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Outline

e VS systems, sliding modes, reaching
e Example: undersea vehicle
e Design based on normal form




VSC Design via Sliding Modes: Setup

System: ¥ — f (X, u)

xeR", ueR™, f smooth

Control:

u. discontinuous across switching surface s, (x) =0

u_(x):;uf(x), 5(X)>0 i=1...,m
| \ui_(x)’ Si(x)<o, o

u’" (x), u. (x), smooth




VSC Design via Sliding Modes: Strategy

1. Choose switching surfaces, s (x) so that sliding mode has

desired dynamics.

2. Choose control functions, u;” (x), so that sliding mode is reached
In finite time.

Approach:

1. How does choice of s, ( x)affect sliding behavior?

= equivalent control method
2. How can we choose u;” (x) to insure finite time reaching?

= Lyapunov method




Equivalent Control ~ 1

N ur(tx) s (x)>0
x=f(t,xu), u‘_iu((t,x) s, (x)<0

Suppose M, = {x e R"|s(x) = O} contains a sliding domain.

We can obtain the dynamics in M by identifying the
equivalent control.




Equivalent Control ~ 2

If there exists a control u (t, x) such that
X = f (t, x,u) and s(x) =0, then u is referred
to as the equivalent control and denoted u,,

s’(x):%f(t,x,ueq)sO

If a solution exists for u,,, thenons=0,s=0

and

X = f(t,x,ueq (t,x)) < dynamics in sliding




Equivalent Control — Special Cases

Systems 'linear in control’
x=f(x)+G(x)u
$(x)=S(x) f(x)+S(x)G(X)u,, =
detSG = 0= u,, = S(x)G(x)| S(x)

= 1-G(x)[S(x)G(x)] '8 (x) |f (x)

Linear Systems
X=Ax+Bu, s(x)=Cx

Uy = (CB)_1 CAx (assuming detCB = 0)
k=|1-B(CB)"C | Ax




Reaching

Choose

V(x)=s"(x)s(x)= HS(X)H2 —

V (x)=2" (x)% f (x,u)

Suppose 2s' (x)(as/ox) f (x,u)<—p|s(x)| on D—M, where
D is an open set containing D, c M, =

D, is a sliding domain and it is reached In finite time

from any initial point in D.




Linear Example ~ Reaching
x=f(x,u)=Ax+bu, s(x)=cx
V = HS(X)H2 =V = 2s(x)cAx + 2s(x)cbu
We can only affect the second term. Choose,
u=-k(x)sgn(s(x)ch), k(x)>0vx
V = Zs(x)[cAX—cbk(x)sgn (s(x)cb)] <—p|s(x)
provided cbk (x)—|cAx|> p, VX

k(x)=(p+|cAx|)/(cb)

This insures that s(x) is a global sliding domain.




Linear SISO Example ~

s(x)=cx, s=0=38=

CX = CAX+cbu, =0=

1

0

Ugq = —(cb) ™ cAXx

X = [l - b(Cb)_1 C_ AXx ——— Sliding dynamics

Define a matrix V whose columns span kerc, I.e.,

V= - v,]cy=0
Notice that b ¢ kerc and X = Imb @ ker c. Define a

state transformation

x> (w,z) x=Vw+bz, weR"™ zeR

Vi+bz =| 1 =b(cb) "¢ | A(Viw+bz)



Linear SISO Example ~ 2
v b]{ﬂz[l—b(cb)ﬂA[v b]m
v Bl e

[T v s[5 o

/
_ M{UQ\V Ug\b}{vzv} S“ij,-;rfis/:\)/?w




Designing the Sliding Surface

Consider the system
x=f(x)+G(x)u

rank G (X) =m d Design dliding
ISTi ili it around x, dynamics
satisfies controllability rank condition
Transform to regular form: Strategy: /
x = f (Xl’ Xz) 1) choose x, = —s, (X, ) o that
X, = fl(Xl’X2)+G2(X1’X2)u = fl(xl’_so(xl))

has desired behavior, //‘ Reaching

X, e R"™",x, e R",detG, =0 around x,

2) choose u to enforce sliding on

S( X, %, ) =S, (X, )+ X,




Example: Linear SISO Design ~ 1

X=Ax+bu, rankb=1 (A, b) controllable
reorder states to obtain

2

b
b:{ 1}, with b, e R, deth, = 0
b

transform to regular form:

