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Part II Outline
 Intro to Discontinuous Dynamics

 Examples
 Simulation Tools
 Solution concepts

 Variable Structure Control Basics
 Sliding domain, equivalent control
 Lyapunov analysis of discontinuous systems
 Special Cases: linear dynamics, normal from

 Hybrid Systems
 Mixed logic-dynamic systems
 Modeling using Simulink with State Flow
 Logic to mixed-integer formulas
 Optimization



Outline
 Brocket’s Necessary Condition

 Some systems cannot be stabilized by smooth state feedback
 Extensions to BNC

 Solutions to Discontinuous Differential Equations
 Various notions of ‘solution ‘may be appropriate



What is a Discontinuous System
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such a system is considered to be a continuous system if the function  
has continous first derivatives in , otherwise it is discontinuous.
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Brockett’s Necessary Condition



Necessary Condition for Asymptotic 
Stability
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: (Brockett) Suppose  is smooth and the origin is

stabilized by a smooth state feedback control ,

0 0. Then the mapping : ,

, maps neighborhoods of the origi

n m

n n

x f x u x R u R f
f

u x

u F R R

F x f x u x

= ∈ ∈ =

= →

=

Theorem


( )
( )

n

into neighborhoods of the origin, i.e.
0 0 such that

alternatively,  is a neighborhood of 0 .m n

B F B

f B R R
ε δ

δ

δ ε∀ > ∃ > ⊂

× ∈



Example 1 ( ) ( )
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axis is the origin.
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Example 2
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cos cos
sin sin

Notice that with 0,  all points on the  axis other
than 0 are not in the image of the mapping. 
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Notions of Solution for Discontinuous 
Dynamics



Solutions of ODEs
 Classical Solutions

 Caratheodory Solutions

 Satisfies the ode almost everywhere on [0,t], i.e
at isolate points of time.

 Filippov Solutions (differential inclusion a set)
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Classical Solutions
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Not a classical solution



Caratheodory Solutions
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[ ]
 is satisfied at almost all points on every

interval , ,

Stopping solutions for the brick on ramp problems are 
Caratheodory solutions. For these solutions the brick is
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Brick Example – try something else
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Filippov Solutions
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Example: nearest neighbor
 3 agents moving in square 

Q
 Rule: move diametrically 

away from nearest 
neighbor
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Example: nearest neighbor, cont’d
 Consider 1 agent - in which case 

the only obstacles are the walls.
 The nearest neighbor is easily 

identified on the nearest  wall.
 The vector field is well defined 

everywhere except on the 
diagonals where it is not defined 
because there are multiple 
nearest neighbors.
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Example: nearest neighbor, cont’d
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Extension of Brockett’s Condition
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Assumption on , :
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: Admissible feedback controls  are piecewise continuous and
solutions are defined in the sense of Filippov
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 (Ryan): For ,  continuous and satisfying assumption, asymptotic
stabilization by discontinuous feedback  each neighborhood 
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