Sliding Modes

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University

Outline

- A preliminary example
- Basics of switching control systems
- Supplemental Material on Euclidean Geometry

PRELIMINARY EXAMPLE

SWITCHING CONTROL BASICS

Setup

System:

$$\dot{x} = f(x, u)$$

 $x \in R^n, u \in R^m, f \text{ smooth}$

Control:

 u_i discontinuous across switching surface $s_i(x) = 0$

$$u_{i}(x) = \begin{cases} u_{i}^{+}(x), & s_{i}(x) > 0\\ u_{i}^{-}(x), & s_{i}(x) < 0 \end{cases}, \quad i = 1, \dots, m\\ u_{i}^{+}(x), & u_{i}^{-}(x), \text{ smooth} \end{cases}$$

Switching Systems & Sliding Motion

If there is a motion in the switching surface, it is called a sliding motion.

How is it defined?

Defining the Sliding Motion via The Filippov Solution

$$\frac{dx(t)}{dt} \in \mathcal{F}(x(t), t) \coloneqq \bigcap_{\delta > 0} \operatorname{conv} f(S(\delta, x(t)) - \Lambda(\delta, x(t)), t)$$
$$S(\delta, x) \coloneqq \left\{ y \in R^n \Big| \left\| y - x \right\| < \delta \right\} \right\}$$

 $\Lambda(\delta, x)$: subset of measure zero on which f is not defined

Lyapunov Stability for Discontinuous Vector Fields

Using smooth Lyapunov functions with discontinuous vector fields.

$$V(x) \in C^{1}$$

$$\dot{V}(x(t)) \in \left\{ \frac{\partial V}{\partial x} \xi \middle| \xi \in \mathscr{F}(x(t), t) \right\}$$
Result 1
$$\dot{V} \leq -\rho < 0 \left(\dot{V} \geq \rho > 0 \right) \text{ on } P - \Lambda \Longrightarrow$$

$$\dot{V} \leq -\overline{\rho} < 0 \left(\dot{V} \geq \overline{\rho} > 0 \right) \text{ on } P$$
Guidance of discontinuity
Result 2
$$\dot{V} \leq -\rho \|s(x)\|, \rho > 0 \text{ on } P - \Lambda \Longrightarrow \dot{V} \leq -\rho \|s(x)\|, \rho > 0 \text{ on } P$$

Sliding Domain

 $D_s \subset M_s = \{x \in \mathbb{R}^n \mid s(x) = 0\}$ is a sliding domain if:

- 1. trajectories beginning in a δ -vicinity of D_s remain in an ε -vicinity until reaching ∂D_s
- 2. D_s does not contain entire trajectories of the 2^m associated continuous systems.

See notes in Chapter 10

Proposition

Lyapunov verification of a sliding domain.

$$V(x) \in C^1$$
, $V(x) := \begin{cases} = 0 & if \quad s(x) = 0 \\ > 0 & otherwise \end{cases}$

 $D \supset D_s$ is an open, connected subset of R^n $\dot{V} \leq -\rho \| s(x) \| < 0 \text{ on } D - M_s$ \downarrow

 D_s is a sliding domain

Proposition

Finite time reaching of sliding domain.

 $V(x) = \sigma \|s(x)\|^{2}, \sigma > 0 \text{ on a } \delta \text{-vicinity of } D_{s}$ $D \supset D_{s} \text{ is an open, connected subset of } R^{n}$ $\dot{V} \leq -\rho \|s(x)\| < 0 \text{ on } D - M_{s}$ \bigcup

trajectories beginning in a δ -vicinity of D_s reach D_s in finite time

Geometry

• A subset \mathcal{S} of the linear space (over field \mathbb{F}) \mathscr{X}

is a linear subspace of \mathcal{X} if:

 $\forall x_1, x_2 \in \mathcal{S} \text{ and }$

 $\forall c_1, c_2 \in \mathbb{F}, c_1 x_1 + c_2 x_x \in \mathcal{S}$

- If $x_i \in \mathcal{X}$ (i = 1, ..., k), then span $\{x_1, ..., x_k\}$ is a subspace of \mathcal{X} .
- $\mathcal{R}, \mathcal{S} \subset \mathcal{X}$ then

$$\mathcal{R} + \mathcal{S} = \left\{ r + s \, \middle| \, r \in \mathcal{R}, s \in \mathcal{S} \right\}$$
$$\mathcal{R} \cap \mathcal{S} = \left\{ x \, \middle| \, x \in \mathcal{R} \& x \in \mathcal{S} \right\}$$

• Two subspaces \mathcal{R}, \mathcal{S} are independent if $\mathcal{R} \cap \mathcal{S} = 0$

Geometry 2

• If $\mathcal{R}_i, i = 1, ..., k$ are independent subspaces, then the sum $\mathcal{R} = \mathcal{R}_1 + \dots + \mathcal{R}_k$

is called an indirect sum and may be written

 $\mathscr{R} = \mathscr{R}_1 \oplus \cdots \oplus \mathscr{R}_k$

The symbol \oplus presuposes independence.

• Let $\mathscr{X} = \mathscr{R} \oplus \mathscr{S}$. For each $x \in \mathscr{X}$, there are unique $r \in \mathscr{R}, s \in \mathscr{S}$ so that x = r + s. This implies a unique function $x \mapsto r$ called the projection on \mathscr{R} along \mathscr{S} .

Geometry 3

- The projection is a linear map $Q: \mathcal{X} \to \mathcal{X}$, such that $\operatorname{Im} Q = \mathcal{R}$ and $\ker Q = \mathcal{S}$, and $\mathcal{X} = Q\mathcal{X} \oplus (I - Q)\mathcal{X} = \mathcal{R} \oplus \mathcal{S}$
- Note that (I-Q) is the projection on S along \mathcal{R} . Thus, $Q(I-Q) = 0 \Leftrightarrow Q^2 = Q$
- Conversly, for any map $Q: \mathcal{X} \to \mathcal{X}$ such that $Q^2 = Q$ $\mathcal{X} = \operatorname{Im} Q \oplus \ker Q$
- i.e., Q is the projection on $\operatorname{Im} Q$ along ker Q.