Z:TX T — I -1 _b1b2_1_ T—l _ In—l _bl
| bt | 0 b,

0
0
A :{Aﬁl A”}z{ il}u the pair (A, A, ) is controllable




Example: Linear SISO Design ~ 2

To shape sliding dynamics, choose

z,=Kz;, > 2,=(A,+A,K)z, z,eR"™z,eR
Choose K by any means, pole placement, LQG, etc.
Now, s(z)=-Kz, +z,
To design the reaching control u take

=25 -2 (9Qs(z), @' =050
\/(z):s Qs=17" [-K 1] Q [-K 1]Az+s"Qu
u; =—x;(z)sgns;, s (z)=Qs(z),

I (2)]> 2" QK 1,]A7




Example: Linear MIMO Design ~ 1

X=Ax+Bu, rankB=m, (A, B) controllable
reorder states to obtain

B
B:{ 1] with B, e R™", detB, #0
B

2
transform to regular form:

| —BB*] |  -B
Z=Tx,T= """ 1 12 T 1
0 B,

Z.{An A,

A, Azjz{ﬂu the pair (A, A, ) is controllable




Example: Linear MIMO Design ~ 2

To shape sliding dynamics,
z, =Kz, = 1, :(An"' AlZK)Zl
Choose K by any means, pole placement, LQG, etc.
Now, s(z) =-Kz, +z,
To design the reaching control u take

V(2)=5]s(@)f, =5 (2)Qs(2). Q" =Q>0

V(z)=s'Qs=2"[-K I,] Q[K I,]Az+s"Qu
u; =—x;(z)sgns;, s (z)=Qs(z),
[Q[K 1,]A




Example: Underwater Vehicle
mX +cxX|X| =u, m,cuncertain, ue[-U,U]
X=V

1

, C
V=-—=v[V|+=u
m m

1. Choose a sliding surface: s = v+ AX.
Why? Because s =0 = x=-Ax (v =-AX stabilizes first eq)

2. Choose reaching control based on V (x,v)=s's =s°,

v
. 1 -U s>0
V =2s[1 1] CVM +ZSEU:>U={ -0
. M i




Control Based on Normal Form

E=F(&,2,u)
2=Az+E[|a(,2)+ p(&,2)uU]
y =Cz

Recall Brunovsky structure of A,E

Choose s(x) such thats(x) =0« Kz(x)=0

0 (X) = u'(x) s(x)>0
e u-(x) s(x)<0

0"

(O

p (X[

L

a(x)

-

x=f(xX)+G(x)u
y =h(x)

X

Kz(x)

<




Sliding Dynamics
s(X) =0« Kz(x)=0
U
Kz = KAz +KE| a(X)+ p(X)U,, | =0

Note :
same as \\ KE =1 U
feedback

inearizing | Uy, = —p  (X) KAZ(X) = p ™ (X) ()

control
U/ Sliding
z=|1-EK|AZ, Kz(t,)=0 [2mmes




Choosing K

One choice: _

0

. -a

-1 |



Reaching

Consider the positive definite quadratic formin s
V(X)=s'Qs
Upon differentiation we obtain

%v =28"Qs = 2[KAz + | QKz +2u” p" QKz

If the controls are bounded,

U — Upini 8 (X)>0
U s."(x) <0’

ul. <U; >0 (0>U,;; <u <U_..>0) then choose

max,i

i=1....,m, s (x)=p' (x)QKz(x)

max, i




VSC Summary

5(x) = KAx)=0
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