MEM 636 THEORY OF NONLINEAR CONTROL - PROBLEM SET 1

PROF. KWATNY

Problem 1. For each of the scalar systems:

(1) $\dot{x} = 2 - 3x + x^2$

(2) $\dot{x} = -40x + 40x^2 + 10x^3$

Determine all of the equilibrium points and evaluate their stability.

Problem 2. Consider the system

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_1^3 - cx_2$

- (1) Show that the origin is an equilibrium point.
- (2) Linearize at the origin and determine if the origin is linearly stable, asymptotically stable.
- (3) Analyze the nonlinear system and determine if the origin is stable, asymptotically stable. If so, estimate the region of attraction.

Problem 3. Investigate the stability of the origin, including estimates of the domain of attraction, of the following systems:

- (1) $\ddot{x} = x \operatorname{sat}(2x + \dot{x}).$
- (2) $\ddot{x} + \dot{x} |\dot{x}| + x x^3 = 0.$