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Optimal Control of hybrid Systems: Background

e Discrete event systems
K. M. Passino and P. J. Antsaklis, "On the Optimal Control of Discrete Event Systems," presented at Conference on Decision
and Control, Tampa, FL, pp. 2713-2718, 1989.
R. Kumar and V. Garg, "Optimal Supervisory Control of Discrete Event Dynamical Systems," SIAM Journal of Control and
Optimization, vol. 33, pp. 419-439, 1995.
R. Sengupta and S. Lafortune, "An Optimal Control Theory for Discrete Event Systems," SIAM Journal of Control and
Optimization, vol. 36, pp. 488-451, 1998.

e Hybrid systems (deterministic)
M. S. Branicky, V. S. Borkar, and S. K. Mitter, "A Unified Framework for Hybrid Control: Model and Optimal Control Theory,"
IEEE Transactions on Automatic Control, vol. 43, pp. 31-45, 1998.
H. J. Sussmann, "A maximum principle for hybrid optimal control problems," presented at Conference on Decision and Control,
Phoenix, AZ, pp. 425-430, 19909.
A. Bemporad and M. Morari, "Control of Systems Integrating Logic, Dynamics, and Constraints," Automatica, vol. 35, pp. 402-
427, 1999.
C. Cassandras, D. Pepyne, and Y. Wardi, "Optimal Control of a Class of Hybrid Systems," IEEE Transactions on Automatic
Control, vol. 46, pp. 398-415, 2001.
M. Alimar and S.-H. Attia, "On Solving Optimal Control Problems for Switched Hybrid Nonlinear Systems by Strong variations
Algorithm," presented at NOLCOS 04, 2004.
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Control System Design: Finite Horizon
Optimization

e \We seek controls that are optimal when viewed over a
finite time period
Optimal control typically varies over the time period

Moving Horizon - sometimes referred to as model predictive
control, receding horizon control, or finite look-ahead control

Periodic — reinitialize control when final time is reached
e \We want feedback controls

The feedback control should be explicitly computed off-line
e In the linear case with quadratic cost it is known that

receding horizon feedback controls can stabilize a
desired equilibrium




Control via Dynamic Programming: the principle of
optimality

'J( Zk ogk( k"uk ))

The Principle of Optimality : if a trajectory beginning at
k =0 Is optimal, then that portion of the trajectory beginning
atany k =1,0<1 <N —11is optimal.

J; (x;) denotes the optimal cost of a trajectory beginning in
state x. at time k =1. Then

4% a)=minfo s (6  (62))+ 97 (%)]




Problem Definition

Xen = T (%6, de,z,u ), k=01,...,N-1
h(X, 3., Z Uy, 81,y 1,2, ) <0
X, the continuous state (real numbers)
o, the discrete state or "mode" (binary numbers)
u, the control, may be composed of discrete and continuous elements
d, discrete (binary) auxiliary variables
z, continuous (real) auxiliary variables

A control policy is: 7 ={ (%5, 8, ), £ (X8, ) s iy s (X1 Sy 1 )} sUCh that U, = g4, (X, 6, )
The optimal policy ninimizes the cost:

T3 3. (%:6) = O (%00 60)+ D00 G (%o e (%06)




Summary of DP Computation

From each state at i=N-1 compute

the optimal control for this stage.

The optimization is carried out with
Jea (X1, 64)=min {gkfl(xkfl,dkfl,ukfl)+ Ji (X, S )} constraints: mixed integer

uk—l(xk—l‘vé‘k—l)

Ug 1. Xy O_1€C inequalities and dynamics.

*

‘]Nfl(XNfl’é‘Nfl): mln {ngl(XNfl’é‘Nfl’uNfl)_FJ;\cl (XN’§N )}

i-1n-10u-4)
X:QanA ./ J;(x,é)ng(xﬁ)

[ ) [ ] [ ) [ ) [ )
7 >
i=0 i=k-1 i=N-1 i=N

. For computational purposes
: 2 discretize the state space.
Drexel
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Summary of DP Algorithm

Separate the inequalities into binary and real sets

binary equations contain only binary variables, real equations can
contain both binary and real variables.

Use the Mathematica function Reduce to obtain all
feasible solutions of the binary inequalities.

if there are N binary variables then there are 2N combinations to be
evaluated if one were to attempt to optimize by enumeration. Reduce
identifies the few feasible solutions very rapidly.

Use Reduce to solve the real inequalities for the real
variables for every feasible combination of binary
variables.
Many of these combinations of binary variables will not admit feasible
real variables, so they can be dropped.
Enumerate the values of the cost for each feasible pair of
binary and real variables and select the minimum.



3-Bus Example -Aggregate Load with
Induction Motors
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» H. Ohtsuki, A. Yokoyama, and Y. Sekine, "Reverse Action On-Load Tap Changer in Association with Voltage Collapse,"”
IEEE Tansactions on Power Systems, vol. 6, pp. 300-306, 1991.

