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Preface

During the past decade we have had to confront a series afotdesign problems —
involving, primarily, multibody electro-mechanical sgsts — in which nonlinearity
plays an essential role. Fortunately, the geometric thebnonlinear control sys-
tem analysis progressed substantially during the 198098sdproviding crucial
conceptual tools that addressed many of our needs. Hovasvany control systems
engineer can attest, issues of modeling, computation, mptementation quickly
become the dominant concerns in practice. The problemstefeist to us present
unique challenges because of the need to build and margpedatplex mathemat-
ical models for both the plant and controller. As a resutinglwith colleagues and
students, we set out to develop computer algebra tools tiitdée model building,
nonlinear control system design, and code generationatter for both numerical
simulation and real time control implementation. This b@mkn outgrowth of that
continuing effort. As a result, the unique features of thelbimcludes an integrated
treatment of nonlinear control and analytical mechanickaeet of symbolic com-
puting software tools for modeling and control system desig

By simultaneously considering both mechanics and contechahieve a fuller
appreciation of the underlying geometric ideas and coostnus that are common to
both. Control theory has had a fruitful association withlgiigal mechanics from its
birth in the late 19th century. That historical relatiomshas been reaffirmed during
the past two decades with the emergence of a geometric tfarargnlinear control
systems closely linked to the modern geometric formulaticanalytical mechanics.
Not surprisingly, the shared evolution of these fields haalfgded the needs of tech-
nology. Today, mechanicians and control engineers areghtdagether in fields like
space systems engineering, robotics, ground and seaee€leisign, and biomechan-
ics. Consequently, our integrated approach provides assgtbf models and control
design examples that are of contemporary and practicakisite

Control theory would be quite sterile without concrete aeetions to the nat-
ural world. The process of modeling is just as central to Idr@ngineering as is
control theory itself. A control system design project donesbegin when a control
engineer is handed a model; it begins at the onset of modalfiation.
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Our main thesis is that a full appreciation of the meaning sigdificance of
either theory benefits by developing their connection andgptying them to mean-
ingful examples. The capability to do the latter requiregpsrting computational
tools. In this book, we highlight and exploit the computatibinfrastructure com-
mon to both modern analytical mechanics and nonlinear obrio achieve the full
benefits of the concepts now available, we need to exploibsjimas well as nu-
merical computing techniques. However fortuitous it mayibés only during the
past decade that symbolic computing technology (or complgebra) has matured
to the level of serious engineering application.

We emphasize symbolic computing because it is essentiakdoking with
nonlinear, parameter-dependent systems and it is a ilatiew tool for engineers.
Symbolic computing does not replace numerical computingupplements and en-
hances it. Recognizing the distinctions between symbalitraumerical computing
and how best to integrate them is a significant challenge. Wese symbolic com-
puting for several purposes:

1. to perform basic mathematical operations (like impletaeroordinate transfor-
mation or compute a Lie bracket),

to build explicit mathematical models,
to simplify models (e.g., via Taylor linearization or syratry reduction),

to generate numerical simulation code,

o &~ 0N

to implement nonlinear control constructions (such aspate an inverse system
or perform feedback linearization),

6. to generate numerical code for implementing contrallers

In this work we employ examples of various levels of complekiom sim-
ple examples that illustrate a theoretical point in a transpt way to examples with
detailed models for which results are too complex to exlibgrint, but can never-
theless be manipulated using a computer. We will providetes of the latter type
using electronic media, specificalMathematicanotebooks. The point is that when
working with engineering grade models it is not reasonableigually examine or
manually manipulate symbolic expressions by hand. Howévierpossible to work
effectively with such expressions using a computer.

Many of us were attracted to control systems engineeringusit enables a
broad exposure to numerous areas from traditional engintedisciplines to com-
puter and information sciences and mathematics, to ecasptiology, and even
social sciences. Indeed, it would be quite a challenge todmdngineer in the field
for more than a few years without cross-disciplinary exgece. While, in recent
years, the need for a multidisciplinary approach has beetedoas generally nec-
essary for technological progress, it has always been thgtinvthe control field.
Because of the extraordinary scope of control applicatioastrol engineers have
traditionally sought out the unifying principles that makpossible to function cre-
atively in a varied and complicated environment.
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From its emergence as a coherent discipline, control eagimghas involved
a high level of abstraction. Mathematics, perhaps the al@nunifying principle,
and certainly the most successful language invented by malatify and commu-
nicate complex ideas without ambiguity, has been a cormeesdf its development.
In writing this book, we had to make choices to balance comgetbjectives. One
of the most difficult was to establish a correct level of mathécal abstraction and
rigor. We view ourselves as engineers, not mathematicersijt is from that point
of view that we came to a judgment. Mathematicians may debigtsour arguments
lack rigor and some engineers may find our discussion toodbitrowever, we can
judiciously sacrifice rigor for accessibility, but we oftaeed precise statements to
clearly identify the range of applicability of a techniqueto establish reliable ma-
chinery for computing.

We are indebted to many students and colleagues whose @@tans with
us on various research and engineering projects contdlui®ountless ways to the
writing of this book. In particular, we would like to acknosdge Dr.Reza Ghanadan
of Bell Laboratories, Mr. Chris LaVigna, Dr. Carole Teol&d Mr. Eric Salter, all
of Techno-Sciences, Inc., for their contributions to theedepment and application
of theProPac software package, and to Mr. Gaurav Bajpai of Drexel Unitgfer
his careful reading of the manuscript.

Philadelphia, Pennsylvania Harry G. Kwatny
College Park, Maryland Gilmer L. Blankenship
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1

Introduction

As inexpensive processors have become increasingly dbiguin all manner of
physical devices, the opportunities and demand for usiegntto improve func-
tionality and performance has pushed control design tdoggoto new limits.
While ‘emergent’ application areas like robotics, bion@adiand micro-electro-
mechanical systems bring with them their special requirgmdraditional fields
like the aerospace, automotive, marine and process inesistave also expanded
the role of automation. In many of the new control problemsaatl confrontation
with nonlinearity is unavoidable.

Notwithstanding the advances in our understanding of neali dynamical behavior
and in nonlinear control theory itself, the state of conttesign for nonlinear sys-
tems must be considered embryonic as compared to that af lgystems. Thisis in
part because the possibilities of nonlinear behavior areasband varied, but also
because of the lack of tools for working efficiently with nim@lar problems of even
modest engineering scale.

The control design process, while not rigidly structurédags includes three crucial
elements:

1. model building
2. control design

3. control implementation

A typical control design project might follow the processtlire flow chart of Fig-
ure (1.1). Modeling is central to formulating the controkig problem as well as
solving it. In our view it is an integral part of control systedesign. The diagram
also accurately suggests that model building, controbgtesind control implementa-
tion may be repeated several times during the course of agir@learly, tools that
facilitate and automate these processes are necessary.
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System Description Detailed
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i Control
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Project ) )
Complete Bass Testing le—  Implementation

Fig. 1.1: A typical design project flow chart.

Primarily for these reasons this book addresses both nmapatid control and ex-
ploits symbolic computing as a means for minimizing the fpdioalculations, ex-
pression manipulaton and coding that would otherwise beired. A software tool-
box, ProPac, is included with the book. It is a package to be used withMla¢he-
matica® computer algebra system. More will be said about the soéeer.

1.1 Scope and Organization

This book provides an integrated treatment of geometridimear control and ana-
lytical mechanics. Their common geometric foundation dr&recurrent cross fer-
tilization between the two fields is certainly justificatienough for doing so. In fact,
the two subjects are so well matched that in describing oiséritipossible to resist
drawing examples from the other. However, not the least mapd factors motivat-
ing us to unify this material derive from the practical calesiations described above.
Control system design simply can not be divorced from modeli

1For information abouMathematicavisit the web site www.wolfram.com
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Chapters 2 and 3 deal with important preliminary materiabh&rt summary of or-

dinary differential equations including basic Lyapunoatslity concepts is given in

Chapter 2. Our treatment of these topics is brief and focols¢isose items of imme-
diate use. There are many excellent texts for the interestater to gather additional
information. A somewhat more detailed introduction toeliéfintial geometry is pro-
vided in Chapter 3. Yet, we are still selective in our choi€enaterial from a vast

literature, including only what we think is essential backgnhd. Basic calculations
usingMathematicaandProPacare introduced.

Our treatment of analytical mechanics is based on the Hamilagrange formula-
tion. It begins with a general construction for the kinematirameters of multibody
tree structures in Chapter 4. System configuration coorelinare defined in terms
of a natural and general parameterization of the indivighiats. Formulas that de-
fine node inertial positions and velocities in terms of camfigion coordinates and
generalized quasi-velocities are derived. These calonktare implemented in the
accompanying software. The dynamics of tree structuresedlsas systems with
closed loops are developed in terms of Poincaré’s form girduage’s equations in
Chapter 5. Closed loops are treated by adding constraiats tmderlying tree. Con-
straints may be algebraic relations among the configuradoiales and/or holo-
nomic or nonholonomic differential constraints. Constiuecprocedures for deriving
the equations are presented and, again, implemented irctenpanying software.
Examples illustrate the assembly of models of underseaheshirobotic systems,
ground vehicles and other systems.

Nonlinear control is the subject of Chapter 6. Here, we disamooth affine con-
trol systems. Basic concepts of nonlinear controllabdgityd observabilty and local
decompositions via coordinate transformation are dismlifisst. In terms of con-

trol system design the focus of this book is on feedback timation and dynamic

inversion. Exact (state) linearization as well as partiapit-output) linearization

are fully described. The chapter closes with a discussiaroofinear observers. Of
course, computation is a key isstRroPac functions that implement the required
calculations are introduced and illustrated.

Feedback linearization methods are strongly model basédng, in fact, on direct

cancellation. Consequently, robustness is a major corecermwe devote the next two
chapters to robust control. Chapter 7 addresses smoothtifitation of feedback

linearizing controllers. It begins with a discussion of hawcertainty propagates
through the reduction to normal form of a nominal system. fbgon of matched

and nonmatched uncertainty is developed. Then Lyapun@sigd for matched un-
certainty and robust stabilization via backstepping foicstriangular nonmatched
uncertainty are described. Adaptive control methods fetesys with uncertainty
that can be parameterized are then presented. Once adaigreaools that imple-

ment the required calculations are described and illesirat

Chapter 8 deals with variable structure control systemgihedihe view of variable
structure control as a nonsmooth, robust variant of inpupat linearization is em-
phasized. The chapter begins with a general discussiorsobdiinuous dynamics
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including a formulation of Lyapunov stability analysis imat context. Methods for
sliding mode and reaching control design are presenteditétimg reduction via
regularizaton and other methods are described. The inherenstness of variable
structure controls with respect to matched uncertaintgtistdished and a backstep-
ping method is described for strict triangular nonmatchedeutainty. Supporting
software is illustrated. The method also applies to a clas®osmooth plants that
includes a variety of discontinuous friction models andeotso-called ‘hard’ non-
linearities. Examples are given.

1.2 Theme Problems

A new feature in the second edition is the inclusion of themablems. We have
chosen three areas in which the methods and tools descriipedhave been applied.

1.2.1 Wheeled Vehicles

We examine vehicles with a variety of configurations and mggions. The simplest
is a vehicle with two active drive wheels and a third idler whe&hich stabilizes the
platform. A more complex two wheel vehicle does not have &righeel so requires
balancing. In both of these examples the drive wheels madeiraes perfect rolling
without sideslip. Variations of a four wheel vehicle areoatensidered. Two and four
wheel drive with front wheel steering and both front and st@éring are considered.
Both perfect rolling and pneumatic tire models are employéaally, a four wheel
tractor with trailer and pneumatic tires is examined.

The treatment includes model development, dynamical esuiicluding stability
and bifurcation analysis, and control analysis.

Two Wheel Vehicles
Four Wheel Vehicles
Vehicles With Trailers
1.2.2 Aircraft

1.2.3 Electric Power Networks
1.3 Software

Most of the examples in this book have been developed usigdfiware package
ProPacdeveloped by Techno-Sciences, Inc., Lanham, B@Pac?2.0 is included
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with this book. It is aMathematicapackage that provides a set of symbolic com-
puting tools for modeling multibody mechanical systems a4l as for linear and
nonlinear control system design and analysis. There aidlertintroductory books
and tutorials available fdvlathematicaMany of these are identified on the Wolfram
web site.

The ProPac CD contains a set of tutorial and application notebooks.s€&hia-
clude Dynamics.nb and Controls.nb which introduce thedasideling and con-
trol tools available ifProPac On-line help is available througllathematica'Help
Browser. For more information, notebooks and other docusnenit the web site:
www.technosci.com.

UsingProPacrequires version 3 or later ddathematicaThat is all that is required to
develop the equations of motion, for conducting numericatfations withinMath-
ematica and building the C source code required for simulationsIMUBLINK 2.
Use of the latter requires MATLAB/SIMULINK and a C compiles ecommended
by the MathWorks for compiling MEX-files on the user’s platfa Functions in
ProPacgenerate C-code that compiles as SIMULINK S-functionshla tvay mod-
ules for the plant and controller are easily generated folugion in SIMULINK
simulations. Controllers, with embellishments like fifteetc., can be downloaded
into DSP boards via MATLAB’s Real Time Workshop. The setujllisstrated in

Figure (??).

1.3.1 Installing ProPac

To installProPag follow the two step procedure:

Step 1:Put the entire ProPac directory in Mathematica’s Applaragidirectory. For
the PC the full path is ordinarily

C:\Program Files\Wolfram Research
\Mathematica\7.0
\AddOns\Applications\

Step 2: Start Mathematica and rebuild the Help index. The lattercisoeplished
with the following simple procedure. From the main menu d®dielp=- Rebuild
Help Index

Once this is done, on-line help is available. In the Help Bremselect Add-ons and
then TSi ProPac.

The Mex folder contains 3 C-source files that need to be irdughen compiling
MATLAB/SIMULINK MEX files. These may stored in any convenidocation, but
must be available at the time of compilation.

2for information about MATLAB/SIMULINK visit the web site ww.MathWorks.com
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4 N\
Model .|  Control
Building "1 Design
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Code Code
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Fig. 1.2:ProPacis aMathematicgpackage with links to MATLAB/SIMULINK.

1.3.2 Package Content

ProPacconsists of seven packages: Dynamics, ControlL, Cont@BgTools, MEX-
Tools, NDTools, and VSCTools. Oné¥oPacis loaded all of the functions in these
packages are available for use and the appropriate packagjée automatically
loaded as required. In general, a user does not have to beroeacabout loading
any particular package. To lo&loPacsimply entex<ProPac ~ (most of the pack-
age functionality is available in Mathematica 2.2, entekProPac™ Master™ ).

Dynamics contains the model building functions and Cohtrerhd ControlN the

linear and nonlinear control analysis functions, respebti GeoTools includes basic
functions used in differential geometry calculations. MIDIE contains supporting
functions for working with nondifferentiable nonlineae and VSCTools contains
functions for variable structure control. MEXTools incksifunctions for creating
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C-code files for both models and controllers that compile-Asn8tions for use with
MATLAB/SIMULINK.

The Tables in the Appendix contain a brief summary of manyefavailable func-
tions. More details and numerous examples can be found indlpebrowser and in
the notebooks.






2

Introduction to Dynamical Systems

2.1 Introduction

In this chapter we briefly review some basic material abouatinear ordinary differ-
ential equations that is important background for lateptéis. After a preliminary
discussion of the basic properties of differential equationcluding the existence
and uniqueness of solutions, we turn to a short discussictadbility in the sense
of Lyapunov. In addition to stating the most important threns on stability and in-
stability we provide a number of illustrative examples. Astpof this discussion
we introduce Lagrangian systems — a topic to be treated at tgegth later. This
chapter is concerned exclusively with dynamical systeragfgosed to control sys-
tems) and with smooth systems (as opposed to systems ttiatrcoandifferentiable
nonlinearities). Those topics will be treated in later dieag It is presumed that the
material discussed is not new to the reader and we provideashort summary
of those elements considered immediately relevant. Forra emmplete discussion
many excellent text books are available. We reference a puaflbthem in the sequel.

2.2 Preliminaries

A linear vector space - over the fieldR is a set of elements called vectors such
that:

1. for each paix,y € 7, the sumx+yis definedx+ye ¥ andx+y=y+x.
2. there is an element ‘0’ itf” such that for everx € 7, x+ 0= x.

3. for any numbem € R and vectorx € ¥ scalar multiplication is defined and
axe V.

4. for any pair of numbera,b € Rand vectorx,y € ¥: 1-x =X, (ab)x = a(bx),
(a+b)x=ax+ bx
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A linear vector space is@ormed linear spac# for each vectox € ¥ - there corre-
sponds a real numbék|| called thenormof x which satisfies:

1. x| >0,x#0, [|0] =0
2. [[x+yll < I+ |yl (triangle inequality)
3. JlaX| =|a| ||X|| Vae R, x€ ¥

When confusion can arise as to which space a norm is defined neplace|e|| by
lofly-

A sequencdxc} C ¥, ¥ anormed linear spacepnvergeso x € ¥ if
lim ||jx«—x|| =0
k—c0

. A sequencexg} C ¥-is aCauchy sequendéfor every € > O there is an integer,
N(g) > 0 such that|x, —Xm|| < £ if n,m> N(&). Every convergent sequence is a
Cauchy sequence but not vice versa. The spacecenspleteif every Cauchy se-
qguence is a convergent sequence. A complete normed linece spcalled 8anach
space .

The most basic Banach space of interest hereirdisnensionaEuclidearspace, the
set of alln-tuples of real numbers, denot&l. The most common types of norms
applied toR" are thep-norms, defined by

1
Xl = (Xa/P+ -+ x| P, 1< p<oo

and

X = max |x;
1%l ie{1’_‘_’n}l><||

An g-neighborhoodf an elemenx of the normed linear spackg is the setS(x, €) =
{yeV||ly—x|| < €}. AsetAin ¥ is openif for every x € A there exists arz-
neighborhood ok also contained i\. An elementix is alimit point of a setA C ¥
if eache-neighborhood ok contains points irA. A setA is closedif it contains all
of its limit points. Theclosureof a setA, denotedA, is the union ofA and its limit
points. A setAis densdn 7 if the closure ofAis 7.

If Bis asubset o, Ais a subset dR, and{V,,a € A} is a collection of open subsets
of ¥ such thatUacaVa D B, then the collectio, is called anopen coveringf B.

A setB is compactif every open covering oB contains a finite number of subsets
which is also an open covering & For a Banach space this is equivalent to the
property that every sequenér,},x, € B, contains a subsequence which converges
to an element oB. A setB is boundedf there exists a number> 0 such thaB C

{xe ¥ ||Ix| <r}. AsetBin R"is compactif and only if it is closed and bounded.

A function f taking a setA of a spaceZ” into a setB of a space? is called a
mappingof A into B and we writef : A — B. A is thedomainof the mapping and
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B is therangeor image The image off is denotedf (A). f is continuousf, given
€ > 0, there exist® > 0 such that

x=y <d=[f()—fyll<e

A function f defined on a seA is said to beone-to-oneon A if and only if for
everyx,y € A, f(x) = f(y) = x=y. If f is one-to-one it has an inverse denoted
f~1. If the one-to-one mappin§ and its inverse ~1 are continuousf is called a
homeomorphisrof A ontoB.

SupposeZ” and¥ are Banach spaces ahd 2" — #'. f is alinear mapif f(aix;+
axy) = a1 f(x1) +axf(xp) for all x;,x, € 2" anday,a € R (or C). In general, we
can write a linear mapping in the foryn= Lx, whereL is an appropriately defined
‘linear operator.’ A linear mag is said to beboundedf there is a constarf such
that| f(x)||, < K||x|| 4 forallxe 2°. Alinear mapf : 2° — % is bounded if and
only if it is continuous. A linear map frorR" — R™ is characterized by am x n
matrix of real elements, e.g/= Ax. The ‘size’ of the matriXA can be measured by
theinduced p-nornfor gain) ofA

A,
1Al = = SupT
Xl
for which we write the following special cases

[All, = max Zl‘au

1<j<n
Al = 1/ Amax(ATA)

n
[[A]leo :lrg%;\au\

Here,Amax(AT A) denotes the largest eigenvalue of the nonnegative matex

f is said to beFreche) differentiableat a pointx € A if there exists a bounded linear
operatoi(x) mappingZ” — # such that for everjp € 2" with x+he A

I (x+h) — £(x) = L)h]| /I — O

as|lh|| — 0. L(x) is called the derivative of atx. If f: R" — R" is differentiable
atx thenL(x) = df(x) /dx, the Jacobian of with respect tox. If f andf~! have
continuous first derivatived, is adiffeomorphism

A function f : A— Bis said to belong to the cla€¥ of functions if it has continuous
derivatives up to ordek. It belongs to the clas8” if it has continuous derivatives
of any orderC® functions are sometimes calledhooth A function f is said to be
analyticif for eachxg € Athere is a neighborhodd of xg such that the Taylor series
expansion off atxy converges td (x) for all x e U.
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Consider a transformatioh : 2" — 27, where.Z" is a Banach space.c 2 is a
fixed pointof T if x = T(x). SupposéA is a subset of Banach spack andT is a
mapping ofA into a Banach spac#. The transformatioff is acontractionon A if
there exists a number9Q A < 1 such that

T =TI <Alx=Vyll, vxyeA

Proposition 2.1 (Contraction Mapping Theorem).Suppose A is a closed subset of
a Banach space?” and T: A— Ais a contraction on A. Then
1. T has a unique fixed poirtc A

2. If xp € A is arbitrary, then the sequende&n.1 = T(Xn), n=0,1,...} converges
to x.

3. % —X]| <A™M|x1—X0|| /(1—A), whereA < 1is the contraction constant for T
onA.

Proof: [33], page 5.

We will make use of the following important theorem.

Proposition 2.2 (Implicit Function Theorem). Suppose ER" x R" — R" has con-
tinuous first partial derivatives and(®,0) = 0. If the Jacobian matrixdF (x,y) /dx

is nonsingular, then there exists neigborhood¥\bf the origin in R, R™, respec-
tively, such that for eachg V the equation Fx,y) = 0 has a unique solution& U.

Furthermore, this solution can be given asg(y), i.e., F(g(y),y) =00onV, where
g has continuous first derivatives an(Dy = 0.

Proof: [33], page 8.

