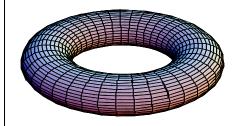
VSC Design via Sliding Modes

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics

Drexel University



Outline

- VS systems, sliding modes, reaching
- Example: undersea vehicle
- Design based on normal form

VSC Design via Sliding Modes: Setup

System:

$$\dot{x} = f(x, u)$$

 $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, f smooth

Control:

 u_i discontinuous across switching surface $s_i(x) = 0$

$$u_{i}(x) = \begin{cases} u_{i}^{+}(x), & s_{i}(x) > 0 \\ u_{i}^{-}(x), & s_{i}(x) < 0 \end{cases}, \quad i = 1, ..., m$$

$$u_{i}^{+}(x), \quad u_{i}^{-}(x), \text{ smooth}$$

VSC Design via Sliding Modes: Strategy

- 1. Choose switching surfaces, $s_i(x)$, so that sliding mode has desired dynamics.
- 2. Choose control functions, $u_i^{\pm}(x)$, so that sliding mode is reached in finite time.

Approach:

- 1. How does choice of $s_i(x)$ affect sliding behavior?
 - ⇒ equivalent control method
- 2. How can we choose $u_i^{\pm}(x)$ to insure finite time reaching?
 - \Rightarrow Lyapunov method

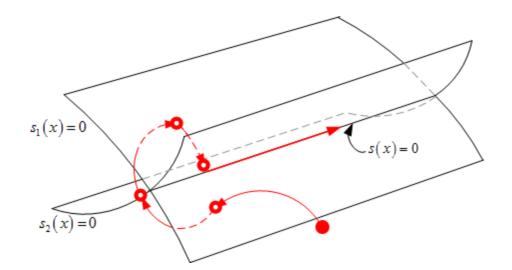
Equivalent Control ~ 1

$$\dot{x} = f(t, x, u), \quad u_i = \begin{cases} u_i^+(t, x) & s_i(x) > 0 \\ u_i^-(t, x) & s_i(x) < 0 \end{cases}$$

Suppose $M_s = \{x \in \mathbb{R}^n | s(x) = 0\}$ contains a sliding domain.

We can obtain the dynamics in M_s by identifying the

equivalent control.



Equivalent Control ~ 2

If there exists a control u(t, x) such that $\dot{x} = f(t, x, u)$ and s(x) = 0, then u is referred to as the equivalent control and denoted u_{eq}

$$\dot{s}(x) = \frac{\partial s}{\partial x} f(t, x, u_{eq}) \equiv 0$$

if a solution exists for u_{eq} , then on s = 0, $\dot{s} \equiv 0$ and

$$\dot{x} = f(t, x, u_{eq}(t, x)) \iff \text{dynamics in sliding}$$

Equivalent Control – Special Cases

Systems 'linear in control'

$$\dot{x} = f(x) + G(x)u$$

$$\dot{s}(x) = S(x)f(x) + S(x)G(x)u_{eq} \equiv 0$$

$$\det SG \neq 0 \Rightarrow u_{eq} = -\left[S(x)G(x)\right]^{-1}S(x)f(x)$$

$$\dot{x} = \left[I - G(x)\left[S(x)G(x)\right]^{-1}S(x)\right]f(x)$$

Linear Systems

$$\dot{x} = Ax + Bu$$
, $s(x) = Cx$

$$u_{eq} = (CB)^{-1} CAx \quad \text{(assuming det } CB \neq 0\text{)}$$

$$\dot{x} = \left[I - B(CB)^{-1} C\right] Ax$$

Reaching

Choose

$$V(x) = s^{T}(x)s(x) = ||s(x)||^{2} \Rightarrow$$

$$\dot{V}(x) = 2s^{T}(x) \frac{\partial s}{\partial x} f(x, u)$$

Suppose $2s^{T}(x)(\partial s/\partial x)f(x,u) < -\rho ||s(x)||$ on $D-M_{s}$ where

D is an open set containing $D_s \subset M_s \Rightarrow$

 D_s is a sliding domain and it is reached in finite time from any initial point in D.

Linear Example ~ Reaching

$$\dot{x} = f(x,u) = Ax + bu, s(x) = cx$$

$$V = ||s(x)||^2 \Rightarrow \dot{V} = 2s(x)cAx + 2s(x)cbu$$

We can only affect the second term. Choose,

$$u = -k(x)\operatorname{sgn}(s(x)cb), \quad k(x) > 0 \forall x$$

$$\dot{V} = 2s(x) \left[cAx - cbk(x) sgn(s(x)cb) \right] \le -\rho |s(x)|$$

provided
$$cbk(x) - |cAx| \ge \rho$$
, $\forall x$

$$k(x) = (\rho + |cAx|)/(cb)$$

This insures that s(x) is a global sliding domain.

