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PRELIMINARY EXAMPLE
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SWITCHING CONTROL BASICS
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Switching Systems & Sliding Motion 

If there is a motion in the switching 
surface, it is called a sliding 
motion.

How is it defined?



Defining the Sliding Motion via The 
Filippov Solution
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Lyapunov Stability for Discontinuous 
Vector Fields
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Sliding Domain

{ }( ) 0 is a if:

1.   trajectories beginning in a -vicinity of
      remain in an -vicinity until reaching

2.   does not contain entire trajectories of the
      2 associated continuous systems.
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Proposition

( )

1 0 ( ) 0
( ) , ( ) :

0

is an open, connected subset of

0 on

is a sliding domain

n
s

s

s

if s x
V x C V x

otherwise

D D R

V s x D M

D

ρ

= =
∈ = >

⊃

≤ − < −

⇓



Lyapunov verification of a sliding domain.



Proposition
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SUPPLEMENTARY MATERIAL: 
EUCLIDEAN GEOMETRY



Geometry
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Geometry 2
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If , 1, ,  are independent subspaces, then the sum

is called an indirect sum and may be written
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Geometry 3
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The projection is a linear map : ,  such that 
Im  and ker , and

Note that  is the projection on  along . Thus,

0

Conversly, for any map : such that 
Im ker

Q
Q Q

Q I Q

I Q

Q I Q Q Q

Q Q Q
Q Q

→
= =

= ⊕ − ⊕

• −

− = ⇔ =

•
=

•

→ =
⊕

X X
R S

X X X = R S

S R

X X  
X

i.e.,  is the projection on Im  along ker .Q Q Q



Geometry 4
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