2.3 Ordinary Differential Equations

Existence and Uniqueness

Lett € R, x€ R", D an open subset 68"+, f : D — R" a map and lex = dx/dt. We
will consider differential equations of the type

x=f(xt), xeR,teR (2.1)

Whent is explicitly present in the right hand side of (2.1), thee #ystem is said
to be nonautonomousOtherwise it isautonomousA solution of (2.1) on a time
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intervalt € [to,t1] is a functionx(t) : [to,t1] — R", such thatx(t)/dt = f(x,t(t)) for
eacht € [to,t1]. We can visualize an individual solution as a gragt) : t — R". For
autonomous systems it is convenient to think @f) as a ‘vector field’ on the space
R". f(x) assigns a vector to each poi# R". Ast varies, a solution(t) traces a path
throughR". These curves are often callgdjectoriesor orbits. At each poinix € R
the trajectoryx(t) is tangent to the vectalr(x). The collection of all trajectories in
R" is called theflow of the vector fieldf (x). This point of view can be extended to
nonautonomous differential equations in which case théovédield f(x,t) and its
flow vary with time.

Example 2.3 (Phase portraitdfor two dimensional systems the trajectories can be
plotted in a plane. We will consider two systems, the Van d#siystem

[2] - [—0.8(1 —Xif)xz — xl]

and the damped pendulum

Kﬂ - [—xz/zxi sinxJ

Both of these systems are in so-called phase variable ftwafi(st equationy; = X,
defines velocity) so the trajectory plots are called phasgqits.

Van der Pol

In[1]: = f={x2,—x140.8 (1—x1"2)x2};x = {x1,x2};

In[2]:= graphs3=PhasePortrait  [f,x,15 {{-6,6,0.5},{—5,5,5}}];
In[3]:= Showgraphs3AxesLabel— {x1,x2},PlotRange— {{—4,4},{—4,4}},

DisplayFunction— $DisplayFunctioh

f={x,—x1+.8(1-x?) %} :x={x1,%};
graphs3= FlatteriTablgPhaseTrajecto(¥f,x, 15,s1,%),{s1, —6,6,0.5},{s, —5,5,5}]];

Damped Pendulum

In[4]:= f={x2,-Sin[x1] —x2/2};x = {x1,x2};
In[5]:= graphs2= PhasePortrait  [f,x,15 {{-20,20,0.5},{—3,3,3}}];
In[6]:= Showlgraphs2AxesLabel~ {x1,x2},PlotRange— {{—10,10},{—3,3}},

DisplayFunction— $DisplayFunctioh

The above examples illustrate several important propedienonlinear dynamical
systems. In both cases the flow directions are to the rightténupper half plane
and to the left in the lower half plane (recall = x»). Thus, it is easily seen that
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Fig. 2.1: Phase portrait for the Van der Pol equation.

X1

Fig. 2.2: Phase portrait for the damped pendulum.

trajectories of the pendulum ultimately converge to reshisacorresponding to the
pendulum hanging straight down. These have the propertyf{ia= 0. Any point

x € R" satisfying the conditiorf (x) = 0 is called arequilibrium point The pendu-
lum has an infinite number of equilibria spacedadians apart. Some of these are
attracting (the pendulum points straight down) and somellieg (straight up).

In contrast, all trajectories of the Van der Pol equatiorrapph a periodic trajectory.
Such an isolated periodic trajectory is callelihait cycle Some systems can exhibit
multiple limit cycles and they can be repelling as well asaating. Equilibria and
limit cycles are two types of ‘limit sets’ that are associhteith differential equa-
tions. We will define limit sets precisely below. As a mattérfarct, these are the
only type of limit sets exhibited by two-dimensional systemlore exotic ones, like
‘strange attractors’ require at least three dimensioaatstpaces.
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The existence and uniqueness of solutions to (2.1) depepdoprerties of the func-
tion f. In many applicationd (x,t) is continuous in the variablésandx. We will
impose a somewhat less restrictive characterizatioi. dVe say that a function
f : R" — R"is locally Lipschitzon an open and connected subBet R", if each
pointxg € D has a neighborhoddyp such that

1100 = f(x0)[| < L{Ix—xof (2.2)

for some constarit and allx € Ug. The functionf(x) is said to be.ipschitzon the
setD if it satisfies the (local) Lipschitz condition uniformly (il the same constant
L) at all pointsxg € D. It is globally Lipschitzf it is Lipschitz onD = R". We apply
the terminology ‘Lipschitz inc to functionsf(x,t) provided the Lipschitz condition
holds uniformly for each in a given interval oR.

Note thatC° functions need not be Lipschitz bGt functions always are. The fol-
lowing theorems relate the notion of Lipshitz with the prapef continuity.

Lemma 2.4.Let f(x,t) be continuous on X [a,b], for some domain O R". If
df/ox exists and is continuous on P[a,b], then f is locally Lipschitz in x on
D x [a,b].

Proof: (following Khalil [52], p. 77) Forxg € D there is armr sufficiently small that

Do={XxeR"||x—Xo||<r}cD

The setDg is convex and compact. Sindeis Ct, 8 f /dx is bounded ora, b] x Do.
Let Lo denote such a bound.Xfy € Dg, then by the mean value theorem there is a
point z on the line segment joiningy such that

of(t,2)

1150 - 1)l = | 252 0 )| < Lol

The proof of this Lemma is easily adapted to prove the folfai

Proposition 2.5.Let f(x,t) be continuous ofa,b] x R". If f is C* in x € R" for all

t € [a,b] then f is globally Lipschitz in x if and only &f /dx is uniformly bounded
ona,b] x R".

Let us state the key existence result.

Proposition 2.6 (Local Existence and Uniqueness).et f(x,t) be piecewise con-
tinuous in t and satisfy the Lipschitz condition

[f(xt) — fty)l <Llx—yi
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forallx,ye B, = {xe R"|[|x—xo|| <1} and allt € [to,t1]. Then there existsa> 0
such that the differential equation with initial condition

x=f(xt), X(to) =X € B

has a unique solution oveép, to + d].

Proof: ([52], p. 74)

A continuation argument leads to the following global esien.

Proposition 2.7 (Global Existence and Uniqueness).Suppose (x,t) is
piecewise continuous in t and satisfies

[f(xt) = fFE,y)II <L[x-yl
[f(%to)ll <h
for all x,y € R"and all t € [tp,t;]. Then the equation
x=f(xt), X(o)=Xo

has a unique solution ovéip, t1].

Continuous Dependence on Parameters and Initial Data

Let u € R¢ and consider the parameter dependent differential equatio
%= f(xt,1), X(to) =% (2.3)

We will show that a solutiox(t; tp, Xo, 1) defined on a finite time intervat,t;] is
continuously dependent on the parametemnd the initial datag, Xo.

Definition 2.8. Let X(t; 1o, &0, o) denote a solution of (2.3) defined on the finite in-
terval t € [to, t1] with p = g and Xto; to, &o, o) = &o. The solution is said tdepend
continuously oru at L if for any € > O there is ad > 0 such that such that for ajk
in the neighborhood W= { 1 € R |||t — po|| < &}, (2.3) has a solution(x; to, &, 1)
such that

[[X(t;to, é0, 1) — X(t;to, o, Ho) || < €

for all t € [to,t1]. Similarly, the solution is said tdepend continously oé at &g if
for any € > 0 there is ad > 0 such that such that for al in the neighborhood
X ={& eR|||& — & < &}, (2.3) has a solution(k;to, &, o) such that

[IX(t;t0, &, ko) — X(t;to, €0, Ho) || < €

forallt € [to,t1].
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The following result establishes the basic continuity mies of (2.3) on finite time
intervals.

Proposition 2.9.Suppose (x,t, i) is continuous in(x,t, 4) and locally Lipschitz in

X (uniformly in t andy) on [to,t1] X D x {||u — Ho|| < ¢} where DC R" is an open
connected set. Letto, &, o) denote a solution of (2.3) that belongs to D for all
[to,t1]. Then givere > O there isd > 0 such that

1€ —&oll <&, |4 —Holl <&

implies that there is a unique solutiofitxto, &, 1) of (2.3) defined on & [to,t;] and
such that

[X(t;to, &, 1) — X(t;to, 0, Mo) || < &, Vt € [to, 1]

Proof: ([52], p. 86)

We emphasize that the results on existence and continugylofions hold on finite
time intervaldto, t1]. Stability, as we shall see below, requires us to considetieas
defined on infinite intervals. We will often tacitly assumattithey are so defined.
Continuity issues with respect to both initial conditiomslgparameters for solutions
on infinite time intervals are quite subtle.

Invariant Sets

In the following paragraphs we shall restrict attentionatomomous systems
x=f(x), X(to)=xo (2.4)

In many instances the results can be extended to nonautarssystems by extend-
ing the nonautonomous differential equation with the addiof a new state,, 1 =1
to replace in the right side of the differential equation.

Let us denote by (x,t) the flow of the vector fieldf on R" defined by (2.4) i.e.
W(x,t) is the solution of (2.4) with¥(0,x) = x:
¥ (x1)
ot

=f(W(xt)), W(0,x)=x

Definition 2.10. A set of points $ R" is invariantwith respect to f if trajectories
beginning in S remain in S both forward and backward in time, if s€ S, then
Y(t,s) e SvteR.

Obviously, any entire trajectory of (2.4) is an invariant sguch an invariant set is
minimal in the sense that it does not contain any proper subisieh is itself an
invariant set.

A set S is invariant if and only i#/(t,S) — Sfor eacht € R.
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Nonwandering Sets

Definition 2.11. A point pe R" is anonwandering pointith respect to the flow if
for every neighborhood U of p and¥ 0, thereisat> T suchthat/(t,U)NU #0.
The set of nonwandering points is called thenwandering setand denoted?.
Points that are not nonwandering are callegndering points

The nonwandering set is a closed, invariant set. For proodsather details see,
for example, Guckenheimer and Holmes [32], Arrowsmith aled®[3] or Sibirsky
[94]. The detailed structure of the nonwandering set is gooitant aspect of the
analysis of strange attractors.

Obviously, fixed points and periodic trajectories belon@to

Limit Sets

Definition 2.12. A point g€ R" is said to be anw-limit point of the trajecton®(t, p)
if there exists a sequence of time valyest+o such that

lim ¥(t, p) =1

ty—ro0

g is said to be aro-limit point of W(t, p) if there exists a sequence of time values
tx — —oo such that

lim Y(t,p)=q

ty——o0

The set of alku-limit points of the trajectory through p is the-limit set, A, (p), and
the set of allar-limit points of the trajectory through p is thee-limit set, Aq (p).

Hirsch and Smale [41] remind us that w are the first and last letters of the Greek
alphabet and, hence, the terminology.

Proposition 2.13.The a-, w- limit sets of any trajectory are closed invariant sets
and they are subsets of the nonwandering®et

Proof: Hirsch and Smale [41] or Sibirsky [94] for closed, invarigets. That they
are subsets a® is obvious.

We can make some simple observations
1. ifr e Y(t,p), thenAy(r) = Aw(p) andAq(r) = Ag(p), i.€., any two points on
a given trajectory have the same limit points.

2. if pis an equilibrium point,i.ef(p) =0 orp=W(t, p), thenAy(p) =Aa(p) =
p.
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3. If Y(t, p) is a periodic trajectory\,(p) = NAa(p) = Y(R, p), i.e., thea andw
limit sets are the entire trajectory.

Finally, let us state the following important result.

Proposition 2.14.A homeomorphism of a dynamical system magsa- limit sets
into w-, a- limit sets.

Proof: [94].

2.4 Lyapunov Stability

2.4.1 Autonomous Systems

In the following paragraphs we consider autonomous difféaéequations and as-
sume that the origin is an equilibrium point:

x=f(x), f(0)=0 (2.5)

with f : D — R", locally Lipschitz in the domaii.

Definition 2.15. The origin of (2.5) is

1. astable equilibrium poinif for eache > 0, there is ad (&) > 0 such that

[(0)]| < &= [|x(t)|| < eVt >0

2. unstabléf it is not stable, and

3. asymptotically stablé ¢ can be chosen such that

X)) < &= Jimx(t) =0

The concept of Lyapunov stability is depicted in Figure 2.3

The next seemingly trivial observation is nontheless Uséfmong other things, it
highlights the distinction between stability and asymigtstability.

Lemma 2.16 (Necessary condition for asymptotic stability) Consider
the dynamical systesn= f(x) and suppose x 0is an equilibrim point, i.e., f0) =
0. Then x= 0 is asymptotically stable only if it is an isolated equililam point.
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Fig. 2.3: Definition of Lyapunov stability.

Proof: If x=0 is not an isolated equilibrium point, then in every neigtitomdU of
0 there is at least one other equilibrium point. Thus, thaatidrajectories beginning
inU tend to 0 ag — co. ]

For linear systems the following result is easily obtained.
Proposition 2.17.The origin of the linear systeri= Ax is a stable equilibrium point

if and only if
M| <N <oVt >0

Itis asymptotically stable if and only if, in additiofje™|| — 0, t — o

Proof: Exercise (choosé = £/N)

Positive Definite Functions

Definition 2.18. A function V: R" — R" is said to be

1. positive definitef V (0) = 0 and V(x) > 0, x# 0,

2. positive semidefinitéf V (0) = 0 and V(x) > 0, x# 0,

3. negative definitg€negative semidefinijeif —V(x) is positive definite (positive
semidefinite)

For a quadratic forrv (x) = X' Qx, Q= QT, the following statements are equivalent

1. V(x) is positive definite

2. the eigenvalues @ are positive real numbers
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3. all of the principal minors of) are positive

Ju1 Oi2
Oo1 Q22

|a11] > 0, >0,...,|Q >0

Definition 2.19.A C! function V(x) defined on a neighborhood D of the origin is
called aLyapunov functiorrelative to the flow defined by= f(x) if it is positive
definite and it is nonincreasing along trajectories of thevfloe.,

V(0)=0,V(x) >0, xe D-{0}

_ V()

\Y;
Jx

f(x) <0

2.4.2 Basic Stability Theorems

Stability of a dynamical system may determined directlynfran examination of
the trajectories of the system or from a study of Lyapunoxfiams. The basic idea
of the Lyapunov method derives from the idea of energy exgbam physical sys-
tems. A general physical conception is that stable systéssipdte energy so that
the stored energy of a stable system decreases or at leashdbimcrease as time
evolves. The notion of a Lyapunov function is thereby anmapieto formulate a
precise, energy-like theory of stability.

Proposition 2.20 (Lyapunov Stability Theorem).If there exists a Lyapunov func-
tion V(x) on some neighborhood D of the origin, then the origin is staBurther-
more, ifV is negative definite on D then the origin is asymptoticatyke.

Proof: Givene > 0 choose € (0, €] such that
B ={xeR"||x|<r}cD

Now, we can find a level s€; = {x € R" |V (x) = a } which lies entirely withinB;.
Refer to Figure (2.4). The existence of such a set followsftioe fact that sinc¥
is positive and continuous dg}, it has a positive minimung, ondB;. The level set
Cy defined by (x) = a must lie entire irB;.

Now, sinceV is continuous and vanishes at the origin, there exigts-a0 such that
B lies entirely within the set bounded B4, i.e.,

Qu={xeR"V(x)<a}

SinceV is nonincreasing along trajectories, trajectories whiegib inB; must re-
main inQq, vt > 0. Hence they remain iB. In the event thaV is negative definite,
V decreases steadily along trajectories. For aryr@ < r there is g3 < a such that
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Fig. 2.4: Sets used in proof of the Lyapunov stability theorroposition (2.20).

Bg lies entirely withinB, . SinceV has a strictly negative maximum in the annular
regionB; — By,, any trajectory beginning in the annular region must evaht@enter
Br,. Thus, all trajectories must tend to the origirtas co. [ ]

Unlike linear systems, an asymptotically stable equilibripoint of a nonlinear sys-
tem may not attract trajectories from all possible initi@tss. It is more likely that
trajectories beginning at states in a restricted vicinityhe equilibrium point will
actually tend to the equilibrium point &s— . The above theorem can be used to
establish stability and also to provide estimates ofdbenain of attractionusing
level sets of the Lyapunove functid(x).

The following theorem due to LaSalle allows us to more eadilgracterize the do-
main of attraction of a stable equilibrium point and is a mpogverful result than
the basic Lyapunov stability theorem because the condifionasymptotic stability
do not require/ to be negative definite.

Proposition 2.21 (LaSalle Invariance Theorem).Consider the system defined by
equation (2.5). Suppose(X) : R" — R is C and let Q. designate a component of
the region{x € R" |V (x) < c}. Suppos&. is bounded and that withif; V(x) <O0.
Let E be the set of points withil. whereV = 0, and let M be the largest invariant
set of (2.5) contained in E. Then every solutidr) »f (2.5) beginning i tends to

M ast— oo,

Proof: (following [71]) V(x) < O implies thatx(t) starting in Q. remains inQc.
V(x(t)) nonincreasing and bounded implies thék(t)) has a limitcy ast — c and
Co < €. By continuity ofV(x), V(x) = co on the positive limit sef\,(xo) of x(t)
beginning atxg € Qc. Thus,Ay(Xo) is in Q¢ andV (x) = 0 onAy(Xo). Consquently,
Nw(X0) isin E, and since it is an invariant set, it is M. [ |
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Note that the theorem does not specify ti&t) should be positive definite, only that
it have continuous first derivatives and that there exist@nded region on which

V(x) < c for some constant. A number of useful results follow directly from this
one.

Corollary 2.22. Let x= 0 be an equilibrium point of (2.5). Suppose D is a neighbor-
hood of x=0and V: D — R is C and positive definite on D such théfx) < 0 on
D.LetE= {xe D|V(x) =0} and suppose that the only entire solution contained
in E is the trivial solution. Then the origin is asymptotigadtable.

Corollary 2.23. Let x= 0 be an equilibrium point of (2.5). Suppose
1. V(x) is Ct
2. V(x) is radially unbounded (Barbashin-Krasovskii conditiorg,,

[IX|| = 00 =V (X) — o0

3.V(x) <0, ¥xe R
4. the only entire trajectory contained in the set£{xe D |\7(x) = O} is the
trivial solution.

Then the origin is globally asymptotically stable.

The stability theorems provide only sufficient conditions $tability and construc-
tion of a suitable Lyapunov function may require a fair anmoafringenuity. In the
event that attempts to establish stability do not bear fruitay be useful to try to
confirm instabilty.

Proposition 2.24 (Chetaev Instability Theorem). Consider equation (2.5) and
suppose x= 0 is an equilibrium point. Let D be a neighborhood of the origgup-
pose there is a function(%) : D — R and a set  C D such that

1. V(x)isCton D,

2. the origin belongs to the boundary of WD;,

3. V(x) > 0andV(x) > 0on Dy,

4. On the boundary of Pinside D, i.e. ordD;ND, V(x) =0

Then the origin is unstable

Proof: Choose am such thaB, = {x € R"|||x]| <r } is in D. Refer to Figure (2.5).
For any trajectory beginning insidé = D1 N B, atxg # 0, V(x(t)) increases indef-
initely fromV (xg) > 0. But by continuityV (x) is bounded otJ. Hencex(t) must
leaveU. It cannot do so across its boundary interioBfcso it must leaves;. [ |
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Fig. 2.5: Sets used in proof of the Chetaev instability teearProposition (2.24).

Stability of Linear Systems

Consider the linear system
X = AX (2.6)

Proposition 2.25.Consider the Lyapunov equation
ATP+PA=—Q (2.7)

(a) If there exists a positive definite pair of symmetric ricas PQ satisfying the
Lyapunov equation then the origin of the system (2.6) is ptytically stable.

(b) If there exists a pair of symmetric matricesQPsuch that P has at least one
negative eigenvalue and Q is positive definite, then thdrorsgunstable.

Proof: Consider (a) first. Choo3é(x) = x" Pxand comput®/ = x (ATP + PA)x =
—x"Qx. The assumptions and the LaSalle stability theorem leatigaonclusion
that all trajectories tend to the orgin &s—» «. Case (b) requires application of
Chetaev’s instability theorem. In this case considéx) = —x" Px. Recall that for
symmetricP the eigenvalues dP are real, they may be positive, negative or zero.
On the positive eigenspacé,< 0, on the negative eigenspaté> 0, and on the
zero eigenspac®, = 0. SinceP has at least one negative eigenvalue, the negative
eigenspace is nontrivial and there is a set of poididor whichV > 0. LetB¢ be

an open sphere of small radiascentered at the origin. Sindéis continuous, the
boundary ofD in Bg, dD N By, consists of points of points at whidh = 0. It in-
cludes the origin and is never nonempty (even if all eigareslbfP are negative).
ForV(x) = —x"Px, V = x"Qxand it is always positive sind@ is assumed positive
definite. Thus, the conditions of Proposition (2.24) arésfiatl. ]
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Suppos&) > 0 and theP has a zero eigenvalue. If the matfbhas a zero eigenvalue
then there are points+ 0 such tha/ (x) = x"Px = 0. But at such point¥ (x) =
—x"Qx < 0. Since V(x) is continuous this means that there must betpairwhich

V assumes negative values. ThBsnust also have a negative eigenvalue. Thus, we
have the following corollary to Proposition (2.25).

Corollary 2.26. The linear system (2.6) is asymptotically stable if and ahfpr
every positive definite symmetric Q there exists a positéfimie symmetric P that
satisfies the Lyapunov equation (2.7).

Lagrangian Systems

The Lyapunov analysis of the stability of nonlinear dynaathgystems evolved from
a tradition of stability analysis via energy functions tigaes back at least to La-
grange and Hamilton. We will consider a number of exampleishvare physically
motivated and for which there are energy functions thateses/natural Lyapunov
function candidates. Consider the class of Lagrangiaresystharacterized by the
set of second order differential equations

daL(xx) dL(x.X)
dt  oJx ox

=Q' (2.8)
where

1. xe R" denotes a vector afeneralized coordinateendx = dx/dt are thegener-
alized velocities

2. L:R?" - Ris theLagrangian It is constructed from the kinetic energy function
T(x,x) and the potential energy functidh(x), viaL(x,X) = T (x,X) — U (X).

3. The kinetic energy has the form
T(x,%) = 3x"M(x)%
where for each fixed, the matrixM(x) is positive definite.

4. The potential energy is related to a force vedtos) via
U(x) = / f(x)dx

5. Q(x,x,t) is a vector of generalized forces.

Occasionally it is convenient to write the second order &quoain first order form
by defining new variable = x to obtain

X Y
M - [—Ml(x)f(x) ~iMi [aM /o + M) B9
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Another useful first order form is Hamilton's equations aial as follows. Define
thegeneralized momentuas

T = a—',‘:)’JM(X)éX:M*l(x)p (2.10)

Define theHamiltonian H: R?" — R
H(xp) = [P"X—L(%X)]; -1, = 3P"M 1 (x)p+U(X) (2.11)

The Hamiltonian is the total energy expressed in momentuherahan velocity
coordinates. Notice that Lagrange’s equation can be writte

Tt OL
T_ 9L _ 4T
X Q (2.12)
Now, using the definition offl, (2.11), write
= O i M o dom ke pTdx— 2hdx— 2l ax— dpTx— ot
dH_ade+apdp_dpx+p dx axdx axdx_dpx axdx

Using (2.12) we have

de+a—pdp_x dp—(p—Q) dx

Comparing coefficients af panddx, we have Hamilton’s equations.