Linear SISO Example ~ 1

$$s(x) = cx, \quad s \equiv 0 \Rightarrow \dot{s} \equiv 0$$

$$c\dot{x} = cAx + cbu_{eq} := 0 \Rightarrow \boxed{u_{eq} = -(cb)^{-1} cAx}$$

$$\dot{x} = \boxed{I - b(cb)^{-1} c} Ax \qquad \text{Sliding dynamics}$$

Define a matrix V whose columns span ker c, i.e.,

$$V = \begin{bmatrix} v_1 & \cdots & v_{n-1} \end{bmatrix}, cv_i = 0$$

Notice that $b \notin \ker c$ and $X = \operatorname{Im} b \oplus \ker c$. Define a state transformation

$$x \mapsto (w, z)$$
 $x = Vw + bz$, $w \in \mathbb{R}^{n-1}, z \in \mathbb{R}$
 $V\dot{w} + b\dot{z} = \left[I - b(cb)^{-1}c\right]A(Vw + bz)$

Linear SISO Example ~ 2

$$[V \quad b] \begin{bmatrix} \dot{w} \\ \dot{z} \end{bmatrix} = [I - b(cb)^{-1} c] A [V \quad b] \begin{bmatrix} w \\ z \end{bmatrix}$$

$$[V \quad b]^{-1} = \begin{bmatrix} U \\ d \end{bmatrix} \Rightarrow \begin{bmatrix} UV \quad Ub \\ dV \quad db \end{bmatrix} = \begin{bmatrix} I_{n-1} & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow d = (cb)^{-1} c$$

$$[\dot{w}] = \begin{bmatrix} U \\ d \end{bmatrix} [I - b(cb)^{-1} c] A [V \quad b] [w] \\ z \end{bmatrix} = \begin{bmatrix} U \\ 0 \end{bmatrix} A [V \quad b] [w] \\ z \end{bmatrix}$$

$$\text{note:}$$

$$d \begin{bmatrix} I - b(cb)^{-1} c \end{bmatrix} = 0$$

$$[\dot{w}] = \begin{bmatrix} UAV \quad UAb \\ 0 \quad 0 \end{bmatrix} [w] \\ \dot{z} \end{bmatrix}$$

$$\text{Sliding: } z \to 0$$

$$\dot{w} = [UAV] [w]$$

Designing the Sliding Surface

Consider the system

$$\dot{x} = f(x) + G(x)u$$

$$\operatorname{rank} G(x) = m$$

satisfies controllability rank condition

Transform to **regular form**:

$$\dot{x}_1 = f_1(x_1, x_2)$$

$$\dot{x}_2 = f_1(x_1, x_2) + G_2(x_1, x_2)u$$

$$x_1 \in \mathbb{R}^{n-m}, x_2 \in \mathbb{R}^m, \det G_2 \neq 0 \text{ around } x_0$$

around x_0

Design dliding dynamics

Strategy:

1) choose $x_2 = -\dot{s}_0(x_1)$ so that $\dot{x}_1 = f_1(x_1, -\dot{s}_0(x_1))$

$$\dot{x}_1 = f_1(x_1, -s_0(x_1))$$

has desired behavior,

2) choose *u* to enforce sliding on

$$s(x_1, x_2) = s_0(x_1) + x_2$$

Reaching

Example: Linear SISO Design ~ 1

 $\dot{x} = Ax + bu$, rank b = 1, (A,b) controllable reorder states to obtain

$$b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
, with $b_2 \in R$, $\det b_2 \neq 0$

transform to regular form:

$$z = Tx, T = \begin{bmatrix} I_{n-1} & -b_1 b_2^{-1} \\ 0 & b_2^{-1} \end{bmatrix}, T^{-1} = \begin{bmatrix} I_{n-1} & -b_1 \\ 0 & b_2 \end{bmatrix}$$

$$\dot{z} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} z + \begin{bmatrix} 0_{n-1} \\ 1 \end{bmatrix} u$$
 the pair (A_{11}, A_{12}) is controllable

Example: Linear SISO Design ~ 2

To shape sliding dynamics, choose

$$z_2 = Kz_1 \Rightarrow \dot{z}_1 = (A_{11} + A_{12}K)z_1, \quad z_1 \in \mathbb{R}^{n-1}, z_2 \in \mathbb{R}$$

Choose *K* by any means, pole placement, LQG, etc.

Now,
$$s(z) = -Kz_1 + z_2$$

To design the reaching control *u* take

$$V(z) = \frac{1}{2} ||s(z)||_{Q}^{2} = \frac{1}{2} s^{T}(z) Q s(z), \quad Q^{T} = Q > 0$$

$$\dot{V}(z) = s^T Q \ \dot{s} = z^T \begin{bmatrix} -K & 1 \end{bmatrix}^T Q \begin{bmatrix} -K & 1 \end{bmatrix} Az + s^T Qu$$

$$u_i = -\kappa_i(z)\operatorname{sgn} s_i^*, \quad s^*(z) = Qs(z),$$

$$\|\kappa(z)\| > \|z^T [-K \quad I_m]^T Q [-K \quad I_m] Az\|$$

Example: Linear MIMO Design ~ 1

 $\dot{x} = Ax + Bu$, rank B = m, (A, B) controllable

reorder states to obtain

$$B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$
, with $B_2 \in R^{m \times m}$, $\det B_2 \neq 0$

transform to regular form:

$$z = Tx, T = \begin{bmatrix} I_{n-m} & -B_1 B_2^{-1} \\ 0 & B_2^{-1} \end{bmatrix}, T^{-1} = \begin{bmatrix} I_{n-m} & -B_1 \\ 0 & B_2 \end{bmatrix}$$

$$\dot{z} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} z + \begin{bmatrix} 0 \\ I \end{bmatrix} u \quad \text{the pair } (A_{11}, A_{12}) \text{ is controllable}$$