» M. K. Pal, "Voltage Stability: Analysis Needs, Modelling requirement, and Modelling Adequacy," IEE Proceedings - C,
vol. 140, pp. 279-286, 1993.

L. Bao, X. Duan, and T. He, "Analysis of Voltage Collapse Mechanisms in State Space," IEE Proceedings - Generation,
Transmission and Distribution, vol. 147, pp. 395-400, 2000.
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3-Bus Cont’d

Optimal control problem (case: tap fixed n =1)

Determine
- field voltage E [0, 2] and
- amount of load shedding 7 e {0,0.4,0.8} needed to keep load bus voltage V, close to 1.

- no cost is attributed to E, so (V, =1A0<E <2)Vv(E =2)
- cost Is attributed to dropping load, so choose 7 to minimize

3= 3 e ()1 5 (0

System equations:

a/n 1 Rs X, s°
V, = E, c=(1- = | d=(1- r
S R e KR e )




Transition Dyn amics Can impose dwell

time

Load Shed Level O Load Shed Level 1 Load Shed Level 2
4




IP Formulas: Transition Dynamics
1-06 -0 -0 =20, -1+6 +0 +o =0
Op o 03 ] d; 03
1-6.,-6.-0.,2>20, -1+6,+06.,+6.,. >0
Op op) ds Ou 0, 03
1—5q +0.,-0. 20, 1-6. +6,-0. =20
h o St Q2 o 51
1—5q +0,—-0. 20, 1-6, +6,.-0. =20
2 2 52 Y a2 S2
—0, +0 . +0, 20
1 d, 1
-0 +06,.+0, 20, -0 +06_,+0, 20
a2 O3 2 O3 O3 2
0£5q 31,0§5q2 31,0£5q3£1
O£5q+£1,035q+31,035q+§1

0<5 <10<8 <1




IP Formulas: Optimization Logical

Constraint

L=V,=1A0<E<2)v(E=2)

3-d,-E>0, 1-d,+E>0,

-2d, +V, >0,

/ Excitation

-2d,+E >0

-2+d,+V, <0

0<d,d, <1, O0<E,\, <2

v,

a/ln

B Je? 442

E

/

Network
equation




IP Formulas: Load Shed Parameter

£=(0 =>n=0)n1(q, >n7n=04)A(q; =>1==0.8)

—04d,+n7n>0 -08d.+7=0
-1+d,+7<0 -1+06d,+n7<0 -1+0.2d.+7<0
d3—5q1+20 d4—5q2+20 d5—5q§20
0<d,,d,,d; <1
0<np<l




Feedback Policy ~ Post Fault

G

Oz

U

If load is cyclic, could wind up shedding, adding, shedding,
...One way to minimize this is through transition delay.




Example: Induction Motor with UPS

E, S,
>
I —jaln S—
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IM-UPS Equations
0="P, -b,VV,sing, —g,,V, — 9,V,V, cos(8, — 6, ) —b,,V,V, sin (6, - 6,)
0= P, — g,V — 0,V,V, cos (6, —6,)—h,V,V,sin (6, -6,) network
0=Q, +b,VV, cosd, +b,,V,” +b,V,V, cos(6, —6,)— g,,V,V, sin (6, - ;)
0=Q, +by,Vy +b,V,V, cos(8, —6,)—g,,V,V,sin(6, - 6;)
P,=-P,Q=0P=-P,Q=-Q,V,=E

6 =0, disconected, c'yzlé,vb = f(0),0<0 <1, charging, battery

V, . .
o =———V, =const., dischargin
CR '3 ging

Vv

P =(1-7 )R (l+o/T+2v),Q =(1-7)Q,(1+0/T +2v) load
+ Induction motor




IM-UPS Control problem

Logical specifications are key to setting up the optimization problem -

Control variables:

continuous: E (k) field voltage 0 < E <2

discrete: 77, (k) amount of load shedding 7, <{0,0.4,0.8]
Performance goals:

V, €[0.95,1.05] and V, €[0.9,1.1]
Strategy:

(a) choose E to control terminal voltage V, impose logical

conditions (V, =1A0<E <2)Vv(E =2)
(b) choose 7, to minimize

3= (Ve (k)= ] () +20(s, +6, )
f1 V<085 f1V,>105
_{o V,2095 % |0 V,<1.05

Vs




Optimal Control & Transition Diagram

The optimal control takes the form of a lookup table
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oattery -
Constant1

slip -

detailing the battery and slip conditions under which
transitions will occur from any given mode. \
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Feedback Policy ~ Post Fault

se{l .2, .3, 4, .5 oe{25 5 .75 1} q €{l,2,3,4,5,6,7},
Discrete state = 140

s=0.1 low power s=03 medium power
o =0.25 low battery charge o =0.5 medium battery charge

© e
L ACIO O ICIO

s=0.5 high power
o =1.0 high battery charge

IO The figure shows the optimal switching strategies for 3 selected values of the
Drexel continuous state.
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