. _OH(Xxp . JH(Xxp)
Example 2.27 (Soft Springfonsider a system of with kinetic and potential energy

functions
2 2

_% _ X
27 T 14

Lagrange’s equations in first order form & x,) with viscous damping are

T

o] = [2i - on
X | —ZW—CXZ

If we take the total energy as a candidate Lyapunov function,

an easy calculation shows that= —cx < 0 for c > 0. Furthermore, the s&t=0
consists of thex;-axis and the only entire solution contained therein is theat
solution. We conclude that the origin is asymptoticallyofta\We can not, however,
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conclude global aymptotic stability because the Lyapunmcfion is not radially
unbounded. Let us look at the level setd/of
In[7]:= ContourPlot [V,{x1,-5,5},{x2,—2,2},PlotPoints— 50,
Contours— 15, ColorFunction— (GrayLevel [((#+0.1)/1.1)7(1/4)]&),
FrameLabel> {x1,x2}]

—AA——

and, finally, at the trajectories:

I n[8]:= Show|graphs2AxesLabel~ {x1,x2},PlotRange— {{-5,5},{—2,2}},
DisplayFunction— $DisplayFunctioh

Example 2.28 (Variable Mass}onsider a system with variable inertia, typical of a
crankhaft. The kinetic and potential energy functions are
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T=(2-cosX)xd, U=x2+1x

Systems with variable mass are much easier to analyze usingltdn’s equations,
so we define the generalized momentpm (2 — cos X ) x; and the Hamiltonian

p2

4+ xX+ 3
X =
2(2—cos2’x1)Jr s

H (X1, p) =

Again with viscous damping, Hamilton’s equations are

X1 2-cos&|
[ p} - [—le—xi— (2‘12:;23(11)2 + (z—fcfspal)Z
It is not difficult to computeH, indeed,
In[9]: Simplify  [Jacob [H,{p,x1}].{—D[H,x1] — D[R, p],D[H, p|}]

outfe)= — 2P

(—2+Cog2 x1))

We conclude thaH < 0 for ¢ > 0. Moreover, the only entire trajectory in the set
H = 0 is the trivial solution, and sindé is radially unbounded, we can cnclude that
the origin is globally asymptotically stable. Let is lookthae level curves of

In[10] : = ContourPlot [H,{x1,—6,6},{p,—12 12}, PlotPoints— 100, Contours— 25,
ColorFunction— (GrayLevel [(#+0.1)/1.1)°(1/4)]&),FrameLabel- {x1,p}]

1
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and at the state space trajectories



In[11]:

2.4 Lyapunov Stability 31

graphs3= PhasePortrait  [f,x,15 {{—6,6,2},{—5,5,5}}];
Show[graphs3AxesLabel— {x1, p},PlotRange— {{—4,4},{—4,4}},
DisplayFunction— $DisplayFunctioh

i

ALTRY

X1

——— — — — — —

Example 2.29 (Multiple Equilibria)Consider the system

R+ | —1] >'<3—x+sin(%() =0

Notice that the system has three equilibpiax) = (0,0),(—1,0), (1,0). We can de-
termine their stability by examining the system phase p@sgior using a Lyapunov
analysis based on total energy as the candidate LyapunotidanFirst let us exam-
ine the phase portraits.

In[12]:
In[13]:
In[14]:

In[15]:
In[16]:

2 2 C T X1
m 2 I

T=x2"2/2,V=T+U;

F = Simplify  [D[U,x1]];

f={x2,— Abs[x1"2—1] x2°3—F};x = {x1,x2};

graphs3= PhasePortrait  [f,x,2,{{—2,2,0.5},{—1,1,1}}];

Show{graphs3AxesLabel— {x1,x2},PlotRange— {{—1.5,1.5},{—1,1}},
DisplayFunction— $DisplayFunctioh
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Thus, we see that the equilibrium poif@,0) is unstable and that the other two,
(+1,0), are asymptotically stable. Now, let us consider the Lyapuviewpoint.

The total energy is
vy R (e(3))
A straightforward calculation leads to
V=-— }xz —1 X2
The LaSalle theorem (2.21) can now be applied. Let us vievetha surfaces.
In[17]:= ContourPlot [V,{x1,—2,2},{x2,—1,1},PlotPoints— 50,

Contours— 15, ColorFunction— (GrayLevel [((#+0.1)/1.1)7(1/4)]&),
FrameLabel> {x1,x2}]

i\
L e
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Notice that there are level surfaces that bound compacttsgticlude the equilib-
rium point(1,0). Pick one and designated, . Moreovery < 0 everywhere, hence
specifically inQc,, and the maximum invariant set containedg, is the equilib-
rium point. Consequently, all trajectories beginningg tend to(1,0) so it is an
asymptotically stable equilibrium point. A similar conslan can be reached for the
equilibrium point(—1,0).

2.4.3 Stable, Unstable, and Center Manifolds

Consider the autonomous system (2.5) and suppes8 is an equilibrium point so
thatf(0) = 0. LetA:= df(0)/dx. Define three subspacesRf:

1. thestable subspac&?: the eigenspace of eigenvalues with negative real parts
2. theunstable subspacg": the eigenspace of eigenvalues with positive real parts

3. thecenter subspac&®: the eigenspace of eigenvalues with zero real parts

An equilibrium point is calledhyperbolicif A has no eigenvalues with zero real part,
i.e., there is no center subspaE&, In the absence of center subspace the lineariza-
tion is a reliable predictor of important qualitative fews of the nonlinear system.
The basic result is given by the following theorem. Firsmeadefinitions.

Let f,g beC' vector fields orR" with f(0) = 0,g(0) = 0. M is an open subset of the
originin R".

Definition 2.30. Two vector fields f and g are said to b&-€quivalenbn M if there
exists a (¢ diffeomorphism h on M, which takes orbits of the flow generéte f

on M, @(x,t), into orbits of the flow generated by g on M(x,t), preserving ori-
entation but not necessarily parameterization by tinfeeGuivalence is referred to
astopological equivalencdf there is such an h which does preserve parameteriza-
tion by time then fg are said to be €-conjugate C°-conjugacy is referred to as
topological-conjugacy

Proposition 2.31 (Hartman-Grobman Theorem).Let f(x) be a C vector field on
R"with f(0) =0and A:=df(0)/ax. If Ais hyperbolic then there is a neighborhood
U of the origin in R on which the nonlinear flow of = f(x) and the linear flow of

X = Ax are topologically conjugate.

Proof: (Chow & Hale [21], p. 108)
Definition 2.32.Let U be a neighborhood of the origin. We define libeal stable
manifoldandlocal unstable manifoldf the equilibrium point x= 0 as, respectively,
W = {xeU |¥(xt) »0ast— oA (xt)cUVt>0}
foe={x€eU |¥(xt) >0ast— —oAW(xt) eUVt <0}
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Proposition 2.33 (Center Manifold Theorem). Let f(x) be a C vector
field on R with f(0) =0 and A:= df(0)/dx. Let the spectrum of A be divided
into three setws, ac, oy with

<0 Aeogs
ReA={=0 Aca.
>0 Aeaqgy

Let the (generalized) eigenspacewgfac, oy be E5,EC EY, respectively. Then there
exist C stable and unstable manifolds\nd WX tangent to E and EY, respectively,
at x=0 and a C~! center manifold W tangent to E at x= 0. The manifolds
WS WE WY are all invariant with respect to the flow ofX). The stable and unstable
manifolds are unique, but the center manifold need not be.

Proof: [82].

Example 2.34 (Center Manifoldf.onsider the system

X:XZa y:_y

from which it is a simple matter to compute
X(t) = X0/ (1~ o), ¥(t) = Y& = y(x) = |yoe~ 2o e*

The phase portrait is shown below. Observe ta) is an equilibrium point with:

|10 0 s 0 c 1
A= {O _J:E _span{l}, E _span{o}

Notice that the center manifold can be defined using anydi@jg beginning with

x < 0 and joining with it the positive-axis. Also, the center manifold can be cho-
sen to be the entirg-axis. This is the only choice which yields an analytic cente
manifold.

In[1]:=

f={x1"2,-x2};x={x1,x2};
graphs3=PhasePortrait[f,x,8,{{-0.2,0.1,.05},{-0.5,0 .5,0.5}}];

Show[graphs3,AxesLabel->{"x,W"C","y,W"S"},
PlotRange->{{-0.2,0.2},{-0.25,0.25}},
DisplayFunction->$DisplayFunction,Frame->True,Frame Style->Black,
ImageSize->{360,215},AspectRatio->Full,AxesOrigin-> Automatic,
AxesStyle->Directive[Black,Thick]]
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There are some important properties of these manifoldswhianhot be examined
here. See, for example, [32] and [3]. Let us note, howevat dkistence and unique-
ness of solutions insure that two stable (or unstable) rolsfcannot intersect or
self-intersect. However, a stable and an unstable manifohdntersect. The global
stable and unstable manifolds need not be simple submdsibdR", since they may
wind around in a complex manner, approaching themselvésaily closely.

Motion on the Center Manifold

Consider the system of differential equations
x=Bx+ f(x,y)
y=Cy+g(x,y)

where(x,y) € R™™ f g and their gradients vanish at the origin, and the eigensalue

of B have zero real parts, those@hegative real parts. The center manifold is tangent
to E®:

(2.14)

EC= span[ In }

0m>< n

It has a local graph

We={(xy) e R"™M|y=h(x) }, h(0)=0,

Onceh is determined, the vector field on the center maniffel (i.e., the surface
defined byy = h(x)) can be projected onto the Euclidean spB€as

x = Bx+ f(x,h(x)) (2.15)
These calculations lead to the following result (see [32]).
Proposition 2.35 (Center Manifold Stability Theorem). If the origin of (2.15) is

asymptotically stable (resp. unstable) then the origin2o14) is asymptotically sta-
ble (resp. ustable).
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To computeh, we use the fact that dW° it is required thay = h(x) so that
dh(x). dh(x)

y == WX = W [BX+ f(X, h(X)]
Buty is also governed by (2.14) so we have the partial differéatjaation
‘?g(x’o [Bx+ f (%, h(X)] = Ch(X) +g(x, h(x) (2.16)

i s RCAL ()
that needs to be solved along with the boundary conditig@s= 0, =5, = 0.

Example 2.36Consider the following two dimensional system from Isidd#].
X = cyx—x°

y = —y+ayx+bx¥

wherea, b, c are real numbers. It is easy to see that the origin is an éguith point
and that it is in the form of (2.14) witB = 0 andC = —1. To computér we need to
solve the partial differential equation

3—2 [exh(x) — %] + h(x) — ah(x)x— bx = 0 (2.17)

: " ah(0
with boundary conditiong(0) = 0, ﬁ(x) =0.

Assume a polynominal solution of the form
h(x) = ag + a;x+ axx? + azx® + O(x*)

In view of the boundary conditions we must haage= 0 anda; = 0. Substituteh
into (2.17) as follows, usiniylathematica

In[18]:= h=a2 x2+a3 x"3+0x]4;
F=Dhx|(c x h—x3)+h—a h x—b x2
Qut[18] = (a2—h) x°+(—a a2+a’d x*+0x*

Thus, we have

In[19]:= a2=b;a3=a a2;h
Qut[19]= b ¥+a b ¥+0x*

Now, obtain the motion on the center manifold

In[20]:= dx=c¢ h x—x"3
Qut[20]= (-1+b ¢ x*+a b ¢ ¥+0x°

The last result can be rewritten as
x= (—1+bc)x® 4 abcxt 4+ O(x°)

Thus, we have the following results,
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(a) if bc< 1, the motion on the center manifold is asymptotically stabl
(b) if bc> 1, itis unstable,
(c) if bc=1, anda # 0, itis unstable

(d) if bc= 1, anda = 0, the above calculations are inconclusive. But in this Epec
case it is easy to verify that(x) = x> and the center manifold dynamics are
x = 0. So the motion is stable, but not asymptotically stable.

2.5 Differential-Algebraic Equations

2.6 Problems

Problem 2.37.Plot the level sets of the following norms &3:

@) X =/ ¢+
(0) [[X]| = Ixa| + [x2]

(©) [Ix]| = sup(|xa, |x2|)

Problem 2.38.Consider a system described by the differential equation:
X+9g(x)=0

that describes a unit point mass with spring fog¢e). Show thatx,x) = (0,0) is a

stable equilibrium point if

(@) xg(x) >0, x#0

(b) g(0) =0

Problem 2.39.Consider the dissipative system

X+ax+2bx+3x*=0, ab>0

(a) Show that there are two equilibrium poifitsx) = (0,0) and(x,x) = (—2b/3,0)
(b) By linear approximation show thdD,0) is asymptotically stable and that
(—2b/3,0) is unstable.

(c) Use the total energy of the undamped systars- Q) as a Lyapunov function
and identify a largest region of attraction f@,0). Show that the boundary of
this region passes through the pairt2b/3,0).
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(d) Pick values for,b > 0 and plot state trajectories and level surfaces for the en-

ergy.

Problem 2.40.Consider the system
Xl = X2
Xo = —X1 — XpSa(x3 — x2)
X3 = XzSa(x3 — x3)
(a) Show that the origin is the unique equilibrium point.
(b) Taylor linearize at the origin and show that it is asyntigtdly stable.

(c) UsingV (x) = x"x, show that the origin is globally asymptotically stable.

Problem 2.41.Investigate the stability of the origin, including estimatof the do-
main of attraction, of the following systems:

(a) X=x—saf2x+ x), Hint: UseV (x) = xx,
(b) X+ x|X| +x—x3 = 0, Hint: Use total energy fov (x).



3

Introduction to Differential Geometry

3.1 Introduction

This chapter provides an overview of the differential getsgneoncepts necessary
for a modern discussion of nonlinear control and analyticathanics. We need to
develop a basic understanding of manifolds, vector fields flows, distributions
and integral submanifolds along with tools that allow usdmpute and manipulate
these objects. The material described only very briefly iedeep and rich and a
more thorough discussion can be found in many text books, [@4y 41, 107, 89].
It has its roots in analytical mechanics but it has becomeraerstone of nonlinear
control.

In essence this chapter develops the tools required to ssltire evolutionary behav-
ior of systems whose state spaces are curved rather thanrflates. Examples of
the importance of this generalization abound. We have@yreansidered the flow of
a dynamical system on a curved surface when evaluatindistain a center man-
ifold in the last chapter. Sometimes it is convenient to aersthe state space of a
pendulum to be a cylinder rather than the flat Euclidean spic&lectric power
systems are typically modeled by systems of differentigélaraic equations in the
form

x=f (Xv y)

0= g(X, y)

wherexe R, y e R", and f : R"™"™ — R", g: R™™ — R™ are smooth functions.
Clearly the motion is constrained to the set of point®if™ that satisfy the alge-
braic equation. Under the right circumstances, this sehis-dimensional smooth

surface. In other applications from robotics to spacearaitlels often have state
spaces that are not flat. Control design itself imposes tleel he@ consider flows

on general surfaces. Unique aspects of the navigation p§ &nd aircraft between
points on earth arise because the motion takes place on ees@untrol theoretic

examples include the generalization of the concept of zgrawhics to nonlinear

systems and the study of sliding modes in variable structomérol systems.
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While the subject matter might seem abstract on first actpraie, its underlying
concepts are quite intuitive and appealing. The formalisaviges a precise basis
for working with geometric ideas and the reader new to thisenie will no doubt
find justification and clarification for familiar calculatis.

We begin with a discussion of manifolds in Section 2 and thextged to tangent
spaces, vector fields and covector fields in Section 3. Sedtiatroduces distribu-
tions, codistributions and the Frobenius theorem. Distrims play a role in non-
linear system theory much like that of linear subspacesigali system theory. The
Frobenius theorem answers classical questions of intdigyalentral to problems of
mechanics and partial differential equations. It turnstoute equally important to
nonlinear control. Important tranformations of state e are derived, based on
distributions possessing certain properties and toolsdorputing such distribution
are described. Section 5 provides a brief introdution toGiieups and Lie Algebras
with the addition of some algebraic structure to the geoimetsjects of Sections 2,
3and4.

3.2 Manifolds

Roughly speaking a manifold is a smooth surface embeddeé&irckdean space of
some dimension. We will need a more precise definition in oi@aork effectively
with manifolds, but before proceeding formally let us exaenhow we ordinarily
characterize such surfaces. Consider the Euclidean $¥aaed supposg,y are its
coordinates. The set of points that comprise a surfad®jre.g., the unit circle, is
generally modeled in one of three ways:

o explicitly, by a mapping = g(x) (or,x= g(y)),

e implicitly, by a relationf (x,y) =0,

e parametrically by a mapping = hy(s), y=hy(s), se U CR.

The explicit model is typically inadequate. For examples thnit circle, does not
admit a global explicit representation. We would have ta@epnt two pieces of the
circle by separate expressions. Representations of theitoie are

e explicit, top half:y = v/1 — x2 and bottom halfy = —v/1— x2,

e implicit, X2 +y? =1,

e parametricy = sins, x = coss, s€ [0, 21)

In practice, interesting manifolds require either an iripbr a parametric represen-
tation even for a local characterization. Explicit reprgagions, however, can also be

useful as we have already seen in the computation of centafatds in the previous
chapter.
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Now, let us turn to the formalities. Recall thahameomorphisrbetween any two
topological spaces is a one-to-one continuous mapping avithntinuous inverse.
A homeomorphism not only maps points in a one-to-one maueif maps open
sets in a one-to-one manner. Thugpif M — N is a homeomorphisnM andN are
topologically the same.

A differentiable manifoldN of dimensionn is a set of points that is locally topo-
logically equivalent to the Euclidean spaRe. This concept can be made precise
by introducing a set of local coordinate systems calledtsh&ach chart consists
of an open sety C N and a mapping that mapdJ) homeomorphically ontg (U).

A general discussion of differential manifolds and theiplagation can be found in
many texts including [14, 41, 107]. The key elements of tHie¥dng definition are
depicted in Figure (3.1).

Definition 3.1. An m-dimensional manifold is a set M together with a courgabl-
lection of subsets{y- M and one-to-one mappings : U; — V; onto open subsets V
of R™, each pair(U;, ¢;) called acoordinate chartwith the following properties:

1. the coordinate charts cover NJU; =M
|

2. on the overlap of any pair of charts the composite map
f= ¢j o¢i71 : ¢i(Ui ﬂUj) — ¢j(Ui ﬂUj)
is a smooth function.

3.if pe U;, p € Uj are distinct points of M, then there are neighborhoods, W of
¢i(p) in Vi andW of¢;(p) in V; such that

9 H(W)Ng; (W) =0

The coordinate charts provide the bétvith a topological structure so that the man-
ifold is a topological space. Condition 3. of the definitierai form of the so-called
Hausdorff separation axiom so that these manifolds aredtafisopological spaces.
The coordinates iR™ of the image of a coordinate magp), p € M are called the
coordinates op. A chart(U, ¢) is called a local coordinate system. If the overlap
functionsf = ¢; o q)i*l arek-times continuously differentiable, then the manifold is
called aCk-manifold. Ifk = c, then the manifold is said to be smooth. Itis analytic if
the overlap functions are analytic. A local coordinateaysis called a cubic coordi-
nate system i (U) is an open cube about the origin®f. If pe M and¢(p) =0,
the coordinate system is said to be centereg at

Example 3.2 (Differentiable Manifoldsyhe following are simple examples of dif-
ferentiable manifolds.

1. The Euclidean spad®y, is anm-dimensional manifold. There is a single chart,
U = Ry The corresponding coordinate map is simply the identitp gaR™ —
R™.
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f:¢j°¢i_l

Fig. 3.1: This figure illustrates coordinate charts, locabrdinate maps and compatibility
(overlap) functions on manifolil.

2. Any open subsdl ¢ R™ is an m-dimensional manifold with single chartand
coordinate map again the identity.

3. The unit circleS; = {(x,y)|x? +y? = 1} can be viewed as a one dimensional
manifold with two coordinate charts. Define the chais= S — {(—1,0)} and
U, = S —{(1,0)}. Now we define the coordinate maps by isometric projection.

2y |
1-x’
2y |

b2= 12 S - {10} R ={(-Ly)

¢ = S —{(-1,0} = R* = {(Ly)}

The overlap functions are given by

_ 1+x
f1:¢20¢11:—1_x: Rl {0} —» Rl — {0}

11Xy 1
fo=¢100, :—1+X.R—{O}—>R—{O}

Another description is obtained if we identify a point 8hby its angular coor-
dinate8, where(x,y) = (cos9, sinf, with two angles equivalent if they differ by
an integral multiple of 2r. Thus, we have a single chait={ 6] 0 < 6 < 2m}.

4. The unit spher& = {(x,y,2)|x* +y? + Z2 = 1} is another basic example of a
manifold with two coordinate charts. We may choose
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Up = Sz_ {(Ov 0, 1)}
U2 = 52_ {(O’ O’ _1)}

obtained by deleting the north and south poles, respegfikah the sphere. Lo-
cal coordinate functions can be defined as stereographjegbiams (from, re-
spectively, the north or south poles) onto the horizon@hplthat passes through

the origin:
_y Xy
¢1(X,y,2) - { 1_27 1_2}

¢2(x,y,z)_{ a—— }

1+2'1+z
The compatibility function is

fo1=¢100,": RE—{0} - RP— {0}

X Yy
f21(xy) = {mm}

5. In general, ifM andN are smooth manifolds of dimensiomandn, then their
Cartesian produd¥l x N is a smooth manifold of dimensian+ n. If their re-
spective coordinate maps ape: Ui — V; C R"and¢; : U; — V; C R", then the
induced coordinate charts &M x N are the Cartesian products

¢i x §; 1 Ui xUj — Vi x V; ¢ ™M

For our purposes a differentiable manifold can always beceiwed as a smooth
surface embedded in a Euclidean space. The unit sgBfeaed the torusT? are
manifolds embedded iR®. As noted, manifolds are ordinarily specified as subman-
ifolds of Euclidean space in one of two ways, parametricatlymplicitly. Before
describing these repesentations formally we define thenatf maximal rank of
maps.

Definition 3.3 (Maximal Rank Condition). Let F: R™ — R" be a smooth map. The
rank of F atx € R™is the rank of the Jacobian,B (xp). F is of maximal rankon
Sc RMif the rank of F is maximal (the minimum of m and n) for eaghke)S.