Example: Linear MIMO Design ~ 2

To shape sliding dynamics,

$$z_2 = Kz_1 \Rightarrow \dot{z}_1 = (A_{11} + A_{12}K)z_1$$

Choose *K* by any means, pole placement, LQG, etc.

Now,
$$s(z) = -Kz_1 + z_2$$

To design the reaching control u take

$$V(z) = \frac{1}{2} \| s(z) \|_{Q}^{2} = \frac{1}{2} s^{T}(z) Q s(z), \quad Q^{T} = Q > 0$$

$$\dot{V}(z) = s^{T} Q \dot{s} = z^{T} [-K \quad I_{m}]^{T} Q [-K \quad I_{m}] Az + s^{T} Q u$$

$$u_{i} = -\kappa_{i}(z) \operatorname{sgn} s_{i}^{*}, \quad s^{*}(z) = Q s(z),$$

$$\|\kappa(z)\| > \|z^{T} [-K \quad I_{m}]^{T} Q [-K \quad I_{m}] Az\|$$

Example: Underwater Vehicle

$$m\ddot{x} + c\dot{x} |\dot{x}| = u$$
, m, c uncertain, $u \in [-U, U]$
 $\dot{x} = v$

$$\dot{v} = -\frac{c}{m}v|v| + \frac{1}{m}u$$

1. Choose a sliding surface: $s = v + \lambda x$.

Why? Because $s \equiv 0 \Rightarrow \dot{x} = -\lambda x$ ($v = -\lambda x$ stabilizes first eq)

2. Choose reaching control based on $V(x, v) = s^{T} s = s^{2}$,

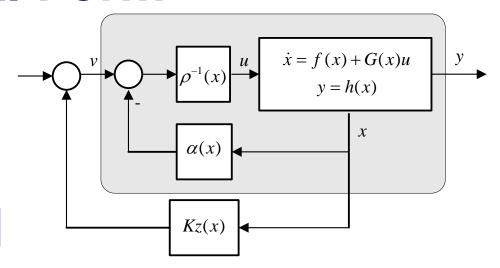
$$\dot{V} = 2s \left[\lambda \quad 1 \right] \begin{bmatrix} v \\ -\frac{c}{m} v |v| \end{bmatrix} + 2s \frac{1}{m} u \Rightarrow u = \begin{cases} -U & s > 0 \\ U & s < 0 \end{cases}$$

Control Based on Normal Form

$$\dot{\xi} = F(\xi, z, u)$$

$$\dot{z} = Az + E[\alpha(\xi, z) + \rho(\xi, z)u]$$

$$y = Cz$$
 Recall Brunovsky structure of A,E



Choose
$$s(x)$$
 such that $s(x) = 0 \Leftrightarrow Kz(x) = 0$

$$u_{i}(x) = \begin{cases} u_{i}^{+}(x) & s_{i}(x) > 0 \\ u_{i}^{-}(x) & s_{i}(x) < 0 \end{cases}$$

Sliding Dynamics

Choosing K

One choice:

$$k_i = \begin{bmatrix} a_{i,1} & \cdots & a_{i,r_i-1} & 1 \end{bmatrix}$$

Eigenvalues of (A+EK) are:

Sliding eigenvalues

mare 0 and
$$r-m$$
 are $\lambda \begin{bmatrix} 0 & 1 & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & 1 \\ -a_{i,1} & -a_{i,2} & \cdots & -a_{i,r_i-1} \end{bmatrix}$, $i=1,\ldots,m$

Reaching

Consider the positive definite quadratic form in s

$$V(x) = s^T Q s$$

Upon differentiation we obtain

$$\frac{d}{dt}V = 2\dot{s}^T Q s = 2[KAz + \alpha]^T Q Kz + 2u^T \rho^T Q Kz$$

If the controls are bounded, $|u|_i \le \overline{U}_i > 0$ ($0 > U_{\min,i} \le u_i \le U_{\max,i} > 0$) then choose

$$u_{i} = \begin{cases} U_{\min,i} & s_{i}^{*}(x) > 0 \\ U_{\max,i} & s_{i}^{*}(x) < 0 \end{cases}, i = 1, ..., m, \quad s^{*}(x) = \rho^{T}(x)QKz(x)$$

VSC Summary

