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Optimal Control of hybrid Systems: Background
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Algorithm," presented at NOLCOS 04, 2004.



Control System Design: Finite Horizon 
Optimization

 We seek controls that are optimal when viewed over a 
finite time period
 Optimal control typically varies over the time period
 Moving Horizon - sometimes referred to as model predictive 

control, receding horizon control, or finite look-ahead control
 Periodic – reinitialize control when final time is reached

 We want feedback controls
 The feedback control should be explicitly computed off-line

 In the linear case with quadratic cost it is known that 
receding horizon feedback controls can stabilize a 
desired equilibrium



Control via Dynamic Programming: the principle of 
optimality 
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The Principle of Optimality
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Problem Definition
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Summary of DP Computation
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From each state at i=N-1 compute
the optimal control for this stage.
The optimization is carried out with
constraints: mixed integer
inequalities and dynamics.

For computational purposes
discretize the state space.



Summary of DP Algorithm
 Separate the inequalities into binary and real sets

 binary equations contain only binary variables, real equations can 
contain both binary and real variables.

 Use the Mathematica function Reduce to obtain all 
feasible solutions of the binary inequalities. 

 if there are N binary variables then there are 2N combinations to be 
evaluated if one were to attempt to optimize by enumeration. Reduce 
identifies the few feasible solutions very rapidly.

 Use Reduce to solve the real inequalities for the real 
variables for every feasible combination of binary 
variables. 

 Many of these combinations of binary variables will not admit feasible 
real variables, so they can be dropped.

 Enumerate the values of the cost for each feasible pair of 
binary and real variables and select the minimum.



3-Bus Example -Aggregate Load with 
Induction Motors
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• H. Ohtsuki, A. Yokoyama, and Y. Sekine, "Reverse Action On-Load Tap Changer in Association with Voltage Collapse," 
IEEE Tansactions on Power Systems, vol. 6, pp. 300-306, 1991.
• M. K. Pal, "Voltage Stability: Analysis Needs, Modelling requirement, and Modelling Adequacy," IEE Proceedings - C, 
vol. 140, pp. 279-286, 1993.
• L. Bao, X. Duan, and T. He, "Analysis of Voltage Collapse Mechanisms in State Space," IEE Proceedings - Generation, 
Transmission and Distribution, vol. 147, pp. 395-400, 2000.
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3-Bus Cont’d
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Transition Dynamics
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IP Formulas: Transition Dynamics
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IP Formulas: Optimization Logical 
Constraint
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IP Formulas: Load Shed Parameter
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Feedback Policy ~ Post Fault
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If load is cyclic, could wind up shedding, adding, shedding, 
…One way to minimize this is through transition delay.



Example:  Induction Motor with UPS
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IM-UPS Equations
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IM-UPS Control problem
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Logical specifications are key to setting up the optimization problem -



Optimal Control & Transition Diagram
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The optimal control takes the form of  a lookup table 
detailing the battery and slip conditions under which 
transitions will occur from any given mode.



Feedback Policy ~ Post Fault
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The figure shows the optimal switching strategies for 3 selected values of the 
continuous state. 
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