A submanifold can be defined parametrically as follows.

Definition 3.4. A submanifold embedded iM" ks a set MC R", together with a
smooth one-to-one map: 1 ¢ R™ — M, m < n, which satisfies the maximal rank
condition everywhere, whef@ is called the parameter space andMg(/7) is the
image ofg. If the maximal rank condition holds but the map is not oneite, then
the set M (or the functiop) is called an immersion.
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Example 3.5 (One Dimensional Submanifolds3raRd F). The following are some
examples for parametrically defined one dimensional sulfisids. Notice that plots
of parametrically defined submanifolds R andR® can easily be generated using
the MathematicgunctionsParametricPlot andParamtricPlot3D

Consider a submanifold embedded ifR® defined by mapping : R— R®

f(t) = (cogt,sint,t)

N is a helix which spirals up the z axis. It is one-to-one Bafl = (—sint, cost 1) so
that the maximal rank condition is satisfied.

In[21]:= ParametricPlot3D  [{Codt],Sin{t],t},{t,—3 m,3 m},
BoxRatios— {1,1,2},Boxed— FalseTicks — None Axes— Falsé;

Now, consider a submanifold embeddeddefined by the mapping
f(t) = (1+e %) cost, (1+e/4)sint)

Then ag — o, N spirals in to the circle x2 +y2 = 1.

In[22]:= D{(1+Exp[—t/4]) Cod t],(1+Exp[—t/4]) Sin t]},t]
Qut[22] = {—% eV Cogt] — (1+e %) Sint], (1+e V%) COS[t]—% e/ Sin[y)
In[23]:= ParametricPlot  [{(1+Exp[—t/4]) Co{ t],(1+Exp[—t/4]) Sin| t]},

{t,0,8 1}, AspectRatio—~ Automatic Axes— False;
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As another example, consider the mappfngR — R?

f(t) = (sint,2sin2)

N = f(R) is a figure eight which is self intersecting at the originRst Thus, f
is not one-to-one although the maximum rank condition issBatl sinceD;f =
(—cogt,—4cos2) never vanishes.

In[24]:= ParametricPlot  [{ Sin[ t],2Sin 2 {},{t,0,2 m},Axes— Falsé;

Let us modify the previous example by defining

f(t) = (sin(2arctan),2sin(4 arctart))
Now f is one-to-one and N passes through the origin only once. Theémal rank
condition holds.

I n[ 25] : = ParametricPlot  [{ Sin2 ArcTan t]],2 Sin 4 ArcTar t]]},
{t,0,100 m1},PlotPoints— 200, PlotRange— All , Axes— False;



46 3 Introduction to Differential Geometry

In[26]:= D[{ Sin2 ArcTar t]],2 Sinl 4 ArcTar{ t]]}.{]
Qut [ 26] = {2 COS{iJrA;;cTar{t]LS CoétzllJrA;;cTadt]]}

Example 3.6 (The spheré)SNow consider the sphef. First, we generate a graph
using a parametric specification of the sphere:

f(t,u) = {cod sinu, sint sinu, cosu}

In[1]:= Parametric&log%ﬁ}?s%,Sg)?[lﬂi}]Sin[t] Sin[u], Cos[u]}

TN
924 SN
LTRSS
TS
SammunS

The maximal rank condition can be tested by computing thehlan using the
ProPacfunctionJacob and then testing for its rank by examining the span of its
columns usingspan.

In[2]:= AA=Jacob[ {Cos [t] Sin [u], Sin [t] Sin [u], Cos [u] HA{tu }]
Qut [ 2] = {{-Sin[t] Sinu],Codt] Codu]},{Codt] Sinu],Cogu] Sin[]},
{0,—Sin[u]}}
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I n[ 3] : = Simplify[Cos [u] Span[Transpose[AA]]]
Qut [ 3] = {{Coqu],0,—Codt] Sin[u]},{0,Coqu],—Sint] Sin[u}}

We see that the rank condition is satisfied everywhere exate¢pe poles. Thus, the
given mapping defines a submanifold®fthat is the sphere with the poles removed.

Example 3.7 (The torus?y.

Now consider the toruE?. First, we generate a graph of the torus using the prametric
representation:

f(t,u) = {cost(3+ cowu),sint(3+ cosu), sinu}

In[4]:= ParametricPlot3D
{Codt] (3 4+ Codu]), Sint] (3 + Cogu]), Sinu]},
{t, 0, 2m}, {u, 0, 2m},PlotPoints— 40, Axes— False

Boxed— Falsé

Now, let us exam the maximal rank condition.
In[5]:= AA =Jacob [{Codt] (3 + Codu]), Sin{t] (3 + Codu]), Sinu]},{t,u}]
Qut[5] = {{—(3+Codu]) Sint],—Cosgt] Sinu]},
{Codt] (3+Coqu]),—Sin[t] Sin[u]},{0,Codu]}}
In[6]:= Simplify [Span[Transpose [AA]]]
Qut [ 6] = {{Sin[u],0,—Codt] Codu]},{0,Sinu], —Cogqu] Sin[t]}}

The mapping fails to have have maximum rank wiuen 0, i.e., on the outer edge
(in thex —y plane) of the torus. The torus with these points removed i©pgsly
parametrically defined submanifold Bf as specified by the given mapping.

It is illustrative to consider generating one dimensiondireanifolds ofR® by draw-
ing curves on the surface of the torus (these would be sulioddsiof the torus as
well). We will consider mapping$ : R — R® of the form:
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f(t) = {cost(3+ cosat),sint(3+ cosat),sint}

wherea is a parameter. These mappings produce curves on the tafaseuf a
is a rational number they are closed curvesx ik irrational then, even though the
mapping is one-to-one, its image is dense in the torus awctbisire is the torus. The
following computations illustrate these two cases.
In[7]:= ParametricPlot3p

{Codt] (3 + Cog10 {), Sint] (3 + Cog10{), Sin10 i},

{t, 0, 2rm},PlotPoints— 200, Axes— FalseBoxed— Falsé;

I n[8]:= ParametricPlot3D
{Codt] (3 + Codm 10/3 1)), Sint] (3 + Cogm 10/3t]), Sin[m 10/3 {}
{t, 0, 20r},PlotPoints— 200Q Axes— FalseBoxed— Falsé;

)

Among these examples two of them illustrate submanifoldsdhe somewhat patho-
logical. Namely, the spiral in Example (3.5) and the irratibmapping onto the torus



3.2 Manifolds 49

in Example (3.7). In these cases, although the h#pone-to-one and satisfies the
maximal rank condition, it is not a homeomorphism (see Fg&.2). This is the
source of the complex topology of these submanifolds. Wendeficlass of subman-
ifolds with a more congenial topological structure.

A

Fig. 3.2: The mapping is not a homeomorphism because theseng not continuous. Every
neighborhood of points on the spiral arbitrarily close te kimiting circle contain points that
map back into distinct points in the parameter space.

Definition 3.8. A regular manifoldVl embedded in 'Ris a manifold parameterized
by a smooth mapping: T ¢ R" — M C R", such that for each ¥ M there exists
a neighborhood U of x in Rsuch thatp~1(U N M) is a connected open subset/of
(equivalentlygp maps homeomorphically onto its image).

In applications, manifolds are sometimes specified by amperarization, but it is
equally common to define manifolds implicitly. The followirtheorem is a conse-
quence of the implicit function theorem.

Proposition 3.9.Consider a smooth mapping:lR" — R™ m< n. If F satisfies the
maximal rank condition on the setS{ x € R"| F(x) = 0}, then S is a regular, & m
dimensional manifold embedded iA.R

Let us make a few remarks and observations about Propoé&aiéh

1. Notice that it is only required that the maximal rank caiodi be satisfied on the
set wherd~ vanishes, i.e., oS itself. If the maximal rank condition is satisfied
everywhere, then each level setfof {x|F (x) = c} is a regular submanifold of
R" of dimensiorm—n.

2. A manifoldSso defined is called amplicit submanifold .
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3. Suppos€U, ¢) is a local coordinate system dvi and thatk is an integer O<
k<m. Letac ¢(U) and define

S={peU |¢i(p)=¢i(a),i=k+1,....m} (3.1)

The subsess of M together with the coordinate systefp;\S, i=1,....k}
forms a submanifold oM called aslice of the coordinate systerfU, ¢). The
concept of a slice will be important in discusing controildypand observbility.

4. Any smooth manifold can be implicitly defined in a Euclidespace of suitable
dimension.

Example 3.10Consider the map : R® — Rdefined by

F(X,y,2) = X2+ Y2+ 22— 2,/2(x2 +y?)

F is of maximal rank everywhere except on the the cirfté +y?> = 2,z = 0}
where the Jacobian vanishes and on #exis where it does not exist. The level
sets{(x,y,2) € R¥|F(x,y,z) = c} are tori for—2 < ¢ < 0, and like spheres with in-
dented poles foc > 0. For c=-2, the level set is the circle? +y? = 2,z= 0} on
which the gradient oF vanishes.

Example 3.11Consider the set of orthogonal matrices
0(2) = {X e RP?IXTX =1}

Such matrices form a subsetRf. In fact, among the four coordinateg xy, X3, X4,

[z
X3 X4

there are three independent constraints

X4+xe=1
X1X2 + X3X4 = 0
X%4+x5=1

Itis easy to check that the Jacobian is of full rank®(2) so thatO(2) is an implicitly
defined regular submanifold of dimension JRh We can obtain a deeper insightinto
the structure of this manifold by seeking a (one-dimendj)qrerameterization. Let
us attempt to identify

X1 = c0sB, X3 = sinf

which clearly satisfies the first equation. The second egunatithen satisfied by

X2 = —SinB, X4 = c0SO
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or
X2 = SinB, X4 = —C0sO

either of which satisfies the fourth relation. It follows thiae matrices can be either

of the form
cosf —sinf

Xy = [sine cosf ]’O§9<2n

or

2~ |sinf —cosh sin@ cosf | |0 -1

First, note that each family of matrices is in one-to-oneregpondence with the
points on a circle. They are disconnected because they lramgemmon elements.
Thus, we say that the manifold(2) has the structure of two disconnected copies
of SL. Second, note that the matr¥ (viewed as an operator d®?) represents a
rotation in the plane (through an and#® whereasX, represents a relection in the
x-axis followed by a rotation. Third, note that it} = 1 and defX,} = —1. The
determinant distinguishes the two components of the miah@¢?). Fourth, observe
that the set of matrice$; (6) contains the identity element, in particul®i(0) = I,.
However, the set of matricé&(6) does not.

B [cos@ sin ] _ [cos@ —sme] {1 0 ] 0<@ <2

3.3 Tangent Spaces and Vector Fields

3.3.1 The Tangent Space and Tangent Bundle

Consider a smooth two dimensional surface embedd&.ivkt each point on this
surface it is easy to envision a tangent plane. Supposeialpamoves along a path
in the surface. Then its velocity vector at a specified pomtte path lies in the
tangent plane to the surface at the prescribed particléiboca he generalization of
this concept to motion in more abstract manifolds is of antnportance.

Definition 3.12.Let p: R— M be a ¢, k > 1 map so that ft) is a curve in a
manifold M. The tangent vector v to the curvig)mt the point g = p(to) is defined

by
v=plto) = lim {M}

t—tg t— to

The set of tangent vectors to all curves in M passing througis the tangent space
to M at p, denoted TN,.

If M is an implicit submanifold of dimensiomin R™X j.e. F : R™K - R M =
{x € R™K|F(x) = 0} andD«F satisfies the maximum rank condition &, Then
TM, is the keDyF (p) (translated, of course to the poip). That isTMy is the
tangent hyperplane td at p. See Figure (3.3).
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Fig. 3.3: The tangent space to the manifbldat the pointx, T M.

Let (U, ¢) be a local coordinate chart that contains the ppine M and suppose
p(t), with p(tp) = po, denotes a curve iM andx(t) = ¢(p(t) NU) its image in
V C ¢(U) C R™, as depicted in Figure (3.4). The tangent vector to the cp(tieat
po in M is v and the corresponding tangent vectox(t atxg in R™ is v. Thus, we
have the following definition.

Definition 3.13. The components of the tangent vector v to the cuftgipM in the
local coordinategU, ¢ ) are the m numbersy. .., vy where y = dq)i/dt.

Another interpretation of a tangent vector is as an opexat@calar valued smooth
functions. Consider the® mapF : M — R. Lety = f(x), x€ ¢(U) C R™ denote the
realization ofF in the local coordinate@J, ¢ ). Again, suppos@(t) denotes a curve
in M with x(t) its image inR™. Then the rate of change Bfat a pointp on this curve
is

1 LT 3.2)

Fig. 3.4: Motion along a curve in the manifdld is quantified in a local coordinate system.
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Let us remark on some alternative views of the tangent veldtatice that there are
many curves irM that pass througp and have the same tangent vector. We can de-
fine equivalence classes of curves by defining an equivalefei#on among curves:
two curves passing throughwith the same tangent vector are equivalent. Each class
is associated with a unique tangent vector. Thus, a tangebdratp is sometimes
defined as an equivalence class of curves thrgogAll curves belonging to the
same class obviously produce the same valuedfofdt. Conversely, the tangent
vector(vi,...,Vm), IS uniquely determined by the action of the directionahdgive
operator (called derivation

g 17}
V_V10_>(1+mvm0—xm
on such an equivalence class of curves. Thus, it is alsolgegsidefine the tangent
vector as a map (the directional derivative) from the spdqequivalence classes
of) differentiable functions passing throughto the real line. As a derivation, the
tangent vector satisfies two important properties

(3.3)

1. linearityv(f +g) =v(f)+v(9)
2. Liebniz' rulev(fog) =v(f)og+ fov(g)

Both concepts of the tangent vector, 1) as a velocity vedioe curves approach, or
2) as a directional derivative - the derivation approach,wseful and may be used
interchangeably. We can easily reconcile these viewpdintsoting that a tangent
vector(vy,..,Vi,..,Vm) = (0, ..,1,..,0) corresponds to the operatoe= 0/c9>q.

Thus, we have the following definition.

Definition 3.14. The set of partial derivative operators constitute a basiglie tan-
gent space T Mfor all points pe U C M which is called thenatural basis

The above definition makes sense when the tangent spacevisdvées a space of dif-
ferential operators. The formulation of the tangent veata directional derivative
requires a local coordinate system, i.e., a cfidrtp). We are free, however, to define

a coordinate system for the tangent sp@dé,. The ‘natural’ coordinate system on
TMp induced by(U, ¢) has basis vectors which are tangent vectors to the cooedinat
lines onM passing througlp. When taking the curves viewpoint, the tangent space
TM, is simply R™ and its elements may be thought of as column vectors and the
symbolsv; = 0/0x; represent the (unit) basis vectors.

At each pointp € M, we have defined the tangent space. Taken together, thesesspa
form the tangent bundle.

Definition 3.15. The union of all the tangent spaces to M is calledtdregent bundle
and is denoted T M,
T™M=J TMp
peM
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The tangent bundle is a manifold with d{ffiM} = 2dim{M}. A point in TM

is a pair (x,v) with x € M, v.€ TM,. If (x1,..,xm) are local coordinates oM
and (vi,..,vm) components of the tangent vector in the natural coordingse s
tem onT My, then natural local coordinates anM are (Xa,...,Xm,V1,...,Vm) =
(X1, ..., Xm, X1, - .., Xm). Recall the natural ‘unit vectors’ ohMy arev, = d/dxl, ey V=
0/ O%m.

The mappingrt: TM — M which takes the poingx,v) in TM to x in M is called
the natural projectionon T M. The inverse image of underr is the tangent space
at x, 7r1(x) = TMy. TM is called thefiber of the tangent bundle over the point
X. A sectionof TM is a mappingo : M — TM such that the composite mapping
Moo : M — M is the identity. The mapping: M — TM such that (x) is the zero
vector of T My is called thenull section

One of the most important applications of the idea of tan@pentle occurs in ana-
lytical mechanics where the tangent bundle generalizesdheept of a state space.
A mechanical systeis a collection of mass particles which interact throughghy
ical constraints or forces, such as the pendulum of Figu&).(3 configurationis

a specification of the position for each of its constituentipkes. Theconfiguration
spaces a setM of elements such that any configuration of the system cooregsgpto

a unique point in the séil and each point itM corresponds to a unique configura-
tion of the system. The configuration space of a mechanis&tgyis a differentiable
manifold called theonfiguration manifoldAny system of local coordinategon the
configuration manifold are callegeneralized coordinate§ he generalized veloci-
tiesq are elements of the tangent spaceMl{dlr My represented in the natural basis.
Thestate spacés the tangent bundl€M which has local coordinates, g).

‘
‘
: D
,
‘
™|
‘
e :
‘

Fig. 3.5: The pendulum illustrates the relationships betwthe configuration manifolsl, the
tangent spac& Mg, and the state spadeM.

3.3.2 The Differential Map

LetC be a curve irM parameterized by the mappigg R— M. LetF : M — N be
a smooth mapping. The image©funder the mapping is the curveC in N which
has a parameterizatign= F o ¢. Refer to Figure (3.6). At any poim on C there
is a tangent vector € TMp which maps to a tangent vectoe T Ne ;). We wish to
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determine the induced mappifg: TMp — TN: ;) which takes tangent vectors into
tangent vectors.

In local coordinates, the chain rule provides

dp JF dg

dt " axdt (34
_ OF
V= WV (3.5)

This relation defines the desired mappiRg,in local coordinates. We note that it is
linear and that its matrix representation is simply the B&ooof the mappind. F.
is called thdlifferential mapof F and is sometimes denotédd. Notice that

oF oF

vi:vla—xl+~~~+vma—Xm_v(F.), i=1,...,n (3.6)

So that

V() = (V(F(p)),-..,V(Fa(p))), y=F(p) €N 3.7)
From the derivational point of view, the mappid§ is realized in local coordinates
by

n

TV o VRP) = SRR ()

wherey are the local coordinates dw. Because the differential map takes tangent
vectors inT Mp to TN: ) it is defined at the poinp. Thus, it would be appropriate
to write F*|p or dF|p. However, the point of evaluation is typically not indicaend

is normally clear from the context.

Fig. 3.6: Motion along a curve in the manifodd maps into a manifoldN. The mapping
induces a map between the tangent spadds and T NE (p)-

The following is a useful result which provides for compgtithe differential map
for composite functions

Lemma 3.16.Suppose EM — N and H: N — P are smooth maps between mani-
folds, then
d(HoF)=dHodF

where dF: TMx — TN_g(x), dH: TN, — TPy and dHoF ) : TMx = TRy (g (x)-
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Proof: Direct computation in local coordinates provides the matpresentation of
d(HoF). Foranyv € T M

_OH(F(X) , _ 9H(Y) OF ()

d(HoF)(w) = 0 2w = SE S

(v) =dH(dF(v)) = dHodF(v)

3.3.3 Cotangent Spaces

The dual space td M, is denotedr “Mp and it is called the&ontagent spacto M at

p € M. The elements of *M;, are calledangent covectorsRecall that the dual space
V* of alinear vector spacé is the space of linear functions frovhto R. Thus, if we
identify the elements of Mp as column vectors of dimension, the covectors may
be thought of as row vectors of dimensionThere is a natural relationship between
the differential mapping and the cotangent space.¢g.be a smooth mapping :

M — R. Its differential atp € M is a linear magp. : TMp — TRyp) = R. Sinceq. is

a linear map fronT M, to the real line, it is an element of of the dual space My,
that is, the cotangent spa€éMyp. In local coordinates, is realized by

|20, %0

0X1’ ’ 0Xm

J =Vv(9)

Let€,i = 1,,mdenote the natural basis vectorsld¥l,. The natural basis vectoes
for T*Mp are defined by the relations

ge =4aj,i,j=1,...m (3.9
Recall, that

1 0 0

0 1 :

. : 0

0 0 1

so that the basis vectors féiM, are the row vectors

e = [4,0,..,0], & = [0,1,..,0], ..., €, = [0,0,..,1] (3.11)

Correspondingly, in the derivations viewpoifitM, is a linear vector space of dif-
ferential operators which act on scalar valued functionsamnd the basis elements
for TM,, areg = 0/0x;, i = 1,,m. The differential map associated with the smooth
mappingp : M — Ris

@.(V) = V(9) (3.12)
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Of course, there is a one to one correspondence betw@gd/dy € TR, and
v(p) € R Thus, itis convenient to writeg(v) = v(¢) and refer talg as the differen-
tial mapping. In this way we again identify the differentiahppings of scalar valued
functions as elements df*My, i.e., the differential mappingsg(v) are cotangent
vectors. We seek basis elementdifM, €, such that

PO A/ N
Q(eJ)_Q (a_xj>_djalvj_177m (313)
Let ¢ = x;, the coordinate map, and notice that
00X o
dx x ~ ox, = §j (3.14)

Thus, the set of cotangent vectdidx, .., dxn} constitute a basis for the cotangent
spaceT *“Mp. Now, any smooth functiop : M — R gives rise to a cotangent vector
de which can be expressed

do = Z:il\ffdx (3.15)
_ 99

Vi = I (3.16)

so that to_ o @d)q .
i; 0%

Supposé : M — N is a smooth map. Recall that its differentig),or dF : TM, —
TNe(p), is alinear map that takes tangent vectordlito tangent vectors iN. This
map is realized in local coordinates by the JacobiaR.g€onsequently, there is an
induced map between cotangent spaces calleddddferentialand denotedF* or

OF : T*Ng(p) — T*Mp. This map, realized by the transpose of the Jacobidn of
sometimes called thgull-backas it takes covectors dviback to covectors ohl. To
see this, consider a covectare TMg. Thenw is a linear mapping that takes each
ve TMptoR LetF : M — N be a smooth mapping. Then the induced differential
mapdF takes vectors i My into TNg (), in local coordinates

oF

= 3.18
W=V (3.18)

We seek a covectqr € T N,*;(p) such thatv = pwfor allve TMy, i.e.,
wv:ua—Fv, Y e TMp (3.19)

ox
Clearly, in local coordinatesy andu are related by
JoF

w= “R (3.20)

This is the pull-back mapping.
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3.3.4 Vector Fields and Flows

A vector field f(x) on a manifoldM is a mapping that assigns a vectoe T My,
whereT My is the tangent space M atx, to each poink € M. Formally, we define:

Definition 3.17. A vector fieldv on M is a map which assigns to each poirg M, a
tangent vector {p) € T M. It is a C<-vector fieldif for each pe M there exist local
coordinatesU, ¢) such that each componentx),i = 1,....m is a & function for
eachxe ¢(U).

A vector field can be viewed as a mappwmgM — T M with the property that the
composite mappingov: M — M 1is the identity mapping, i.e7o v(x) = x. Thus,
the vector fieldv is a section of the tangent bundle.

