Sliding Modes

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University

Outline

- A preliminary example
- Basics of switching control systems
- Supplemental Material on Euclidean Geometry

PRELIMINARY EXAMPLE

SWITCHING CONTROL BASICS

Setup

System:
\n
$$
\dot{x} = f(x, u)
$$

\n $x \in R^n, u \in R^m, f \text{ smooth}$

Control:

 u_i discontinuous across switching surface $s_i(x) = 0$

$$
u_i(x) = \begin{cases} u_i^+(x), & s_i(x) > 0 \\ u_i^-(x), & s_i(x) < 0 \end{cases}
$$
 $i = 1,...,m$

$$
u_i^+(x), u_i^-(x), \text{ smooth}
$$

Switching Systems & Sliding Motion

If there is a motion in the switching surface, it is called a sliding motion.

How is it defined?

Defining the Sliding Motion via The Filippov Solution

$$
\frac{dx(t)}{dt} \in \mathcal{F}(x(t),t) := \bigcap_{\delta > 0} \text{conv } f(S(\delta, x(t)) - \Lambda(\delta, x(t)), t)
$$
\n
$$
S(\delta, x) := \left\{ y \in R^n \middle| \|y - x\| < \delta \right\}
$$

 $\Lambda(\delta, x)$: subset of measure zero on which f is not defined

Lyapunov Stability for Discontinuous Vector Fields

Using smooth Lyapunov functions with discontinuous vector fields.

$$
V(x) \in C^{1}
$$

\n
$$
\dot{V}(x(t)) \in \left\{ \frac{\partial V}{\partial x} \xi \middle| \xi \in \mathcal{F}(x(t), t) \right\}
$$

\nResult 1
\n
$$
\dot{V} \le -\rho < 0 \left(\dot{V} \ge \rho > 0 \right) \text{ on } P - \Lambda \Rightarrow
$$

\n
$$
\dot{V} \le -\overline{\rho} < 0 \left(\dot{V} \ge \overline{\rho} > 0 \right) \text{ on } P
$$

\nResult 2
\n
$$
\dot{V} \le -\rho ||s(x)||, \rho > 0 \text{ on } P - \Lambda \Rightarrow \dot{V} \le -\rho ||s(x)||, \rho > 0 \text{ on } P
$$

Sliding Domain

 $D_s \subset M_s = \left\{ x \in R^n \mid s(x) = 0 \right\}$ is a sliding domain if:

- 1. trajectories beginning in a δ -vicinity of D_s remain in an *ε*-vicinity until reaching ∂D_s
- 2. does not contain entire trajectories of the *s D* 2^{*m*} associated continuous systems.

See notes in Chapter 10

Proposition

Lyapunov verification of a sliding domain.

$$
V(x) \in C^1, \quad V(x) := \begin{cases} =0 & \text{if } s(x) = 0\\ > 0 & \text{otherwise} \end{cases}
$$

$$
D \supset D_s \text{ is an open, connected subset of } R^n
$$

$$
\dot{V} \le -\rho ||s(x)|| < 0 \text{ on } D - M_s
$$

 D_s is a sliding domain

⇓

Proposition

Finite time reaching of sliding domain.

 $\dot{V} \leq -\rho \left\| s(x) \right\| < 0$ on $D - M_s$ 2 $V(x) = \sigma ||s(x)||^2$, $\sigma > 0$ on a δ -vicinity of D_s is an open, connected subset of R^n $D \supset D_s$ is an open, connected subset of R ⇓

trajectories beginning in a δ -vicinity of D_s reach in finite time *s D*

Geometry

• A subset S of the linear space (over field \mathbb{F}) \mathcal{X}

is a linear subspace of $\mathscr X$ if:

 $\forall x_1, x_2 \in \mathcal{S}$ and

 $\forall c_1, c_2 \in \mathbb{F}, c_1x_1 + c_2x_x \in \mathcal{S}$

- If $x_i \in \mathcal{X}$ $(i = 1, ..., k)$, then span $\{x_1, ..., x_k\}$ is a subspace of $\mathscr X$.
- \bullet R, $S \subset \mathcal{X}$ then

$$
\mathcal{R} + \mathcal{S} = \{r + s | r \in \mathcal{R}, s \in \mathcal{S}\}
$$

$$
\mathcal{R} \cap \mathcal{S} = \{x | x \in \mathcal{R} \& x \in \mathcal{S}\}
$$

• Two subspaces \mathcal{R}, \mathcal{S} are independent if $\mathcal{R} \cap \mathcal{S} = 0$

Geometry 2

 $\mathcal{R} = \mathcal{R}_1 + \cdots + \mathcal{R}_k$ • If \mathcal{R}_i , $i = 1, \ldots, k$ are independent subspaces, then the sum

is called an indirect sum and may be written

 $\mathcal{R} = \mathcal{R}_{\!\!1} \oplus \cdots \oplus \mathcal{R}_{\!\!k}$

The symbol \oplus presuposes independence.

• Let $\mathcal{X} = \mathcal{R} \oplus \mathcal{S}$. For each $x \in \mathcal{X}$, there are unique $r \in \mathcal{R}, s \in \mathcal{S}$ so that $x = r + s$. This implies a unique function $x \mapsto r$ called the projection on \Re along \Im .

Geometry 3

- $\mathscr{X} = Q\mathscr{X} \oplus (I-Q)\mathscr{X} = \mathscr{R} \oplus \mathscr{S}$ • The projection is a linear map $Q : \mathcal{X} \to \mathcal{X}$, such that $\text{Im } Q = \mathcal{R}$ and ker $Q = \mathcal{S}$, and
- Note that $(I Q)$ is the projection on S along \mathcal{R} . Thus, $Q(I-Q)=0 \Leftrightarrow Q^2=Q$
- Conversly, for any map $Q : \mathcal{X} \to \mathcal{X}$ such that $Q^2 = Q$ $\mathscr{X} = \text{Im} Q \oplus \ker Q$
- i.e., Q is the projection on Im Q along ker Q .

