Switching & Hybrid Systems

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University

Outline

- Simple Examples of Hybrid Systems
 - Bouncing ball
 - Heating system
 - Gearbox/cruise control
- Simulating Hybrid Systems Simulink with Stateflow
 - Stateflow/Simulink
 - Bouncing ball
 - Power conditioning system
 - Inverted pendulum
- Hybrid System Models
 - Hybrid automaton
 - IP formulas

Simple Examples

Bouncing Ball

Bouncing Ball

Ball trajectory and the events

25

30

20

Zeno phenomenon ∞ transitions in finite time

Heater

continuous state: $x \in R$,

$$\dot{x} = f(x,q), \quad f(x,q) = \begin{cases} -x+50 & q = off \\ -x+100 & q = on \end{cases}$$

discrete state: $q \in \{on, off\},$
$$q(k+1) = \varphi(x,q(k)), \quad \varphi(x,q) = \begin{cases} on & q = off, x \le 73 \\ off & q = off, x > 73 \\ off & q = on, x \ge 77 \\ on & q = on, x < 77 \end{cases}$$

3

Automobile Gearbox Control

- Problem 1: Automated gearbox coordinate automatic gearshift with throttle command
- Problem 2: Cruise control automate throttle and gearbox to maintain speed
- Background
 - R. W. Brockett, "Hybrid Models for Motion Control," in *Perspectives in Control*, H. L. Trentelman and J. C. Willems, Ed. Boston: Birkhauser, 1993, pp. 29-54.
 - S. Hedlund and A. Rantzer, "Optimal Control of Hybrid Systems," presented at Conference on Decision and Control, Phoenix, AZ, pp. 3972-3977, 1999.
 - F. D. Torrisi and A. Bemporad, "HYSDEL-A Tool for Generating Computational Hybrid Models for Analysis and Synthesis Problems," *IEEE Transactions on Control Systems Technology*, vol. 12, pp. 235-249, 2004.

Transmission

$M_{q_i}\dot{v} = \frac{R_{q_i}R_{fin}}{r_{wheel}}f_{eng}\left(a\right)$	$D(u-F_b-cv^2-M_{veh}g\sin($	(α)
$u \in [0,1]$	throttle position	
ω	engine speed	
$f_{eng}(\omega)u$	engine torque-speed char	acteristic
$q \in \{q_1, q_2, q_3, q_4, q_5\}$	transmission state	
$R_{q_i}, i = 1,, 5$	corresponding gear ratios	5
R_{fin}	rear gear ratio	
<i>r</i> _{wheel}	wheel radius	1
F_b	brake force	

Cruise Control

- Continuous control throttle u and brake F_b are chosen so that
- $\frac{R_{q_i}R_{fin}}{r_{wheel}}f_{eng}(\omega)u F_b = cv^2 + M_{veh}g\sin(\alpha) + M_{q_i}\left[k_P(\overline{v} v) + k_I\int(\overline{v} v)dt\right]$

 $\omega \ge \omega_{\mu}$

 $\omega < \omega_{l}$

 q_3 , gear3

 $\ddot{v} + k_P \dot{v} + k_I v = k_I \overline{v}$

 $\omega = \frac{R_{q_3}R_{fin}}{v}$

 r_{wheel}

 $\omega < \omega_1$

- a standard feedback linearized design with PI controller.
- notice that control depends on the discrete state.

 $\omega \ge \omega_{\mu}$

 $\omega < \omega_1$

 q_2 , gear2

 $\ddot{v} + k_P \dot{v} + k_I v = k_I \overline{v}$

 $\omega = \frac{\overline{R_{q_2}} R_{fin}}{v}$

 r_{wheel}

• Discrete control - ad hoc gear shift strategy.

 q_1 , gear1

 $\vec{b} + k_P \dot{v} + k_I v = k_I \overline{v}$

 $\omega = \frac{R_{q_1}R_{fin}}{v}$

r _{wheel}

 $\omega \ge \omega_{\mu}$

 $\omega < \omega_{stall}$

 $\omega < \omega_1$

Cruise Control Issues

- Choice of shift thresholds
 - Wide spread implies large speed deviation before shift
 - Narrow spread opens possibility of excessive shifting, even chattering
- Does not explicitly consider throttle and brake limits
- It must be verified that the engine does not stall or exceed red line

Simulating Hybrid Systems with Stateflow/SIMULINK

Stateflow

- Stateflow is a Simulink toolbox
- Provides a graphical means to incorporate discrete event process into Simulink
- Based on the concept of statecharts
 - Harel, D., Statecharts: A Visual Formalism for Complex Systems.
 Science of Computer Programming, 1987. 8: p. 231-274.
 - Has evolved to represent an implementation of UML

Simulating Hybrid Systems in Stateflow/SIMULINK

Stateflow: Action Language Categories

Bouncing Ball

- High power drives in vehicle applications
 - Startup (precharge)
 - Normal (current regulation)
 - Shutdown (bleed)
- Background (Boost converters)
 - M. Senesky, G. Eirea, and T. J. Koo, "Hybrid Modeling and Control of Power Electronics," in *Hybrid Systems: Computation and Control*, vol. 2623, *Lecture Notes in Computer Science*. New York: Springer-Verlag, 2003, pp. 450-465.
 - P. Gupta and A. Patra, "Hybrid Sliding Mode Control of DC-DC Power Converters," presented at IEEE Tencon 2003, Bangalore, 2003.