Definition 3.18. Anintegral curveof a vector field v on M is a parameterized curve
p=o(t),t € (t1,t2) C R whose tangent vector at any point coincides with v at that
point.

Consider local coordinat¢l, ¢ ) onM, and the induced natural coordinatesiav,,.
Then if g(t) is an integral curve, its imaggt) = ¢ o @(t) C R™ must satisfy the
differential equatiordx/dt = v(x).

If v(x) is sufficiently smooth, standard existence and uniqueresséms for sys-
tems of ordinary differential equations imply correspardproperties for integral
curves on manifolds. First we define a maximal integral curve

Definition 3.19. Let I, denote an open interval of R withe |,. Suppose : |, = M
is an integral curve of the vector field v such th@0) = p. The integral curvep is
maximal if for any other integral curve : [, — M with ¢(0) = p, thenl, C I, and

o(t) = o(t) fort € Ip.
Now, the existence and uniqueness theorem can be stated.

Proposition 3.20.Suppose v is a smooth{jGvector field on M. Then there exists a
unique maximal integral curve : 1, — M passing through the point @ M.

Proof: The result follows from the standard results on differdmtpations. [ ]

Definition 3.21.Let v be a smooth vector field on M and denote the parameterized
maximal integral curve through @ M by ¥(t, p) so that¥ : 1, x M — M where | is

a subinterval of R containing the origin ar#l(0, p) = p. W(t, p) is called theflow
generated by.

Lrecall thatrtis the natural projection.
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The flowW has the following basic property.

Proposition 3.22.The flowW¥ of a smooth vector field v satisfies the differential

equationon M
d

a"p(t, p) = V(W(tv p))? L’U(Ov p) =p

and has the semigroup property
P(tz,W(t1,p)) = ¥(t1+t2,p)

for all values of {,t, € R and pe M such that both sides of the relation are defined.

Proof: The differential equation merely states tlas tangent to the curv#/(t, p)
for all fixed p. The initial condition is part of the definition d¢. The semigroup
property follows from the uniqueness property of differahéquations. Both sides
of the equation satisfy the differential equation and haeesame initial condition at
to =0. ]

We will adopt the following notation
expitv)p:=W¥(t, p) (3.22)

The motivation for this is simply that the flow satisfies theeth basic properties
ordinarily associated with exponentiation. In particiNee have (from the properties
of the flow function):

exp(0-v)p=p (3.22)
%[exp(tv) p] = v(exptv)p) (3.23)
exp(t1 +t2)v]p = exp(tiv)exptav)p (3.24)

whenever defined. Note the distinction between the vectht fised as a column
vector () and as a derivatiorvj.

The vector field is said to beompletef 1, coincides withR. Thus the flow is defined
on all of Rx M.

Further justification for the exponential notation comestirthe action of a vector
field on functions. Lev be a vector field oM andf : M — Ra smooth function. The
value of f along the flow (along an integral curvewpassing througlp) is given in
local coordinates by (exp(tv)x). Then the rate of change éfcan be computed

%f(exp(tv)x) _ 5f(e>;p)1((tv)x) dexgitv)x _ 5f(e>;[§tv)x)v(exqtv)x)

— 3 Vi(exp(tv)) F(exp(tv)x) = v(F) (exp(tv)x) (3.25)
i=1 1

wherev = {vy(X),...,vm(X) } is also in local coordinates. Similarly,
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2

— f(exp(tv)x) = v*(f)(exp(tv)x) (3.26)

wherev? = v(v(f)), and so on. Thus, the Taylor series altost0 is

2

fexptv)x) = f(x)+tv(f)(x)+ t§v2(f)(x) +o= ki%vk(f)(x) (3.27)

A similar formula is valid for vector valued functios: M — R". Let us interpret
the action ofv on F component-wise, that is(F) = (v(F1),...,v(Fn))T. Then we
have

2

F(exptv)x) = F(x)+tv(F)(x)+tEv2(F)(x)+---—ki%vk(F)(x) (3.28)

An important operation is the diie derivativeof a mapF : M — R with respect to
a vector fieldvon M.

Definition 3.23. Let (x) denote a vector field on M and k) a mapping E M — R",
both in local coordinates. Then tHde derivativeof F with respect to v of order

L kis
=
LOF)=F, LYF)= oty (F), (3.29)
ox
Using this notation we can write
V() (%) =Li(F)(x) (3:30)
so that
F (exp(tv)x) z —Lk (3.31)

In particular, suppos€ is the coordinate map frov to R™, F(x) = x, so that
F (exp(tv)x) = exp(tv)x and we have

2

t 2tk
exptv)x = X+t v(X)(x) + 2v Z)k' )(X) :k;HL\‘j(x)(x)

(3.32)
The Taylor expansion is identical to that of the classicalamential.

3.3.5 Lie Bracket

The Lie bracket is a binary operation on vector fields thasieatial in the subse-
quent discussion.
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Definition 3.24.1f v,w are differentiable vector fields on M, then thé&ie bracket
[v,w] is the unique vector field defined in local coordinates by thmbila

[Vv,w] = d_wv_ 0_\/W
T ox o ox

In terms of the derivation viewpoint, the Lie bracket is theque vector field satis-
fying

v, w](f) =v(w(f)) —w(v(f)) (3.33)
for all smooth functionsf : M — R. In local coordinates we can easily derive the
formula

m 0 m m ow avi | 0
[v,w] = i;{v(wi) —w(v) ox = Zijzl{\/j d_x, _Wid_xj} % (3.34)

which is precisely the definition we have adopted.

The Lie bracket can be given useful geometric interpretati&irst, let us consider
the Lie bracket as a directional derivative. We will compilite rate of change of a
vector fieldw as seen by an observer moving with the fl#{{x,t) generated by a
second vector field.

Proposition 3.25.Suppose,w are smooth vector fields on M akix,t) is the flow
generated by v. Then
dw(¥(xt))
dt t—0

Proof: We need to compang(¥(x,t)) with w(x) ast — 0. Since these two vectors
exist in different tangent spacesNly ) andT My, respectively) we need to ‘pull

back’ w(¥(x,t)) to the tangent spacEMx. This is easily done using the differential
map. Thus,

dW(‘P(X,'[))‘ — lim [%(X,ft)w(lp(x’t)),w(x)}
d t=0 t=0 t
= lim {(I7VX(X)t)(W(X)+th(X)V(x)t)fw(x)}
t—0
= W(X)V(X) — V(X)W(X)
= [vw]|,

Now, let us consider the Lie bracket as a commutator of flovegifhing at poink
in M follow the flow generated by for an infinitesimal time which we take age
for convenience. This takes us to a pgist exp(+/€ v)x. Then followw for the same
length of time, then-v, then—w. This brings us to a poinp given by (see Figure
(3.7)):

P(e,X) = e VEWg VEVeVEWVEVy (3.35)
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Proposition 3.26.Letv andw be smooth vector fields on M. The4ie, x), as given
by (3.35), with x fixed defines a continuous path in M. Moreover

d
& (O+7X) = [VvW”x

Proof: Our proof follows [89]. Let us writgy = eVéx, z= eVeWy, u=e V& y =
e V&%, Now, for any vector field’ we can use the Taylor series representation for
the flow function, i.e.

€Vx = X+ V(X)t + v (X)v(x)t? + O(t3)

Applying this successively tg, we obtain

P = u—w(u)VE + 3wy (u)w(u)e + O(e3/?)
=z—{W(2) +V(2)} VE + { 3w (2W(2) + W (2)W(2) + S (2)V(2) } €
+0(£%7?)
= Y= V(Y)VE+ {W(Y)W(Y) — W(Y)V(Y) + 3%(Y)V(Y) } € + O(e3/?)
= X+ {W(X)W(X) — Wy (X)V(X) } £ + O(£%/?)

Differentiating with respect tg we get the desired result:

(;_i' e Vi (X)W(X) — Wy (X)V(X)
[

As we will see in later chapters, this theorem has importangtlications for the
control of certain types of nonlinear systems.

We say that the vector fieldsw (or their flows)commutef
P(e,X) = x =g VEWg VEVeVEWgVeEvy (3.36)

for all ,v € Randx € M such that both sides are defined. The two vector fields
commute if and only ifv,w] = 0. See Figure (3.7).

We can define higher order Lie Bracket operations. For rawtaticonvenience we
define thead operator.

Definition 3.27.1f v,w are CX vector fields on M we define th&'4order iterated Lie
bracket oradoperation:

add(w) =w, ad(w) = [v.ads (w)] (3.37)

The following identity will prove useful.
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Fig. 3.7: The commutation properties of the Lie bracket Bustrated in this diagram.

Lemma 3.28.Suppose h is a smooth scalar valued function on a manifold #fan
g are smooth vector fields on M. Then

Proof: Compute, in local coordinates

_ 9(Lgh)
and
oLgh _ 0 (oh \ _ (9% ohdg
ax ox\ox9) ~\9 a2 T axox
Consequently
0%h dhdg
_qr? e OHOY
Lngh— 02f+aXdX
Similarly,
0’°h  ohof
_¢To 1, onot
Lobeh=1 929" ax ox9

Sinced?h/dx? is symmetric, we obtain

Cohfog, of \ oh.. .

This is the desired result. [ |
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3.3.6 Covector Fields

Like vector fields, covector fields play an important role ir subsequent discus-
sion.

Definition 3.29. A covector fieldor one-formw, on a smooth manifold M is a map-
ping that assigns to each pointepM a tangent covectos(p) in Ty M.

With any smooth functiol : M — R one can associate a covector fidil. On the
other hand it is not every covector field can be expresseckadiffierential of a scalar
function.

Definition 3.30. A covector field2 on the manifold M is said to bexactif there
exists a smooth, real vaued functidbn M — R such thato = dA.

Recall that the Lie bracket can be interpreted as a direattiberivative ((3.25)). We
can define a directional derivative for covector fields ad.v&lpposew is a smooth

covector field an& a smooth vector field on a manifol. As usual denote the flow
generated by, eminating fromx € M att = 0 by ¥(x,t). We wish to compute

do(¥(x,t))
dt

(3.38)
t=0

Proposition 3.31.Suppose v is a smooth vector field ané smooth covector field
on M. For each x M the derivative exists and in local coordinates is given by

[dwT T af
fl +w—=—

dw(W(xt))
X ox

dt

t=0

Proof: Again, we need to pull bacto(¥(x,t)) from Tj,(xlt)M to TSM and compute

dow(¥(xt))
dt

Now, for smallt the pull back is approximated by

=lim

t—o =0 t

{GW(x,t) w(W(xt)) — w(x)}

dw(x)T

;
6W<x,t>w<wx,t>>w<w<x>+[ e ><l+vx<x>t>

so that
do(Wxt)| . 1f[dwXT T 5
@t | t|£n n X VX)t|  + (X)W (X)t + O(t?)

The result follows. ]

Thus, we give the following definition.
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Definition 3.32.Let f be a smooth vector field amgla smooth covector field on M.
TheLie derivativeof w along f is the unique covector field denotedd and defined
in local coordinates at the point& M by

o’ 17 of

Remark 3.33 (Lie Derivative of a Differential Forn§upposéh(x) is a scalar func-
tion and let the covector field be defined by

w=dh(x)= (52 ... B

0xq oXn

Using the formula in Definition (3.32) it is straightforwatimlcompute

92h(x)  dh(x) af(x)

_ T
Li(dh) = (x) o2 T ax ax

On the other hand, recall that the Lie derivative of the schlaction h(x) with
respect to a vector fieldl is

Lih= f
f ox (X)
We can differentiate to compute

d°h(x)  ah(x) af(x)

_ 4T
d(Lth)=f"(x) EN + X ox

Hence, we see that
d(L¢h) =L¢(dh)

3.4 Distributions and the Frobenius Theorem

3.4.1 Distributions

Letvy,..., Vv denote a set af vector fields on a manifoli¥ of dimensiorm. A(p) =
spar{vi(p),...,(p)} is a subspace af My ~ R™.

Definition 3.34. A smooth distributiom on M is a map which assigns to each point
p € M, a subspace of the tangent space to M at\pp) C T M, such thatA, is
the span of a set of smooth vector fields.v.,v, evaluated at p. We writd =
spaf v, ...,V }. AdistributionA hasdimension dimspafvi(p),...,v(p)} at p. It

is nonsingular (or regular) at poimt€ M if there is a neighborhood of p in M on
which the dimension &f is constant. Otherwise, the point p is@gular poinofA.
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In general thébasisvector fields{vy,...,v; } are not unique. I is a vector field on
M we say thaw belongs to a given distributiat on M if v(p) € A(p),Vp € M. We
write ve A. Supposé&J C M is an open set and is of constant dimensiononU.
For a smooth vector fielde A = spavy,...,v;} onU, it follows that there is a set
of smooth coefficients;, . .., ¢ such that

r

v(p) = Zlci(p)vi(p), Vpeu (3.39)

The notion of an integral curve of a single vector field can bpeagalized to that of
an integral manifold of a set of vector fields or its corresing distribution.

Definition 3.35. Anintegral submanifolef a distributionA = spar{vy,...,v } isa
submanifold NC M such that T = A(p) for each pe N. The distributiom or the
set of vector field$vs, ..., v } is said to be (completely) integrable if through every
point p€ M there passes an integral manifold.

SupposeN is an integral submanifold af = sparf{vy,...,v;} onM. Then
TMpDA=TN, (3.40)
and dim(T Np) = dim(N) at eachp € N. But

dimA(p) = dimspafvi(p), ..,V (p)}

may vary asp varies throughoutl. Thus, not all integral manifolds need be of the
same dimension. Moreover, there may be a manifbldf smaller dimension than
A that is tangent to it in the sense thatcontains a subset of smooth vector fields
that sparil N, at each poinp € N. This is the basis for a weaker notion of integral
manifolds and integrability that is sometimes employed.this reason the integral
manifolds of the above definition are sometimes caffeakimalintegral submani-
folds and the terminology completely integrable requites éxistence of maximal
integral manifolds.

Definition 3.36. A system of smooth vector fielgs, ..., v } or the distributionA =
spar{vy,...,Vy} on M is said to ben involution or involutive if there exist smooth
real valued functions'kb(p), peMandi j,k=1,...,r such that for each,ij

m
vi,vil = § olw
2,

The concept of an involutive distribution is key to many imjaot results. The fol-
lowing Lemma provides a result that will prove extremelyfusan applications.
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Lemma 3.37.Supposeél = {vi(X),...,w(X)} is a smooth, nonsingular and involu-
tive distribution of dimension k on a neighborhood U gfixR". Then there exists a
smooth integral manifold &, of dimension k, passing through the poigtMorover,
the manifold is parametrically characterized, locally ara x, by the mapping:

P(s) = Gt o @200 G (Xo)

whereq (X) = gi(x,t) is the flow generated by the vector fiel¢ky and ‘o’ denotes
composition with respect to x.

Proof: According to Definition (3.4) we need to show that there exésheighbor-
hoodV of the origin inR" such that
(i) @(s) is a smooth one-to-one map ¥n
(i) @(s) satisfies the maximal rank condition for eah V
(iii) the manifold @(V) is an integral manifold of, i.e., eachd(x) /ds € A(x),
i=1,...k

Notice that the mapping is well defined on a neighborhood@btigin of R because
each flow functiong (x0) is defined for sufficiently smatl Now, use the chain rule
to compute

9 ot gt
_;P L 3.1 %(QSO"'O%SK(XO))
i (HSO

X X

ot gt

S T (g oo g (%))
In particular, as =0 we havergO 0---0 qq?(xo) = X, for eachi, including @(0) = xo,
so that

9¢(0)
Js

Since the tangent vectoxg(x0), i = 1,...,k are independent, the mappigghas
rankk ats= 0. This establishes (i).

=Vi(xo)

Notice that the poink; = (,qS o--- @ (xo) reached by propogating forward froxg
can also be reached by propogating backward frone., x; = qu*l 0. (pfsl(x)
so that )
[0} . _s_ _
350 = (@), (@) v (a1 o 3 )

wherex = ¢(s). In view of the fact that vectordg(0) /ds are linearly independent,
for sufficiently smalls, so are the vectordg(x) /ds. What remains to be shown is
that each?q)(x)/ﬁa € A(x),i=1,...,k This calculation is given in [7, p27]. &

Example 3.38 (Parametric from Implicit Manifold)ne useful application of Lemma
(3.37) is the development of a parametic representation wfaaifold from an
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implicit representation. Consider the mappiRg R¢ — R", k < n and suppose
rankdF /dx = k on the set

M= {xeR"|F(x)=0}
ThenM is a regular manifold of dimensiam— k. It follows that

A(X) = kera';—ix)

is a nonsingular, involutive distribution of dimension k. M is an integral manifold
of A. Letvi(X),...,vh_k(X) be a set of basis vector fields fdrand supposeg
M. Now, let ¢* (x) denote the flow corresponding to the vector figltk). The a
parametric representation of theis the mapp : R* ¥ — R given by ¢(s) = q)lsl o

B (%0).
To compute the parametrig(s) givenF(x) requires the following procedure. The
calculations involve four steps:
(i) compute the JacobiddF,
(ii) generate a smooth basis set for Rér,

(iif) compute the flow functions ( a local parameterizatiamde based on the expo-
nential map),

(iv) form the composition.

These steps have been implemented irRte®acfunction:
ParametricManifold[f,x,x0,n]

The following illustration shows that the calculations -eethough local, because

of the use of the exponential map — capture interesting clexistics of the surface.

In[9]:= F={x33+x2xx3+x1};

In[10] : = Surf= ParametricManifold [F,{x1,x2,x3},{0,0,0},3]

2 vector fields computed.

2 flow functions computed.
Qut [10] = {{—k1®—k1 k2 k2 k1},{k1,k2}}
In[11] : = ParametricPlot3D  [Surf [[1]][[{1,2,3}]],{k1,—1.5,1.5},{k2,—2,2},
PlotPoints- > {25, 25},
BoxRatios- > {1,1,0.3},
AxesEdge- > {None None None},
ViewPoint- > {0.25,—1,0.5},
Boxed- > Falseé
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We are now in a position to state the key result of this sect@me formulation of
the original Frobenius theorem is as follows.

Proposition 3.39.Let{v1,...,v} be a nonsingular set of vector fields with
dimspadvy,..., vy} =k

on M. Then the set of vector fields or the distributibr= spar{vi,...,v } is inte-
grable with all integral manifolds of dimension k if and oiifijt is involutive.

Proof: Sufficiency is established by Lemma (3.37). Necessity isguias follows.
Supposeg is a point on an integral manifol of A. Then there exists a neigborhood
U of xp and a mapping : R” — R" X such that, aroungy, M is defined by

M = {x€U |F(x) = 0}
SinceM is an integral manifold, by definition we have

oF .
Evi:o, i=1...,k

or equivalently,
LyFi(x)=0, i=1,....k, j=1,...,n—k xeU
Now, compute the Lie derivative & along the vector fieldv;, v].

v M)

Thus, we have
oF
= Vil (9 =0
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But the kerdF /dx is spanned by the vectors(x), . .., vi(X). Thus, we conclude that
[vj,vi] € Afori,j=1,...,kso thatA is involutive. [ |

These integral manifolds allow a partition bf into submanifolds of dimensiok
The set of all integral manifolds is calledfaliation of the manifoldM, and the
integral manifolds are thieavesof the foliation.

A stronger version of this theorem is due to Hermann.

Proposition 3.40.Let A = spar{vy, ...,V } be smooth distribution on M. Then the
system is integrable if and only if it is in involution.

Proof: See [39] ]

This theorem provides necessary and sufficient conditionsntegrability. Once
again, the manifoldM is filled with integral submanifolds. However, the integral
submanifolds need not be of the same dimension. A more caegikcussion of the
Frobenius theorem and its implications can be found in []L67].

Example 3.41 (Foliation of a Singular DistributionAn example of an integrable,
but singular, distribution is the following. L&l = R® and consider the distribution
A = spar{v,w} with

-y 2zx
v=| X |,w= 2yz
0 Z+1-x2—y?

A simple calculation shows th&t w] = 0 so that the distributiod is completely in-
tegrable. However, the distribution is singular because/di= 2 everywhere except

1. on the z-axis{= 0,y = 0)

2. onthe circle® +y>=1,z=0

where dimA = 1. Thez-axis and the circle are one-dimensional integral mangold
All others are the tori:

Te= {(x,y,z) € R3’(x2+y2)*1/2(x2+y2+22+1) =c> 2}

Setr? = x? +y? to obtain a representation of the torus in polar coordinates

-5 (-
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3.4.2 Coordinate System from a set of Vector Fields

We will encounter situations in which we would like to know @hem given vector
fields,{v,...,vn} defined on am-dimensional manifoldN can be used to establish
local coordinates oNl.

Theorem 3.42.Given a set of smooth vector fielfds, ..., vy} on the n-dimensional
manifold N, there exist local coordinates x around pl, with

0

ax

if and only if

(i) dimspar{vi(p),...,va(p)} =n, and
(ii) [vi,vj]=0, 1<i,j<n

Remark 3.43Note that since the Lie bracket is antisymmetric, the t&shéed only
be applied for i <n,i <l <n.

Proof: For sufficiency follow Warner’s [107] version of the FrobesiTheorem.

To prove necessity, assume there is a local coordinatensydédined by a chart
{U, ¢} consisting of a coordinate map: U — V whereV is a neighborhood of 0
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in R", U is a neighborhood op in N and ¢ (p) = 0. Then there ara independent
induced coordinate directions given by the vector fields

o0, o
ax O

thereby establishing (i). Now consider a two dimensioriaédl;; in U defined by
Uij ={peU|d(p) =c ke {1,....n}\{i,j}}

where thecy’s are arbitrary constants, sufficiently small so thigt# 0. Take two
arbitrarily close points, b € Ujj with local coordinates? = ¢ (a), x° = ¢ (b). Then,
the coordinates ad andb are related by

Wb — Vi (83 Qi (P ) 2

or going the other way
X — Vi 0§ @i (€—) b

In other words, the flows generated by the vector fieldg, commute. In the limit
x2 — xP this implies thafvi, v;] = 0. |

3.4.3 Codistributions

We may work with dual objects to vector fields and distribosioA covector field w
onM assigns to each poipte M an elementv(p) € T*M,. A codistributionQ onM

is a mapping which assigns a subsp&Xig) of T*Mp to each poinp € M. As with
distributions we write2 = spaf{wj, ..., w, }. Distributions are sometimes associated
with special codistributions. As an example, for eqch M, theannihilator of the
distributionA (p) is the set of all covectors which annihilate vectorgifp)

At(p) = {we T*Mp|w(v) =0, We A(p) } (3.41)

Itis sometimes more descriptive to denote the annhilatdrioy anmA as an alterna-
tive to A+. Conversely, given a codistributid®, we define itkernel, a distribution
QJ_

Q*+(p):={ve TMplv(w) =0, Ywe Q(p) } (3.42)

Sometimes we write ké2 as an alternative t®@~. It is not difficult to verify that
the if pis a regular point of a smooth distributi@h then it is a regular point of the
codistributionA+. Moreover, there is a neighborhoddof p such thatA+ restricted
toU is a smooth codistribution.

