx}x = \sum_{k=0}^{\infty} \frac{t^k}{k!} L_v^k(x) = \left(\sum_{k=0}^{\infty} \frac{t^k}{k!} A^k x + \sum_{k=0}^{\infty} \frac{t^k}{k!} A^{k-1}b\right) = e^{At}x + e^{At}A^{-1}b
$$

Lie Bracket

Definition: If *v*,*w* are vector fields on M, then their *Lie bracket* [*v*,*w*] is the unique vector field defined in local coordinates by the formula

$$
[v, w] = \frac{\partial w}{\partial x}v - \frac{\partial v}{\partial x}w
$$

Property:

$$
\frac{dw(\Psi(t,x))}{dt}\bigg|_{t=0} = [v,w]\bigg|_{x} \longrightarrow \text{The rate of change of } w \text{ along the flow of } v
$$

Lie Bracket Interpretation

Let us consider the Lie bracket as a commutator of flows. Beginning at point *x* in *M* follow the flow generated by *v* for an infinitesimal time which we take as for convenience. This takes us to point $\sqrt{\varepsilon}$

$$
y = \exp(\sqrt{\varepsilon} \mathbf{v})x
$$

Then follow **w** for the same length of time, then -**v**, then -**w**. This brings us to a point ψ given by

$$
\psi(\varepsilon, x) = e^{-\sqrt{\varepsilon}w} e^{-\sqrt{\varepsilon}v} e^{\sqrt{\varepsilon}w} e^{\sqrt{\varepsilon}v} x
$$

Lie Bracket Interpretation Continued

d $x = v, w$ *d*^ε $\Psi(0^+, x) =$

Iterated Lie Bracket

We recursively define higher order Lie Brackets:

$$
ad_v^0(w) = w
$$

$$
ad_v^k = \left[v, ad_v^{k-1}(w) \right]
$$

Distributions

 Δ_p = span $\{v(p)_1, \ldots, v_r(p)\}$ is a subspace of TM_p v_1, \ldots, v_r is a set of vector fields on M

Definition: A *smooth distribution* ∆ on M is a map which assigns to each point p∈M, a subspace of the tangent space to M at p, Δ_p ⊂TMp such that Δ_p is the span of a set of smooth vector fields $v_1,...,v_r$ evaluated at p. We write $\Delta = \text{span}\{v_1, \ldots, v_r\}.$

Definition: An *integral submanifold* of a set of vector fields $v_1,...,v_r$ is a submanifold N⊂M whose tangent space TNp is spanned by $\{v_1(p),...,v_r(p)\}$ for each p∈N. The set of vector fields is *(completely) integrable* if through every point $p \in M$ there passes an integral submanifold.

Involutive Distributions

Definition: A system of smooth vector fields $\{v_1, ..., v_r\}$ on M is *in involution* if there exist smooth real valued functions $c_k^{ij}(p)$, $p \in M$ and $i,j,k = 1,..,r$ such that for each i,j

$$
\left[v_i, v_j\right] = \sum_{k=1}^r c_k^{ij} v_k
$$

Proposition: (Froebenius) Let $\{v_1, \ldots, v_r\}$ be an involutive system of vector fields with dim [span $\{v_1, \ldots, v_r\}$]=k on M. Then the system is integrable with all integral manifolds of dimension k.

Proposition: (Hermann) Let $\{v_1, ..., v_r\}$ be a system of smooth vector fields on M. Then the system is integrable if and only if it is in involution.

Example

$$
M = R3 \quad \Delta = \text{span}\{v, w\} \quad v = \begin{bmatrix} -y \\ x \\ 0 \end{bmatrix} w = \begin{bmatrix} 2zx \\ 2yz \\ z^2 + 1 - x^2 - y^2 \end{bmatrix}
$$

 $[v, w] \equiv 0$ so the distribution Δ is completely integrable. The distribution is singular because $\dim \Delta = 2$ everywhere <u>except</u> on the z-axis and on the circle $x^2 + y^2 = 1, z = 0$ where $\dim \Delta = 1$ The *z*-axis and the circle are one-dimensional integral manifolds. All others are the tori: $\dim \Delta = 2$ everywhere <u>except</u> on the z-axis $x = 0, y = 0$ $x^2 + y^2 = 1, z = 0$ where $\dim \Delta = 1$

$$
T_c = \left\{ (x, y, z) \in R^3 \middle| (x^2 + y^2)^{-1/2} (x^2 + y^2 + z^2 + 1) = c > 2 \right\}
$$

Example

Invariant Distributions

Definition: A distribution $\Delta = \{v_1, ..., v_r\}$ on *M* is *invariant* with respect to a vector field *f* on M if the Lie bracket $[f, v_i]$, for each $i = 1, ..., r$ is a vector field of ∆.

Notation: $[f, \Delta] = \text{span}\{[f, v_i], i = 1, ..., r\}$

that Δ is invariant with respect to f may be stated $[f,\Delta] \subset \Delta$.

In general

 $\Delta + [f, \Delta] = \Delta + \text{span}\{[f, v_i], i = 1, ..., r\} = \text{span}\{v_1, ..., v_r, [f, v_1], ..., [f, v_r]\}$

Involutive Closure ~ 1

- Problem 1: find the smallest distribution with the following properties
	- \bullet It is nonsingular
	- \bullet It contains a given distribution Δ
	- \bullet It is involutive
	- It is invariant w.r.t. a given set of vector fields, τ_1, \ldots, τ_q

$$
\left<\tau^{}_{1}, \ldots \tau^{}_{q} \left|\Delta\right>\right.
$$

Algorithm

Algorithm for Problem 1:

