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Part II Outline
 Intro to Discontinuous Dynamics

 Examples
 Simulation Tools
 Solution concepts

 Variable Structure Control Basics
 Sliding domain, equivalent control
 Lyapunov analysis of discontinuous systems
 Special Cases: linear dynamics, normal from

 Hybrid Systems
 Mixed logic-dynamic systems
 Modeling using Simulink with State Flow
 Logic to mixed-integer formulas
 Optimization



Outline
 Brocket’s Necessary Condition

 Some systems cannot be stabilized by smooth state feedback
 Extensions to BNC

 Solutions to Discontinuous Differential Equations
 Various notions of ‘solution ‘may be appropriate



What is a Discontinuous System
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such a system is considered to be a continuous system if the function  
has continous first derivatives in , otherwise it is discontinuous.
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A control system is considered to be a continuous if the function ,  

has continous first derivatives in , otherwise it is discontinuous.
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Brockett’s Necessary Condition



Necessary Condition for Asymptotic 
Stability
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: (Brockett) Suppose  is smooth and the origin is

stabilized by a smooth state feedback control ,

0 0. Then the mapping : ,
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The only point of image on F2 
axis is the origin.
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Example 2
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cos cos
sin sin

Notice that with 0,  all points on the  axis other
than 0 are not in the image of the mapping. 
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Notions of Solution for Discontinuous 
Dynamics



Solutions of ODEs
 Classical Solutions

 Caratheodory Solutions

 Satisfies the ode almost everywhere on [0,t], i.e
at isolate points of time.

 Filippov Solutions (differential inclusion a set)
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Classical Solutions
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:  is continuously differenticlassical solution able.
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vtExample: brick on ramp

with stiction.
sgn sinmv v cv mgκ θ= − − +

Not a classical solution



Caratheodory Solutions
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[ ]
 is satisfied at almost all points on every

interval , ,

Stopping solutions for the brick on ramp problems are 
Caratheodory solutions. For these solutions the brick is
stopped on a finite

not
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Brick Example – try something else
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Filippov Solutions
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Example: nearest neighbor
 3 agents moving in square 

Q
 Rule: move diametrically 

away from nearest 
neighbor
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Example: nearest neighbor, cont’d
 Consider 1 agent - in which case 

the only obstacles are the walls.
 The nearest neighbor is easily 

identified on the nearest  wall.
 The vector field is well defined 

everywhere except on the 
diagonals where it is not defined 
because there are multiple 
nearest neighbors.
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Example: nearest neighbor, cont’d
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Extension of Brockett’s Condition
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Assumption on , :

 convex ,  convex

conv , ,conv

: Admissible feedback controls  are piecewise continuous and
solutions are defined in the sense of Filippov
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 (Ryan): For ,  continuous and satisfying assumption, asymptotic
stabilization by discontinuous feedback  each neighborhood 

of 0 ,  is a neighborhood of 0 .n m n

f u

f x u

R f R R

 ∈  

⇒

∈ × ∈

Theorem

F

B

B


	Discontinuous Systems:  Intro to Switching Control  
	Part II Outline
	Outline
	What is a Discontinuous System
	Brockett’s Necessary Condition
	Necessary Condition for Asymptotic Stability
	Example 1
	Example 2
	Notions of Solution for Discontinuous Dynamics
	Solutions of ODEs
	Classical Solutions
	Caratheodory Solutions
	Brick Example – try something else
	Filippov Solutions
	Example: nearest neighbor
	Example: nearest neighbor, cont’d
	Example: nearest neighbor, cont’d
	Extension of Brockett’s Condition