Remark 3.44 (Computing with Distributions & Codistribut&). The comments above
are consistent with the association of a distribution withatrix whose columns are
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its basis vector fields and the association of a codistobutiith a matrix whose
rows are its covector fields. Then it is possible to do forn@htwise geometric
calculations (like projections) with distributions anddégtributions using standard
constructions from linear algebra. Some elemetary ralatigps between distribu-
tions and codistributions will prove particuarly usefullater calculations. For ex-
ample /A1 N Az]l = Aj + A5 provides a convenientway to compute the intersection
of two distributions.

Now, suppos&l = spar{vy,...,V} is @ smooth, involutive, and nonsingular distri-
bution of dimensiork on a neighborhootd of p € M. Thek-dimensional integral
surfaces ofA can be characterized @hby m—k functionsA;(x) =cy,...,Am_«(X) =
Cm_k- Moreover, for eaclx € U, the differentialsdA, ..., dA,_x must must be or-
thogonal toA or equivalently, the codistributiof2 = A' is spanned by the exact
covectorsiAg,...,dAn_k. These observations lead to another version of the cldssica
Frobenius theorem.

Proposition 3.45.Supposé = sparfvy, ...,V } is a smooth, involutive, and nonsin-
gular distribution of dimension k on a neighborhood U of M. Then there exist a
set of functiond1(x),...,Am_k(X) on U that satify the first order partial differential

equations
oM

ox
co v w]=0
9Am-k
X

The ideas embodied in the Frobenius theorem will prove toubnedmental to the
study of nonlinear control systems. The integral surfacgdied by the theorem set
up a natural coordinate system that will be used below toystaatrollability and
observability. For the moment, however, consider the faithgy problem of finding a
coordinate system ‘matched’ to a given distribution. Siggdb= spar{vi,..., v } is

a smooth, nonsingular, involutive distribution of dimesrsk on some neighborhood
U of a pointxg in an mdimensional manifoldvl. Assume that the distribution is
characterized by a set of local coordinatesThen there ar&-dimensional integral
surfaces that form a foliation &f. Now, we wish to choose local coordinatesin

k of which locate points within these surfaces and the remgini— k coordinates
identify the surface.

We can characterize the integral surfaces in two ways.,Fidjbin to the giverk
vector fields an additionah— k vector fieldsvg, 1, ..., Vvm such that
spar{vy,...,Vm} =R" (3.43)

Let ¢ (t,x) = @!(x) denote the flow generated by the vector figldThen the com-
position
W(z,...,Zm) = Yo P2 o -+ o YN (Xo) (3.44)
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defines a coordinate transformatios ¥(z). The new coordinates are the flow lines
associated with then vector fields. In fact¥ ()|, , o ;o is & parametric repe-
sentation of the integral surface passing through the pginOther leaves of the
foliation are obtained by settirg,; = ¢k, 1, . ..,Zn = CmWherec, 1, ...,Cm are con-
stants. Thus, the integral surfaces are naturally idedtifiehese new coordinates.

Another characterization of the integral surfaces can ltaioéd by identifying the
functionsAs,...,An_k of Theorem (3.45). Letb(x) denote the inverse coordinate
transformation, i.ez= ¥~1(x) = ®(x). Then

M(X) = Di1(X), ., Amic(X) = Pm(X) (3.45)
Note that
A(X) =c1,.. s Amk(X) = Cmk (3.46)

provide implicit representations of the integral surfa€&soosing the constants =
0,...,cm_k = 0 produces the surface passing through

Example 3.46Consider the following example from Isidori ([46], Examflet.3).
The given distribution

A = spar{vy, Vo }
is involutive. We add the vector field :

2X3 —X1 1
vi=|-1 , Vo = —2Xo , V3 = 0
0 X3 0

and compute a new coordinate system as described in thepsgraragraphs.
In[12]:= v1={2 x3 -1,0};v2={—x1,—2x2,x3};v3={1,0,0};
First, let us check involutivity.

In[13]:= Involutive  [{vl,v2},{x1,x2,x3}]
Qut [ 13] = True

Now, check to insure thag as specified does indeed complete the set.

In[14]:= Span[{vl,v2,v3}]
Qut[ 14] = {{1,0,0},{0,1,0},{0,0,1}}

TheMathematicgunctionDSolve to compute the flows. To do so, we need to con-
vert the vector fields to ordinary differential equationshie form thatMathematica
requires. Thé’roPacfunctionMakeODEsdoes this.

In[15]: = Egnfl=MakeODE${x1,x2,x3},v1,{]
Eqnf2= MakeODE${x1,x2,x3},v2,1]

Eqgnf3= MakeODE${x1,x2,x3},v3,1]
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Qut [ 15] = BoxDat a({—2 x3[t] +x1'[t] == 0,14+ x2[t] == 0,x3'[t] == 0})
Qut [ 15] = BoxDat a({x1[t]+x1'[} == 0,2 x2[t]+x2/[f] ==0,—x3[t] +x3'[t] == 0})
Qut [ 15] = BoxDat a({—1+x1'[t] == 0,x2'[t] == 0,x3[t] == 0})

In[16]:

solsl= DSolve [Join [Eqnfl,{x1[0] == y1,x2 [0] == y2,x3[0] == y3}],
{x1[t],x2[t],x3[t]},1];

sols2= DSolve [Join [Eqnf2 {x1[0] == y1,x2 [0] == y2,x3[0] == y3}],
{x1[t],x2[t],x3[t]},1];

sols3= DSolve [Join [Eqnf3 {x1[0] ==y1,x2[0] ==y2,x3[0] ==y3}],
{x1[t],x2[t],x3[t]},1];

In[17]: psil= {x1[t],x2[t],x3[t]}/.sols1 [[1]];
psi2= {x1t],x2[t],x3[t]}/.sols2 [[1]];

psi3= {x1[t],x2[t],x3[t]}/.sols3 [[1]];

The transformation is obtained via Equation (3.44) usirdPtto PacfunctionFlowCompositon

In[ 18] : = Psi=FlowComposition [{psi3 psi2 psil},t,{y1,y2,y3},
{0,0,1},{23,22,21}, 9]

Qut[18] = {2 &2 z1+e * 23 -z1€?}

The MathematicdunctonSolve is used to obtain the inverse transformaton.

In[19]:= Trans=Inner [Equal{x1,x2,x3},PsiList]

Qut[19] = {x1==2 & zl+e * z3x2==—7z1x3== €}

I n[20]: InvTrans= Solve [Trans{z1,z2 z3}]
Qut[20] = {{z8—x3 (x1+2 x2 x3),z1— —x2,z2— Log[x3]}}

TheA functions of Theorem (3.45) are obtained using Equatioff(3.

In[21]:= A =2z3/.InvTrans
Qut[21] = {x3 (x1+2 x2 x3)}

We easily confirm the conclusion of Theorem (3.45).

In[22]:= Jacob [A,{x1,x2,x3}]
Qut[22] = {{x3,2 x¥ x1+4 x2 x3}}
In[23]:= Simplify [Jacob [A,{x1,x2,x3}].Transpose [{v1,v2}]]

Qut[23] = {{0,0}}
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3.4.4 Invariant Distributions

The importance of invariant subspaces in linear contrabthés well known. For

example, controllability, observability and modal subsgsaall have a distinctive
place in linear systems analysis. A corresponding role imlinear control theory is
played by invariant distributions.

Definition 3.47. A distributionA = spar{vi,...,v;} on M is invariant with respect
to a vector field f on M if the Lie brackét,v;], for eachi=1,...,r is a vector field
of A.

We will use the notatiofnf,A] = spar[f,vi],i =1,...,r} so thatA is invariant with
respect tof may be statefif, A] C A. Observe that in general

A+[f,A] = A+spad|[f,vi], i=1,.,r } = spafvi,.,v,[f,va],...[f, ]}

Example 3.48 (Invariant Linear Subspacdsis easily demonstrated that the notion
of an invariant distribution is a natural generalizationtlod concept of an invari-
ant linear subspace. Consider a subspaeesparvy, ...,V } of R", wherey; € R",
i=1,...,r, that is invariant under the linear mappiAgi.e.,AV C V. Define a dis-
tribution onR"

Ay (x) =sparfvy,...,}

and a vector field
fa(x) = Ax

at eachx € R". We will prove thatAy is invariant under the vector fielth. To do
so,we need only show thifia,vi] € Ay fori=1,...,r. Compute

oV afA o
Tx AT gy U= A

[fa,Vi] =
By assumptiorv; is a vector oV = spar{vy, ..., }.

The notion of invariance applies in the obvious way to coitigtions as well.

Definition 3.49. A codistributionQ = spaf wy,...,« } on M is invariant with re-
spect to a vector field f on M if the Lie derivativedy is a covector field of2.

We will use the notatioh 1 Q = spafLfw,i =1,...,r} so thatQ is invariant with
respect tof may be writter_: Q C Q.



3.4 Distributions and the Frobenius Theorem 77

3.4.5 Transformation of Vector Fields

When a distributiom\ is integrable, invariance with respect to a vector filhkes
on special significance. N is an integral manifold of\, then the integral curve df
emanating fronp € N remains inN. Using this fact, it is possible to construct a co-
ordinate transformation that puts the vector field in a ugdlock) triangular form.
Such transformations will be employed to investigate autability and observabil-
ity of nonlinear systems as well as to establish feedbadatizaton methods for
control system design. The main idea is established in tf@afimg lemma.

Lemma 3.50.Let A be a be an involutive distribution of constant dimension d on
an open subset U ofRand suppose thak is invariant under a vector field f. Then
at each point ¥ € U there exists a neighborhoochf xy in U and a coordinate
transformation z= ®(x), defined on , in which the vector field f is of the form

fl(zla"'zdvzd+17"'7zn)

£/ fd(Zla---ZdaZd+1a---7Zn)
f =
(Z) fd+1(zd+la cee 7Zn)

fn(zd+17 tee azn)

Proof: A is integrable because it is of constant dimensl@and involutive. Thus, at
each pointxy there is a neighborhoddy of Xy such that an integral manifold &f
passes through each poing Up. This implies that there exists a transformation of
coordinatez = @(x), defined orlJy, with the property that

spafd®y,q,...,ddy} = A+

i.e., the firstd coordinates, are in the integral manifolds and the remginind are
orthogonal to the integral manifolds.

Let f(z) denote the representation bfin the new coordinates. Define a family of
vector fields that define bases for the tangent spadés

T

1 .
i | i JO k#i
T(Z)— ;. aTk—{l k=i
T
Then of . of
P L e I

Moreover, for 1< i < d, the vector fieldr' € A. In fact, these vector fields form a
basis forA. By construction, in the new coordinates every vector fidld das the
property that the last— d coordinates vanish. Singeis invariant with respect té,
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we have[f, 1'] € A, so that its lash — d components vanish in the new coordinates.
Thus,

afy
ZX_0
0z
forald+1<k<nand1<i<d. [ ]
z, z:m(x)ﬁ

ifitegral manifolds

Fig. 3.8: The transformation establishes new coordinatesordinates in the-dimensional
integral manifolds and — d orthogonal to them.

The transformation of Lemma (3.50) is depicted in Figur&)Jhis result implies
that under the stated conditions 6¢x), the dynamical system

x= f(x)
can be locally represented by the triangular decomposition
73 =f(z,2)

2= ()

Let c € Up and notice that the s&; := {x € Up| 2(x) = z»(c)} is a ‘slice’ (sub-
manifold) of the neighborhoddy of dimensiond passing through the poiote Up.
Because of the triangular decomposition it is clear thaffithe f(x) carries slices
into slices. This follows from the observation that all éetories starting ir%; ter-
minate inSer. after € time units. If z(c) satisfiesfy(z(c)) =0, i.e.,z(c) is an
equilibrium point of the second equation, thHgyis invariant with respect to the flow
in the sense that any trajectory beginningimemains therein at least until it leaves
the neighborhood.

Example 3.51Here is another example taken from Isidori ([46], Examplg.4).
The distributionA = spar{vy, v} on R* with

1 0
Vi= 0 , V2= "
0 0
X2 X1

is easily shown to be involutive and invariant with repedtie vector field



3.4 Distributions and the Frobenius Theorem 79

X2
X3
X3X4 — X1X2X3
SinXz + X5 + X1X3

In[24]:= v1={1,0,0,x2};v2={0,1,0,x1};

f={x2,x3,x3 x4—x1 x2 x3Sinx3]+x2"2+x1 x3};
In[25] : = LieBracket [f,v1,{x1,x2,x3,x4}]
Qut [ 25] = {0,0,0,0}

In[26]:= LieBracket [f,v2,{x1,x2,x3,x4}]
Qut[26] = {-1,0,0,—x2}

Now, to obtain the new coordinate system we augment the fiekis of A with
V3, V4.

In[27]:= v3={0,0,1,0};v4={0,0,0,1};

and confirm that the expanded set does dgfan
In[28]:= Span[{vl,v2v3v4}|

Qut [ 28] = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

The ProPacfunction TriangularDecomposition implements the procedure
illustrated in Example (3.46) to obtain the required transfation and its inverse
and applies it to the vector fielfl

I n[29] : = TriangularDecomposition [f,{vl,v2,v3,v4}, {x1,x2,x3,x4},
{0,0,0,0}, ]

Qut[29] = {{z1,z2,z3,z1 z2+74},{x1,x2,x3,—x1 x2+x4},
{z2,23,z3 z4Sinz3]}}

Note that as required the last two elements of the transfdfied only depend on
Z3,24.

3.4.6 Involutive Closure

In this section we describe two algorithms for computingrdistions of fundamen-
tal importance to the subsequent discussion. We provideserigéon of them and
summarize their essential properties. A more completeudson can be found in
[46].

When working with distributions, a fundamental problemasfind the ‘smallest’
distribution with the following properties:

1. itis nonsingular
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2. it contains a given distributiof,
3. itis involutive,

4. itis invariant with respect to a given set of vector fields, . ., 7q.
First, let us establish the concept of a smallest distriouti

Definition 3.52. Suppose” is a set of distributions on U. Then tkenallesior min-
imal element inZ, if it exists, is the member @f that is contained in every other
member. Theargestor maximalelement, if it exists, is the member that contains
every other member.

The following Lemma is given by Isidori [46].

Lemma 3.53.Let A be a given smooth distribution and,..., 74 a given set of
smooth vector fields. The family of all distributions tha¢ @mvariant with respect
to 11,...,Tq and containgd contains a minimal element and it is smooth.

This distribution is denoteqrs,...,7q| A). An algorithm for finding will now be
described. It proceeds by defining a nondecreasing settobdisons:

Algorithm 3.54
D=4

3.47
D=L 1+57 (1,06 1] (3:47)

The essential properties of the sequence of distributiayeserated are given by the
following Lemma.

Lemma 3.55.The distributiongd, generated by Algorithm (3.54) are such that
D C(T1,...,Tq| A)
for all k. If there exists an integerksuch thatdy- = Ay-, 1, then

Thus, Algorithm (3.54) produces a distribution that is if@at with respect to the
given vector fields. Now, we give conditions under which ilso involutive.

Lemma 3.56.Suppose) is spanned by a subset of the vector fietds. ., 74 and
thatAg = (T1,...,Tq | A) is nonsingular on U. The(ry,..., Tq | A) is involutive on

Definition 3.57. The involutive closure of a given distributidnis the smallest invo-
lutive distribution containing\.
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It is obvious how Algorithm (3.54) can be used to compute tvelutive closure of
a given distribution.

The dual computation of finding the ‘largest’ distributioitinthe following proper-
ties is also important:

1. itis nonsingular

2. itis contained within a given distribuiaf,

3. itis involutive,

4. itis invariant with respect to a given set of vector fields, . ., 7q.
The existence of a distribution with these properties iegpthe existence of a codis-
tribution (namely, its annihilator) with the following pperties:

1. itis nonsingular

2. it contains the given codistributiah’,

3. itis spanned locally around eaxke U by a set of exact covector fields,

4,

it is invariant with respect to a given set of vector fields, . ., 1q.

Thus, we seek the ‘smallest’ codistribution with these prtips.

Lemma 3.58.Let Q be a given smooth codistribution arg, ..., 74 a given set of
smooth vector fields. The family of all codistributions the invariant with respect
to 11,...,Tq and containg?2 contains a minimal element and it is smooth.

This codistribution is denotetty, ..., 7q | Q). An algorithm for finding it is:

Algorithm 3.59
Q=20
Qu=Q 1+51 Ly Q1

(3.48)

Lemma 3.60.The codistribution®2, generated by Algorithm (3.59) are such that
QC(m,....1q| Q)

for all k. If there exists an integerksuch thatQu« = Q- 1, then

Qk*:<T1,,Tq|Q>

Lemma 3.61.Suppose? is spanned by a setM,...,dAs of exact covector fields
and that(ty,..., Tq | Q) is nonsingular. Thel 1y, ..., Tq| Q>l is involutive.

These two algorithms have been implemented inRtePacfunctons
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1. SmallestinvariantDistribution ,and

2. LargestlnvariantDistribution

Examples of their use will be deferred until Chapter 6.

3.5 Lie Groups and Algebras

The concepts of a linear vector space and its linear subsjgcentral to the study of
linear systems. As we have suggested, the appropriateajiza¢ion of the geomet-
ric structure of these objects is achieved by introducingifolds, tangent spaces
and distributions (and their integral submanifolds). Heere linear vector spaces
also have an important algebraic structure. By introdueinglgebraic structure to
manifolds we will make the transition: Manifolds Lie groups and distributions;
Lie (sub)algebras.

Lie groups and Lie algebras play an important role in meatsaaind nonlinear con-
trol. In the following paragraphs we give a brief summarytaf televant concepts.
Our goal here is simply to introduce essential terminologg aotation and to pro-
vide some elementary examples. The interested readerdsbonsult the many ex-
cellent references for more details.

Definition 3.62. A group is a set G with a group operation (called multiplicat) m:
Gx G— G, m=g-hforghe G, having the following properties:

1.ifg,he G,thenm=g-he G
2. associativity: if gh,k € G

g-(h-K)=(g-h)-k

3. identity element. There is an elememt & such that

e-g=g=g-e VgeG

4. inverse. For each g G there is an inverse denotedfwith the property

1

g-gr=e=g*’

g
Example 3.63 (Groups).
1. G = Z, the set of integers with scalar addition the group opematio

e=0,g '=-gVvgez
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2. G =R the real numbers with scalar addition the group operation.

3.G = R", the positive real numbers with ordinary scalar multigiima as the
group operation.

4.G = GL(n,Q), the set of invertiblen x n matrices with rational numbers for
elements and matrix multiplication the group operation.

5.G =GL(n,R), as above but the elements are real numbers.

Definition 3.64. An r-parameter Lie group is a group G which is also an r-dirrienal
smooth manifold such that both the group operation®x G — G,m(g,h) =g-h
for g,h € G, and the inversion,:iG — G,i(g) = g~%,g € G, are smooth mappings
between manifolds.

Example 3.65 (Lie Groups).

1. G = Rwith scalar addition as the group operation is a 1-paranhétegroup.

2. GL(n,R) of invertible matrices with matrix multiplication the grpwperation is
ann?-parameter Lie group.

3. LetG = R" with vector addition the group operation. This israparameter Lie
group.

4. The set of nonzero complex numbeérsform a two parameter Lie group under
(complex) multiplication.

5. The unit circleSt ¢ C* with multiplication induced fronC* is a one parameter
Lie group. This is another characterization®®2), the group of rotations in
the plane.

6. The product x H of two Lie groups is a Lie group with the product manifold
structure and the direct product group structure, {(@,h1) - (g2,h2) = (g1 -
02,1 -hp),0i € G,hj € H.

7. LetK be the product manifol@l(nR) x R" and impose a group structure Krby
defining group multiplication viéA,v) - (B,w) = (AB,v+w),A B € GI(n,R) and
v,w € R". ThenK is ann?+n parameter Lie group. In fagt is thegroup of affine
motions of R. If we identify the elementA,v) of K with the transformation
x— Ax+vonR", then multiplication irkK is the composition of affine motions.

Mappings between groups that preserve the algebraic steuct groups are of cen-
tral importance:

Definition 3.66. A map beteween Lie groups G and ¢l; G — H, is a (Lie group)
homomorphism i is smooth andp(a- b) = ¢(a) - ¢(b) for all a,b € G. If, in addi-
tion, @ is a diffeomorphism, it is called an isomorphism.
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Lie groups which are isomorphic (connected by an isomorph&re considered to
be equivalent. Thus, for example, the multiplicative LiegoR" and the additive
Lie groupR are isomorphic and therefore equivalent. The isomorphsp(t) =
€,t € R Up to an isomorphism there are only two connected one-peteaniie
groupsRandSQ(2). Recall thaN is a submanifold oM if there exists a parameter

spaceN and a smooth one to one m@pN — M such thalN = ¢(N) C M. Similarly,
we can define Lie subgroups by requiring that the magspect the group operation.

Definition 3.67. A Lie subgroup H of a Lie group G is a submanifold of G defined
by H= @(H) C G in which the parameter spac¢ is itself a Lie group andp is a
Lie group homomorphism.

Example 3.68If w is any real number, the submanifold
H={(t,wt) mod 27 t € R} C T2

is a one parameter subgroup of the toroidal gré&@2) x SQ2). If w is rational
thenH is isomorphic to the circle groupQ(2) and is closed, regular subgroupcf
is irrational, therH is isomorphic to the Lie group and is dense in the tordg’.
This Lie subgroup is not a regular submanifoldidt

The example illustrates that a Lie subgrdtipf a Lie groupG need not be a regular
submanifold ofG and hence a Lie subgroup need not be a Lie group in and of.itself
However, the following is true.

Proposition 3.69.If G is a Lie group, then the Lie subgroup-H ¢(H) is a regular
submanifold of G, and hence it is itself a Lie group, if andyafH is closed as a
subset of G.

Proof: (Warner [107]) ]

Thus, rather than prove thetis a regular submanifold d, it is sufficient to show
thatH is a closed subset @ in order to assure thad is a regular Lie subgroup,
i.e., a Lie group in its own right (Olver [89]). I is a Lie group there is a set of
special vector fields o which form a finite dimensional vector space called the
Lie algebra ofG.

