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Affine Systems
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Controllability
 xf is U-reachable from x0 if given a neighborhood U of x0 containing xf, 

there exists tf>0 and u(t) on [0,tf] such that x0 goes to xf along a 
trajectory contained entirely in U. 

 The system is locally reachable from x0 if for each neighborhood U of 
x0 the set of states U-reachable from x0 contains a neighborhood of x0. 
If the reachable set contains merely an open set the system is locally 
weakly reachable from x0 .

 The system is locally (weakly) controllable if it is locally (weakly) 
reachable from every initial state.

R. Hermann and A. J. Krener, "Nonlinear Controllability and Observability," IEEE 
Transactions on Automatic Control, vol. 22, pp. 728-740, 1977
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Controllability Distributions
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Controllability Rank Condition

Proposition:
A necessary and sufficient condition for the system to be locally 
weakly controllable is

A necessary and sufficient condition for the system to be locally 
controllable is
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Example: Linear System Controllability
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Example: Linear System Continued
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Example: Wheeled Robot
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Wheeled Robot 3
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Implementing Lie Bracket
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Example: Extended Wheeled Robot
The extended system includes dynamics and , :
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Example: Extended Wheeled Robot - 2
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Actually, this is true not only at the origin,
but at any point with  and  both zero.
For generic points with only 0,
the system is controllable.
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Example: Parking
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Parking, Continued

{ }

{ }

( )
( )
( )

( )
( )
( )

1 1

1 1

, , , span , , ,

, , , span , ,

0 0cos cos
0 0sin sin

, span ,
0 0sin sin
1 10 0

O

O

C m m

C m m

C C

f g g f g g

f g g g g

φ θ φ θ
φ θ φ θ
θ θ

∆ =

∆ =

    + +   
       + +       ∆ = ∆ =                       

 

 



Example: Parking, new directions from 
Lie bracket

[ ]

[ ]

sin( )
cos( )

,
cos

0

sin
cos

,
0
0

wriggle steer drive

slide wriggle drive

θ φ
θ φ
θ

φ
φ

− + 
 + = =
 
 
 

− 
 
 = =
 
 
 



Parking, Continued
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Recall Lie Bracket 
Interpretation as Commutator 
of Flows

Let us consider the Lie bracket as a commutator of flows. Beginning at point x
in M follow the flow generated by v for an infinitesimal time which we take as
for convenience. This takes us to point

Then follow w for the same length of time, then -v, then -w. This brings us to a
point ψ given by
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Example: Parking, 
implementation
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More Controllability Distributions
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What is missing in these earlier attempts
to obtain a controllability determination
is any Lie Brackets between fields , . 
They are sufficient but not necessary
conditions for controllability. 
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Example: Linear Systems Revisited
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Controllability Hierarchy
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