Definition 3.70.Let G be a Lie group. For any g G, left and right translation (or

multiplication) by g are, respectively, the diffeomorphisRy: G+ G and lg: G —
G defined by
Rg(h)=h-g
-h

Lg(h)=g

Ry is a diffeomorphism with inversgy-1 = (Ry) 1. Note that



3.5 Lie Groups and Algebras 85

R971 (Rg(h)) = Rg(h) . gil =h- g g*l —h
Similarly, Ly-1 = (Lg) 2.

Definition 3.71. A vector field v on G is called right-invariant if

dRy (v(h)) = V(Rg(h)) = v(h-g)

forall g,h € G. Itis left invariant if
dig(v(h)) = Vv(Lg(h)) =Vv(g-h)

If v,w are right (left) invariant vector fields then soas+ bw wherea, b are real
numbers. Thus, the set of right (left) invariant vector fieldrms a vector space. If
v,w are right (left) invariant vector fields d@, then so is their Lie brackét, w].

dRy([vw]) = [v,w]-g= [v-g,w-g] = [dRg(V),dRg(W)] = [v,W]

Example 3.72 (Right and left invariant vector field$)ere are some examples of
right and left invariant vector fields.

1. G=R There is one right (or left) invariant vector field (up to axstant multi-
plier),v=1 (v = d/0x). To see this note th&(x) = x+Yy, for x,y € R. Thus,
the differential map is

dR/(v) = [ORy(X)/oX]v=V, ve TR

so that right invariance requiregx) = v(x+y) for all x,y € Rwhich implies
v(x) = constant. SimilarlyLy(x) = y+ x impliesdLy(v) =v, v€ TR so we
arrive at the same conclusion.

2.G = R" (the positive real numbers with ordinary scalar multigiica as the
group operation). In this case right and left translatieRy(x) = xyandLy(x) =
yx, for x,y € R*. The corrsponding differential maps at&(v) = yv= dLy(v)
with y € R" andv € TR{. Thus, right or left invariance requires that(x) =
v(yx) for all x,y € R*. The general solution to this relationi&x) = ax, a€ R
Thus, the unique (up to scalar multiplication) right or leftariant vector field
onR" is the linear vector field = x.

3. G =SQ2). The unique right or left invariant vector field is easily Wied to be
v(0)=1(v=20/00).

Lemma 3.73.The set of right (left) invariant vector fields of a group Gseiinorphic
to the tangent space to G at its identity element ee.T G

Proof: First we show that any right invariant vector field @is determined by
its value at the identity elemertand then that any tangent vector@oat e deter-
mines a right invariant vector field. Any right invariant vecfield v(g) on G satisfies
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dRy(v(h)) = v(Ry(h)) for all g,h € G. SinceRy(e) = g for eachg € G, we seth=e
and obtain

v(g) = dRg(v(e))
Conversely, any tangent vector @at e determines a right invariant vector field by
this same formula as we now show. First note that

dRy (v(h)) = dRg (dRy (v(e))) = d (RgoR) v(e)
SinceRy- Ry(k) = k-h-gfor anyk € G, this leads to

dRy(v(h)) = dRyg(v(e))

By assumptiorv(h-g) = dR.4(v(€)), so that we reach the conclusion that

dRg(v(h)) = V(Ry(h))

Consequentlyy(g) = dRy(v(e)) is a right invariant vector field. A similar computa-
tion establishes the result for left invariant vector fields ]

Definition 3.74. The Lie algebra of a Lie group G, denotgds the vector space of
all left (or right) invariant vector fields on G.

Since each left or right invariant vector field Gris uniquely associated with a vector
tangent toG at e, we can identify the Lie algebmgof G with the tangent space to

G ate, g= T Ge. This implies thag is a vector space of the same dimension as the
underlying Lie group. Moreover, as is convenient, we widwithe Lie algebra of a
Lie group either as the space of left or right invariant vefields or as the tangent
space to the group at the identity element.

As was done in the above proof, we will find it useful, from titodime, to contruct
left and right invariant vector fields on a gro@from an element of its Lie algebra
g - viewed as the tangent spaceGat the identity. This is accomplished using the
formulasv(g) = dLg(B) or v(g) = dRy(B), B € g, respectively. We emphasize that
in this application the differential maps take elementg # TG, — T Gg. In local
coordinates the Jacobian is evaluated at the ideatity

Example 3.75 (Euclidean Spac&upposes = R" with vector addition the group
operation. Thehy : R" — R" is given byRy(x) = g+ xwith x,g € R". The differential
mapdlg : TR, — TR}, 4 is the identity (for allx and in particular for the identity
elemenx=0), i.e.,

oL - .

0—; =1=U=vveTR, Ve TR},
Any left invariant vector fieldv(x) must satisfydLg(v(x)) = v(g+ x) for all x and
g, which in this case reduces tgx) = v(g+x) for all x,g € R". Thus, every left
invariant vector field is constant in the directiongofor arbitraryg. Thus, the set of
left invariant vector fields, and, hence, the Lie algebr&fis the set of constant
vector fields.
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Example 3.76 (Rotation Group and its Lie Algebrd)et SO(3) denote the group
of rotations of three-dimensional euclidean sp&®3) represents the configuraton
space of a rigid body free to rotate about a fixed point. An eletnwhich we denote
by L is a rotation matrix (a real 8 3 matrix withLTL = 1). A motion of the rigid
body corresponds to a paitfit) in the group. The velocit(t) is a tangent vector to
the group at the poirit(t) € SQ(3). Recall that left and right translation &Q(3) are
the functiond.a(L) = AL andRa(L) = LA, VA,L € SQ(3). We can easily compute
the differential maps associated with these functions.sittem left translation and
supposay(t) is a path inSQ(3) passing through the poiktatt = 0. Its image under
left translation byAis g(t) = Ag(t), so thag(t) = Ag(t). dLa: TSQ3). — TSQ3)aL
isdLa(L) = AL. Similarly, dRa(L) = LA.

We can translate the velocity vector to the group identigmednt by left or right
translation, thereby identifying two different elementghe Lie algebrao(3):

wpr=dLtL=LTL, was=dRrL=LLT

Since,LTL = I impliesLTL+LTL = 0, w, and ws are skew-symmetric matrices.
Moreover, as we will see in the next chaptex, is simply the angular velocity (as
observed) in the body and; is the angular velocity (as observed) in space.

The definition of a Lie algebra need not be based on the a peéerence to an
underlying Lie group. In general

Definition 3.77. A Lie algebra is a vector spaagtogether with a bilinear operation
[]igxg—g
called the Lie bracket fog, satisfying the following axioms

1. bilinearity
[avi + bwe,w] = a[v1, W] + b{vz, W]
[Va aw + b\NZ] = a[V, Wl] +b [Va WZ]

for a,b € R and vvy,vo, W, wq, W, € @.
2. skew-symmetry
[Vv W] = [Wa V]
3. Jacobi identity
[u, [v, W] + [w, [u, V] + [V, [w, U]} = O
forallu,v,we g.
Notice that in our definition of a Lie algebgeof a Lie groupG, the required bilinear

operation occurs naturally and is, in fact, the ordinary liiecket of vector fields.
The Lie algebray of the Lie groupG consists of the left invariant vector fields on
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G. But it has been shown that the Lie bracket of two left invairizector fields is a
left invariant vector field so that the ordinary Lie brackévector fields provides a
mapping[-,-] : g x g — g. Moreover, it satisfies the required properties 1), 2) and 3)
of the above definition.

Example 3.78 (Lie algebras).

1. The vector space of smooth vector fields on a manifbltbrms a Lie algebra
under the Lie bracket operation on vector fields.

2. The vector spacgl(n,R) of all n x n real matrices forms a Lie algebra if we
define[A,B] = AB—BA

3. R® with the vector cross product as the Lie bracket is a Lie akgeb

Definition 3.79. A Lie subalgebrah of a Lie algebrag is a (vector) subspace of
which is closed under the Lie bracket, i.,w] € h whenever yw € h.

If H is a Lie subgroup of a Lie grou@, any left invariant vector field okl can be
extended to a left invariant vector field @(setv(g) = dLg(v(e)), g € G and where
v(e) € THe C T Ge defines the left invariant vector field d#). In this way the Lie
algebrah of H is realized as a subalgebragf

Proposition 3.80.Let G be a Lie group with Lie algebrg If H C G is a Lie sub-

group, its Lie algebréh is a subalgebra of). Conversely, ih is any s-dimensional
subalgebra ofy, there is a unique , connected subgroup H of G with Lie sulatpe
h.

Proof: We outline the basic idea of the proof Hifis a Lie subgroup with of the Lie
groupG, then there is a common identity elemergnd T He is a subspace of Ge.
Consequenthh is a subalgebra af. To prove the converse, note that any basis,of
say{vi,...,Vs}, defines a distribution 08. Sinceh is a subalgebra, each

[Vi,vj] € h = [vi,v;] € spar{vy,...,Vs}

and thereforé defines an involutive distribution dd. Moreover, at each poigte G,
{vi,...,Vs} is a linearly independent set of tangent vectors. Thus, thednius the-
orem implies that there is amdimensional integral submanifold of this distribution
passing through every poigte G and through the identity elemeatin particular.
This is the Lie subgroupl corresponding tdn. It remains only to verify that the
manifold so defined is indeed a group. ]

Example 3.81 (Lie subalgebras).
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1. Recall thatGl(n,R) = GI(n) is the set of invertible x n matrices with real ele-
ments and that it is a group under matrix multiplication.duotfit is a Lie group
of dimensiom? The Lie algebra o6l(n) is denotedyl(n). LetH be a subgroup
of Gl(n). We wish to characterize its Lie algetiravhich a subalgebra al(n).
We can findh = T He by looking at the one dimensional subgroups which are
contained irH. That is, suppose € gl(n) = T Ge so that a is a (right invariant)
vector field onG and the maximal integral manifold of a passing throegh
{€F2 £ e R}. Thus,

h={aegl(n)|e?cHVeeR}

2. Recall the group of orthogonal matric®$n) = { X € GI(n)|X"X =1}. This
group is a subgroup d&l(n) with dimO(n) = n(n— 1)/2. Sincegl(n) = TGg
we may view the elements gi(n) asn x n matrices and its Lie bracket is then
matrix commutation. Let the matrik € gl(n), thenA € h if and only if

CONCORS
and this is satisfied if and only A" + A= 0, i.e.,A is antisymmetric.

3. Another subgroup d&l(n) is the special orthogonal group
SQn) ={X e Gl(n)|detX =1}

This Lie group is also of dimensiam(n — 1)/2. It is one of the components of
O(n). In fact, it is the connected component of the identity. Thes dlgebra of
SQ(n) is the same as the Lie algebra®fn) (they have the same tangent space
ate): son) = real skew symmetria x n matrices

Remark 3.82 (Properties of Lie algebras)n the following paragraphs,
we briefly summarize some useful terminology and elemenaoperties associated
with Lie algebras.

1. An algebra is théirect sumof two algebrasi+ b if g=a+ b is a vector space
anda,b] = 0. We then writeg = a®b. It is the semi-directsum if [a,b] C a,
i.e., if [w,v] € awhenevemw € a, v € b. We then writeg = a®sb.

2. A subalgebréa is anidealof g if [h,g] C h. If g=a®sb, thenais an ideal ofy.
fg=a;®ax®-- @ a, then eacly is an ideal ofg.

3. If H is a subgroup of5, we define the following equivalence relation. feob €
Gl
a=b(modH), ifalbeH

The equivalence classes under this relation are calle@fheosetof H and are
denotedaH. Similarly, if we define the relation

a=b(modH), ifablecH
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The equivalence classes under this relation are calledghecosetsof H and
are denotedia. H is normalif aH = Hafor allac G.

4. If H is normal, the cosets &f form a group with group operation
(aH)-(bH)=4a-bH

This group is called thquotient groupand is denote/H. Consider the exam-
ple in Figure (3.9).

H, a one-dimensional
_ P2 . 0 ’
G=R* with vector addition / subspace
A

»
>

G/H is the collection of all
hyperplanes parallel to H

Fig. 3.9: The quotient group associated with the gréug R? and its subgroup, a linear
subspace oR?, is the collection of all translations 6f.

5. Supposé is a subalgebra aj. For anyw € g, define the equivalence classvof
in g by the relation
w=v(modh), w—veh

The equivalence class af so defined is denoted + h. These equivalence
classes form a Lie algebra lif is an ideal ofg. We can define a Lie bracket
on the classes

[w-+h,v+h]:=[wv]+h

The set of equivalence classes now forms a new algebra ¢hbepliotient al-
gebra, denotedy/h.
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3.6 Introduction to Differential Forms

In this section we give a brief overview of differential fosnDifferential forms will

prove to be a useful conceptual and computational tool imgiac control the-
ory. More details can be found in many texts including [89jeTmplementation in
ProPacof the computations described here follows that of Bonah8 [

3.6.1 Differential Forms

Let M be a smooth manifold antl My the tangent space ate M. A differential
k-form is a linear antisymmetric function

W TMx - x TMy=TMK 5 R
—_— —m————
k copies

Thus, we have

1. linearity
OJ(Vl,..,A1Vi+A2\7i,..7Vk) = Alw(Vl,..,Vi,..7Vk) + Azw(Vl,..,\'ii,..7Vk)

foreach 1< i <kandA,A> € Rand
2. antisymmetry
Wiy, ... Vi) = (=) (V1. Vi)

where _
_ /0, even permutation

V= { 1, odd permutation

1-forms

If (X1,...,%) are local coordinates, théhMy has basis{d/dxi,...,d/d%}. The

cotangent space has a dual basis usually derfobed. .., dxn}, with (dx,d /9x;) =

Gj. A differential 1-form is an element in the dual space, ifgis a covector field,
and has the local coordinate representation

w=h1(X)dxg + - - - + ha(X)dx,
For any vector fieldr = 3 & (x)ﬁ/ﬁxi we have, by definition,
n

w(v) = .Zlhi (& (%) = (w,v)

Note that a real valued functioi(x) has associated with it the differential
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D of

df:i;a—)qobq

which is itself a 1-form. Thus, it operates on element$ bf;, and we can write
d f(v) =v(f)
The following notation is equivalent

df(v) = (df,v) = Ly()

3.6.2 The Exterior or Wedge Product

Let wy,...,ax be a collection of 1-forms. We can construct a differentidibim
W Awp A ...\ ax Vvia the formula

WA AWV, .., V) = defw (v))] (3.49)

This is thewedge producfor exterior produc}. The wedge product is multilinear
and antisymmetric.

1. linearity

wl/\---/\(awla—i-Bqu)/\---/\akzawl/\---/\af/\---/\a)

+Bwl/\"'/\ﬁ%ﬁ/\”'/\w
2. asymmetry

where, again
v 0, even permutation
"1 1, odd permutation

Every differential k-form may be written
wk = Y i X A AdX,

i1 <--<ik

For any smoottk-form on M we can define & + 1-form called its differential or

exterior derivative. Its differential or exterior deriixa is

0aj,...i, (X)
(?Xj

dok = > daigi (X A Al =

i1<-<ik i1<-<i, ]

Xy A A,

Example 3.83 (Wedge Product Exampleést us consider some basic calculations
with one and two forms.
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1. In the case of a 1-form = § a;(x)dx , we have the differential

a .
dw=7% dayAd =}, a—i}dxj/\dxi

2. Letv=73v (x)a/axi, wW=73SW (x)a/am be smooth vector fields and consider
dx; as a 1-form so that

a)dxi(v) =vi, dxi(w)=w

dxi(v) dxi(w
b) dxi A dxj (v, w) = d)f;((v)) d)):;((w))‘:Vin_WiVj
] _ o vidx| .
c) dxi Adx;j(v) = Vi dx; vidxj — VjdX

3. Given vector fields as in 2., we can evaluate the 2-form of 1.

9a;
dw(v,w) =3 . o (Viwj —wivj)

3.6.3 The Interior Product or Contraction

Suppose that(vi, ..., V) is a differentialk-form andv a smooth vector field, then
we define gk — 1)-formiy(w) called theinterior productor contraction

iv(w) = W(V,V1, ..., Vi1)

for every set of vector fields,,...,vk_1. Notice that the inner product is bilinear
(linear in each of its two arguments). Thus, it is sufficiendetermine it for basis el-
ements. Recall that the basis elementkftrms aredxj;, A... Adx;j,. Consequently,
we compute
i@/gxi (dle VAAN dek) =
(D)% L, A Ad,  AdXG A Al = (3.50)
0 i # jk VK

Example 3.84 (Contraction Exampleere are some elementary calculations (from
Olver [89])

1.ig/9x(dx A dy) = dy
2.ig/9x(dzNdX) = —dz
3. i@/gx(dy/\ dz)=0
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4. Consider the 2-form oR®
w=a(x,y,z)dyAdz+ B(x,y,z)dzA dx+ y(X,y,Z)dX A dy
and the vector field
V= E(y2) 2+ Ny 5+ kYD)
Then compute
iv(w) =iga/ox(@) +inajay(W) +iza/a2(w)

= —&Bdz+ Eydy+ nadz— nydx— {ady+ {Bdx
= ({B —ny)dx+(§y—{a)dy+(na —&B)dz

Consider the wedge product okeorm w and ap-form 6. The formula (3.50) can
be used to prove the following identity:

V(WA B) =iy(w) AB+(—1)XwAiy(6) (3.51)
3.6.4 Lie Derivative of Forms

Proposition 3.85.Let w be a differential form and v a vector field on the manifold
M. Then
ty(w) = diy(w) +iv(dw)

Proof: (Olver [89], p64). See also Definition (3.32). [ ]

3.7 Problems

Problem 3.86.Consider the set of affine vector fieldg of the form f (x) = Ax+ b,
Ae R™" beR". Show thate is closed under the Lie bracket operation, i.&,g] €
o forall f,ge .

Problem 3.87.Determine the smallest distribution that is invariant widspect to

the vector fields
1 X
= | o] = ]

and contains the distributioi(x) = span{11(x)}, i.e., (11, T2 |A).
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Kinematics of Tree Structures

5.1 Introduction

Multibody mechanical systems often assume the structuaecbfin or a tree. Even
when they do not (i. e., a system containing a closed loof)tyipically convenient
to build a model for an underlying tree (by breaking the loap)l then to add the
necessary constraints (to re-establish the loop). In thapter we focus on the kine-
matics of tree structures. The next chapter will supplerttempresent discussion to
accommodate constraints.

The systems we consider are composed of rigid bédiesnected together by joints.
Each joint has a set of velocity variables and configuratemametersequal to the
number of degrees of freedom of the joint. The set of all jg#lbcities defines the
(quasi-) velocity vectorm, for the system and the set of all joint parameters comprise
the system generalized coordinate vectprOur main goal is to assemble the key
kinematic equation that relates the quasi-velocitieséocthordinate velocities:

q=V(a)p (5.1)

In addition, we wish to establish formulas that allow the pomation of the position,
orientation and/or velocity of reference frames at variogations in the system.

We begin in the next section with an analysis of individuahis. The goal is to
characterize the motion of an outboard reference frame mg#pect to an inboard
reference frame. Joints are normally defined in terms oftcaimés on the relative
velocity across the joint. Formulas will be derived that\pde a natural parame-
terization of the joint configuraton and all other kinematieantities. In Section 3
we turn to the kinematics of chain and tree structures. \arformulas are derived

1we do not discus flexible bodies in this book. However, thehmes described here apply
with some additional constructs that are implementeBroPac SeeProPachelp for more
information.

2At least locally.



100 5 Kinematics of Tree Structures

that allow the complete characterizaton of chain and tredigration and veloci-
ties in terms of individual joint quantities. Computer irapientation of the required
calculations are also described.

5.2 Kinematics of Joints

A joint constrains the relative motion between two bodieghis section we develop
a mathematical desription of joints that is convenient fseanbling multibody dy-
namical models.

5.2.1 The Geometry of Joints

We designate two rigid bodies and reference frames fixedmilttems (space) and

b (body). The configuration spadé of relative motion between two unconstrained
rigid bodies is the Special Euclidean gro8f(3) consisting of all rotations and
translations oR®. SE(3) is the semi—direct product of the rotation gras@(3) with
the vector groufi®, [89]. An element inSE(3) may be represented by a matrix

LT R
X=19 1 ,LesqQ3), ReR® (5.2)
Consider a space reference fra¢Zand a body reference framgz The config-
uration of the body frame relative to the space fram¢ &s defined in (5.2). Recall
that location of a point at positionin the body has locatioR in the space frame
with

R=R+L"r
as illustrated in Figure 5.1. The inverseXfs
1 |L -R
Xt = {O 1 (5.3)

Two successive relative motiods andX, combine to yield

T T T T
X = Xo¥q = [LOZ Rﬂ [Lol Rll] _ [LzoLl 2RERe

as illustrated in Figure (5.2).

In general geometric terms, a joint is characterized byaticel on the tangent bundle
TSHE3). Such a relation is usually expressed in local coordinageanbequation of
the type (see, for example [2,3])

f(0,g)=0 (5.4)
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X

Fig. 5.1: Point p can be represented in either the body frarspace frame.

X

Fig. 5.2: Two successive rigid body motions characterizgadnfiguration matriceXy, Xo
leave the body in configuratiad = X,X; with respect to the space frame.
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where f : TSE3) — RX. Natural constraints almost always occur on one of two
forms:

f(@) =0 (5.5)
in which only the coordinates appear, or
F(@)g=0 (5.6)

in which the coordinate velocities appear linearly. Equa(s.5) defines a subman-
ifold of SE(3) which identifies admissible configurations. Constraintshig from
are called geometric constraints because they restriatelaéive geometry of the
two bodies. Constraints of the form (5.6) are called kinderta¢cause they restrict
the relative velocity of two bodies. The geometric meanih@®) is highlighted by
restating it as

qeA(a) (5.7)
whereA(q) is a distribution or8E(3) defined ag\(q) = Ker[F(q)]. If the constraint
is of the form of (5.6), then itis holonomic [2, 3] if the didtution A(q) is integrable.
General conditions for integrability of a distribution avell known and given by the
Frobenius theorem. Recall, from Chapter 3, that local doatds ol M constitute
the pair(q,v) with qlocal coordinates oM andv local coordinates off My. Thus, in
general,T M is isomorphic tdV x g, whereg denotes the Lie algebra associated with
M, itis possible to characterize joint constraints whicloime velocities (i.e., (5.6))
by a smooth mag : SE(3) x sg3) — R so that the joint is defined by equations of
the form:

A(Q)p=0, (5.8)
wherep € sg3) andA(q) is a linear operator oeg3). The geometric meaning of
(5.8)is

p € KerA(q) (5.9)
Equation (5.8) is a more general and will prove to be a more@oient characteri-
zation of kinematic joints than (5.6).

Let us takeM = SE(3) and consider the formal representation of objects belangin
to its Lie algebray = s&(3). We can use either right or left translationshrio define
g. We choose left, so that
1y L -R][LT R LLT LR ARV
= [o o o[ 9= [0 e

Notice that in (5.10) we use the conventional notation, bicilany vectoa € R® is
converted into a skew-symmetric matgta) :

0 —az3 a
gl( a) = a3 0 —a
—ap a7 O

Thus, we see thatg3) is isomorphic toR® and we can consider an elemenbf
s€3) to be a pair of objects— body angular velocity and linear eige-(cw,, V) O,
equivalently,(&x,v,). When doing formal group calculations however, we use the
matrix form shown in (5.10).
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5.2.2 Simple Kinematic Joints

Kinematic joints are joints that are described by velocapstraints such as (5.6) or
(5.8). They are simple if the motion axes are fixed in (at jease of the bodies—
in which case the constraint can be formulated so Aiata constant (independent
of the configuration). For lack of a general terminology wé sach jointssimple

kinematic jointsWe now focus on simple kinematic joints. It is conveniendédine
a matrixH whose columns form a basis for K&r[47, 48, 91], so that

KerA=ImH, H is of full rankr = dimKerA. (5.12)
Solutions of (5.8) are of the form
p=HB, BeR (5.12)

B represents the joint quasi—velocity anig the number of velocity degrees of free-
dom.H is called the joint map matrix .

Examples of Joint Map Matrices of Simple Joints -H

0 00 0 0 00
0 10 0 0 00
1 0 1 0 1 10
0 00 0 0 00
0 00 0 0 00
0 00 1 s 01
ldof 2dof ldof ldof 2dof
revolute universal prismatic screw cylindrical

bodyz- axis bodyyz—axis bodyz axis bodyz axis bodyz axis

The joint configuration is defined, in general, by the difféial equations
X=Xp (5.13)

or, equivalently _ .
L= —&L, R= LTy (5.14)

Itis easy enough to replace, andv, by B using (5.12). LeH be partitioned so that
H; contains the first 3 rows artdb the second three rows of H, then

X =X [Hgﬁ Hfﬂ (5.15)

or
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[ = — (HiB)L, R=LTH,pB. (5.16)

The joint kinematics are defined by (5.15) or (5.16). Givem quasi—velocitie§,
(5.15) and (5.16) can be integrated to provide the relataestational position and
rotation matrix of the two bodies. However, this represtomamay not be the most
informative and it certainly provides more information thaecessary since it lo-
cates the relative position in the six dimensional gr8&¢3) instead of the relevant
subgroup. If the constraint is holonomic, precisellimensions would suffice. First,
we provide a result for single degree of freedom joints.

Proposition 5.1.Consider a simple single degree of freedom joint with joiatpm
matrix H = h € R8. Then the joint configuration matrix can be parameterizecby
parametere € R in the form:

§
X(g) = [L ée) R(f)] (5.17)

with .
L(e) = e e R(g) = /e*ﬁlohzdo (5.18)

0

Proof: [60]. Consider a general one degree of freedom joint in whidgh composed
of the single columr. Then the distributiomd (X) on SE(3) consists of the single

vector field .
LThy LThy
0 0

This is an integrable distribution and we seek the integrahifiold which passes
through the point
I O
o=o 3

The one dimensional manifold we seek can be characterizddast locally) by a
mapé : R — SE(3). Let € € R be the parameter. Then we seek a solution to the
differential equation

d  [LThy LTh
E:{ o 02],5(0)=xo (5.19)

or equivalently

L -

4 = il L) =1 (5.20)
and dR

—=L"Thy, R0)=0 (5.21)

de
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so that the conclusion follows. [ |

Note that ifH is composed of several columns, sagolumns, then we can consider
this joint as a sequence pfingle column joints and compu¢(g;) for each joint.
Thus, we have

Corollary 5.2. Consider a simple joint with r degrees of freedom and joinpnmea-
trix H = [hy...h] € R%", then there is a parameter vecterc R and the joint
configuration matrix can be expressed in the form

X(S) = Xr(Sr) . X2(€2)X1(£1) (5.22)

where each X&) is of the form of Propaosition (5.1) with4a h;.

We conclude that any simple kinematic joint is holonomic ,aindfact, we have
explicitly computed a local representation of its configiora manifold. Now, any
motion results in a velocitX = X p. We wish to characterize this relation (locally)
in terms of the rate of change of the joint parameters. Inrofards, we seek to
relateg and. The following proposition does that.

Proposition 5.3.Consider a simple joint with joint map matrix H, and suppdse t
joint is parameterized according to Proposition (5.1) andr@lary (5.2). Then the
joint kinematic equation is

£E=V(e)B (5.23)

where \(¢) is defined by the following algorithm:

1. For j=1,..r define and

U (gj,...e1) = L] (&)U 1(gj-1,...&1), Ug =1 (5.24)
Fi(gj,...e1) = L] (&) _1(gj-1,-.&1) + Ry, [p=0 (5.25)
2. Define Bg)
B(e) = [Ez - Eﬂ (5.26)
bii = Uj_shiaUT (5.27)
ba = Ui qhiali1+U; qhi2 (5.28)
3. Define \(¢)

V(g) :=B*(g)H, B*(¢) denotes a left inverse of(B) (5.29)
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Proof: [60]. Any motion results in a veloci®¢ = X pwhich implies

X = Z—a:
Now, we directly compute
L 9X. ! dX
a—a& izl{xr(fr)"'NJrl(fiH)d—);Xi1(& 1) Xi(&)& }

and premultiplying byx 1 we obtain

ig{ml(eil)---xl(el)]lx (e.)‘;xl X.l(eil)---xl(el)éi} —p  (530)
Notice that .
xlerg | e
Also, defineW(¢j,...,&1), j = 1,..,r by the recursion
W (g, ..., &) = Xj(&)Wj-1(j-1,..., 1) (5.31)
Wi(e1) = X1(&1) (5.32)

so that (5.30) can be written
hiz b .
ZV\/, 1 { i1 '2} W_1§ =p (5.33)

We can easily determine, from (5.31), (5.32), thats of the form

U (&,....€1) Tj(gj,...,€1)
Wi = [ 0 1
with
U/ (gj,....e1) =L] (§))U] 1(gj-1,...,81), Ug =1
Fi(gj,....e1) =L (&)j-1(gj-1,....€1), [0 =0
Thus, (5.33) reduces to

r ol T ~
Ui1haUT, Uiqhilio 1+ Ui ghi HiB HzB
.Z[ 0 0 &=p= 0 0 (5.34)

Each expression of the form,lﬁiluifl is an antisymmetric matrix so we can define
b1 € R® such that ) )
by = Ui_1hiUT 4

We also define
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b = Ui_1hili_1 +Uj_1hi
Then (5.34) can be written

B(e)e =HB, B(e):[Ei B Ez]

Let B* denote the left inverse d&-which exists on a neighborhood &f= 0 because
B(0) = H is of full rank. Then

E=B*(e)HB =V (¢)B, V(e) :=B*(e)H

5.2.3 Compound Kinematic Joints

Not all joints are simple kinematic joints. But in many caéspossible to define the
action of a joint in terms of a sequence of simple kinematfittfo We call such joints
compound kinematic jointén general, a compound joint is defined as a joint which
can be characterized as the relative motion of a sequenzesdérence frames such
that relative motion between two successive frames is ditfige simple kinematic
joint. Then each of th@ simple joints is characterized by a joint map mattipwith

ri columns, a quasi—velocity vectqs;,, of dimensionr;, a parameter vectog;, of
dimensionr;, and a kinematic matriXi(&). Thus if we defines := [&;...&p] and

B = [B1...Bp]) we have the joint kinematics defined by

¢ =diag[i(e1),...,Mp(€p)] (5.35)

and, assuming the frames are indexed from the outermostytrall joint configu-
ration matrix is
X (&) = Xp(&p) - - Xo(&2) X1 (&1) (5.36)

Equations (5.35) and (5.36) provide the kinematic equation compound joints.
Figure (5.2) may be thought of as depicting a 2-frame comggaint.

Remark 5.4In view of equation (5.36), @-frame compound joint with joint map
matricesH;, i =1,...,p, yields the same configuration manifold parameterizatson a
a simple joint with joint map matrixi = [Hy---Hy).

As we will see below, the overall joint map matrix is also riegd in order to assem-
ble the dynamical equations for multibody systems. Theirediconstructions are
provided in the following proposition.

Proposition 5.5.Consider a compound joint composed of p simple joints witit jo
map matrices H= [h---h] € R | i=1,...,p. Suppose := [&...&p| and
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B = [B1--- By are the corresponding simple joint parameters and quasbeities.
Then the composite joint map matrix &) e RE*(++70) is given by the following
construction:

_[n -~ hy
H(e) = {hi h;} (5.37)

where . _
hj1 == U;_hh U,

hiz := U_{P G a+U_shl fori=1,...p, j=1,..1 (5.38)
U| (gla ) ) - L ( )Ui-rfl(gifla"agl)a UJ =1 (539)
I_(£|, . )_ L ( )I_i—l(gifla"agl)'i_Ri’ [_0:O (5.40)

Proof: [4][60]. The overall joint velocity is

i oX

>'<= —s‘ X(g 5.41
Notice that for each fixed> 2,
s X =X (& s 9% ilyx e X 5.42
Zld—f = Xp(&p) -+ Xir1(&i11) lea_gijei Xi_1(&-1)---X1(&1)  (5.42)
But, as computed above for simple joints,
& OX | L [hiB hiB
21@% —X|(€|)[ 0 0 } (5.43)
Thus we have
X = X(g)p
b hlZBl
- o (5.44)

+ Xxp(fp) -Xi(& )[h%ﬁ' h%ﬁ'} —1(&-1) - Xu(&1)

or, premultiplying through b (¢),
[h11ﬁ31 hlZBl:| n

0 0
.§ Xi—1(gi1) - Xa(e)] [h%ﬁi h%ﬁi} Xi-1(&i-1)---Xi(&1)  (5.45)
i=2

o w
=»=[% %]
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This important relationship gives the body rates acrossdmepound joint in terms
of the joint quasi-velocities. Now, we can also write

[hiéﬁi h%ﬁi] _ Jil |:F]él h(ij)z} (5.46)
So that (5.45) can be written in the form
p=H(e)B
whereH (¢) is constructed as stated. [ |

Note that these equations differ from those of Propositto8)(only in that eacls;
is a vector of dimension rather than a scalar.

5.2.4 Joint Computations

The computations described above have been implemenf@iac The function
Joints computes all of the required joint quantities. Recall thatpde joints are
characterized by the number of degrees of freedgran r-vector of joint quasi-
velocities,p, and a 6x r joint map matrix,H. Across the joint, the relative velocity
vector isH p. MoreoverH is a constant (independent of the joint configuration) and
the columns represent the joint action axes in the outbeandd (by convention). A
compound joint is equivalent to a sequence of simple joifitsls, it is necessary to
define a set of numbers that represent the degrees of freeskwniated with each
intermediate frame and a corresponding set of (constaint)joap matrices. When
defining a joint inProPag it is necessary to also assign names for both the joint
quasi-velocities and joint configuration variables.

A k-frame compound joint witih degrees of freedom is defined by the data structure:

{r7H7q7 p}

where

r = k— vector whose elements define the number of degrees of freedom
for each simple joint, witl =rq +--- 4 ry.
H = [H1...Hy] a matrix composed of the k joint map matrices of the
simple joints.
g = n— vector of joint coordinate names.
p = n—vector of joint quasi-velocity names.

Example 5.6 (2 dof simple and compound jointdgre is a sample computation that
illustrates the difference between simple and compounmdgoi
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n * spherica omt - a e of revolute joint
I n[ 30 h I le 2-dof I i
ri={2H1={{1, i{OO}{O 1}{%0}{00}{00}}
gl= {a x,alz};p
* universal 0|nt - a com ound 2-dof revolute joint
r2 {1, 1} H2 { 0} {0 O} {0,1}, {O 0},{0,0},{0,0}};
q2—{a X,a2z}; w2z
JointLst={{r1, H1 q1 pl} {r2, H2 ,02,p2}};
{V.X,H}= Jomts[Jothst]

The results are given below.

Spherical Joint:

1 0
V= (0 coealx)

Cosa;; —CO0sAcSinag;  Sinasina;; 0

X — sina;; C0SA1CO0SA;; —CO0SaSinag, O
o 0 sinayy COSAy 0
0 0 0

[eNeoNeNeNoN
[eNeoNeoh el

H:
Universal Joint:

10

V(o 9)
COSay; —COSAxSinay; SinaxsSinay; 0O
X — Sinay; COSAxCOSAy; — COSax,Sinag, O
o 0 sinaypy COSAoy 0

0 0 0

1 0

0 sinagy

| 0 cosay

H= 0 0

0 0

0 0

Example 5.7 (3 dof Universal Joint).

*)
*)

A widely used example of a compound joint is the 3 degree addoen universal
joint. Such a joint is illustrated in Figure (5.3). This jbiis composed of three el-
ements and requires three frames to describe the composttermThe relative
motion between each of them involves one degree of freedooul terminology
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cNoNoNol e
cNoNoN Nel

1
0
0
0
0
0

Fig. 5.3: Diagram of a 3 dof universal joint. Note that thenjaitself is composed of three
bodies in addition to the fixed reference body.

In[31]: = H=Join [IdentityMatrix [3],DiagonalMatrix  [{0,0,0}]];
r={1,1,1};
q={t1,t2,t3};
p={wl w2 w3},
JointLst= {{r,H,q,p}};
{V,X,H} = Joints [JointLst;

The results of this calculation are:

0 —sint2
cogl codg2sintl
—sintl coglcod2

cNoNoNoNol

0 0
0 0
0 0
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x =

cost2cog3 cog3sintlsint2—costlsint3 coglcog3sint2+sintlsint3 0
cost2sint3 coglcog3+sintlsint2sint3 —cost3sintl+ costlsint2sint3 0
—sint2 cog2sintl coglcog?2 0
0 0 0 1

<

|
ocor
or o
P OO

5.2.5 Remarks on Configuration Coordinates

The joint quasi—velocities are naturally defined by theaactif the joint. Joint con-
figuration coordinates, however, are defined by the kinermatation (5.23). While
these equations formally define the coordinates (by defiajnthey also provide a
physical interpretation. Before examining some exampiete thatv (¢) itself fol-
lows directly from the joint definition. Therefore to the ert that there is some
freedom in specifying the joint parameters (the vectand the matrixH), the user
sets up the physical meaning of the coordinateko see how this works, consider a
general six degree of freedom joint (unconstrained 6 datiked motion) defined by:

In[32]: = H = IdentityMatrix [6];
r={6};
q={axay,azx,y,z};

p = {wx, Wy, wz, ux, uy, uz};

Consider this joint as depicting the relative motion of aywidth respect to a space
frame. The velocity transformation matikis:

V = diag(V1,V2)

1 sinaxtanay cosaxtanay
Vi =10 cosax —sinax
0 seaysinax cosaxseay

Vo =
cosaycosaz cosazsinaxsinay—cosaxsinaz — cosaxcosazsinay- sinaxsinaz

cosaysinaz cosaxcosaz+ sinaxsinaysinaz — cosazsinax-+ cosaxsinaysinaz
—sinay cosaysinax cosaxcosay
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Inspection and comparison with standard results (e.g]) [8teals that the coordi-
natesax ay,azare Euler angles in the 3—2—1 convention, and the coordinayez
define the position of the body frame relative to the spacadraas represented in
the space frame. In other words, the quasi—velocity veetguy, uz) corresponds to
the body linear velocity in the body frame whereas the comidi velocity(x,y, 2)
represent the same body linear velocity in the space framatBrchanging the first
three columns o, the resultant angle parameters again turn out to be Eulanpa
eters, but in different conventions. If the columndHrcorresponding to angles and
linear displacements are interchanged, then the repagganof the linear velocity
and displacement will switch from space to body frame (oeviersa).

5.3 Remarks on Rotation of Rigid Bodies

5.3.1 Introduction

The orientation of a rigid body has been described as an eleim¢he special or-
thogonal grousQ(3). Rotational motion of a rigid body is thus conceived as a tra-
jectory in the manifold associated wiB()(3). In Chapter 3, elements BQ(3) were
associated with a rotation matiix- a 3x 3 real matrix that satisfids' L = 1. SQ(3)

is a 3-dimensional group. Consequently, a local paranatioiz involving three pa-
rameters, such as Euler angles, is commonly used to repragdody orientation.
Such local parameterizations may be inadequate becausddh®t lead to global
descriptions of all possible trajectories of rotationaltimi.

One example of this problem can be seen as follows. Considé&uéer angle de-
scription involving successive rotatiogs 8, andg about the body axegy, andx,
respectively. Then the coordinate derivatives are relatdie body angular velocity
by the differential equations:

dle 1 singptanf cosgptand wy
at 6| =10 cosp —sing Wy (5.47)
t 1)} 0 singsedd cospsecd Wy

Thus, the coordinate velocity vector belongs to the spah@tblumns of the kine-

matic matrix
cosptan@
—sing

ql@ 1 singtan@
o 6 | €spa 0], cosp
1] 0 singpsecd cospsedd

It is not difficult to verify that
1 1
=spa 0,0
0 1

1 singtan@ cosptané
lim spa 0f, cosyp ,| —sing
Ookm/2 0| |sinpsedd cospsedd

)
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This implies that ab = +m/2 the motion is restricted by the model (5.47) to two
degrees of freedom. Clearly, this is not representativerigfié body free to rotate in
space. The singularity is similar to ‘gimbal lock’ in a mealal gyroscope. In a gy-
roscope the platform does not move with global rotatiore¢ffom. The mechanical
suspension binds the platform to the inertial frame withrmpound three-degree-of-
freedom joint with coordinates equivalent to Euler ang@&sbal lock occurs when
the roll axis lies in the plane of the pitch and yaw axes.

One alternative parameterization $€(3) that avoids the singularity noted above
is the 4-parametequaternionintroduced by Hamilton in 1843 [31]. The quaternion
has been applied successfully in engineering mechanicsifiik considered in the
following sections.

5.3.2 Preliminary Observations

The control of rigid body orientation is important in

5.3.3 The Quaternion

A quaternionis a four tuple of real numbers- (qo, 01,02,03). Itis convenientto en-
vision a quaternion as composed of two parts, a scgland vectoq = (qi1,0,d3)-
The following operations are defined:

e Addition (and subtraction)

a+ p= (do+ Po,G1+ P1,02 + P2,G3+ P3)

e Norm ,
lal]* = a§ +  + g5+ 05

e Multiplication
go p=(doPo—q-P,GoP + Pod + 0 x p)

_ (% —qT Po
qu_<qtmb+q><p>

(90,d)" = (o, —q)

or, equivalently,

e Conjugate

e Inverse
qt=q/|ql
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e Division
u/02 = a0,
(% -9
Q= ( q QO|3+Q)
is called theguaternion matrixNote that
_ (% -d' Po\ _ o [ Po
poq_<q qols—Q)<p> Q (p)

If ||g|| = 1, theng is aunit quaternion|f g is a unit quaternion, theq—* = g*. Unit
quaternions form a group with multiplication as the groupmpion. In particular,

The matrix

e If g, pare unit quaternions, theye p andpo g are unit quaternions,

e If gis a unit quaternion, theqr ! is a unit quaternion,

e Thereis a unit quaternioa= (1,0) that is an identity element; i.e., for any unit
quaterniorg, eq=ge=q.

If gis a unit quaternion we can always wrién the formq= (cosf,usiné ) where

u is a unit vector.

Unit quaternions provide a convenient way to representrigidy rotations. A
quaterniong with gqg = 0 is called apure quaternionNow consider a generic vec-
tor r fixed in a rotating reference frame. We can associate it wjghra quaternion
r =(0,r). Letq be a unit quaternion and consider the transformation ofegoetnr

to quaterniors defined by

s=qoroq '=qoroq’
which is equivalent to
S_(qO q' )(qo —q' )(0)
—00ol3+8/ \ d qolz+g/ \r

This product can be expanded to find

=0 (5.48)
B+9F— 05— 03 2010 — 2000z 20002 + 20103
s=| 2mox+2000s B F+B— % —20mq2+2q003 | T (5.49)
—20o02 + 20103 200 + 20203 O3 — O3 — G5+ 03

We wish to show that the action of the quaternipon a vector, as defined by (5.49),
is a rotation. To do this it is convenient to convenient to thse vector calculus
equivalent to (5.49)
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s=(05—q-q)r+2q0gxr+2(q-r)q (5.50)

which is easily derived using the definition of quaternioondarct along with the
identity (ax b) x c= (a-c)b—(a-b) c. Now, if we replace by q= (cosf,using ),
we obtain

s=cos2pr + (1—cosap) @(u-r)u+sin2pu x r (5.51)

Recall that a finite rotation can always be represented bytaector,u, that defines
the axis of rotation and the angle of rotatiéh We wish to investigate the rotation of
a vectorr within a specified frame. define an alternative frame with axis aligned
with the rotation unit vectou and the other two axes aligned with orthogonal unit
vectorsv andw that both lie in the plane orthogonaltio Suppose further, thatlies
in the plane defined by andr so thatr can be expressad=rgou+r1v. The rotated
vectorsis then

S=Trgu+rqvcosd +riwsind

Of coursefiv=r —(r-u)u andw = u x v. So,
s=cosOr + (1—cosf) (r-u)u+sinBuxr (5.52)

Comparing (5.51) and (5.52) we see tlat (cos8/2,usin6/2) corresponds to a
rotation of amoun® about the unit vectau.

5.3.4 Quaternion Representation of a Rotating Frame

Consider a rigid body free to rotate in space. Suppose thaird, fixed in the body,
is represented by vectordefined in a body fixed frame. Thertan be considered
its representation in a space fixed frame. The rotation matentified in (5.49)
transformsr from body fixed coordinates to space coordinates. By converie
matrix transforming space coordinates to body coordinateesignated., so we
have

. B+ — 03— 03 2010 — 2000z 202 + 20103
L' (@)= | 20u02+20003 0 —qf+03— 05 —20102 + 2003 (5.53)
—20002 + 20103 20001 + 20203 G5 — 02 — 3+ 03

Specifically, ifr is a vector represented in the coordinates of the rotatey foadhe,
andsits coordinates in the fixed space frame, then

r=L(q)s, s=L"(q)r

We wish to relate the body angular velocity to the rate of ¢fealBuler parameters.
We begin with time differentiation of the expressi®#s qor o g

S=qoroq +qorod’

Now substituting = g*osoq
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S=(goqfos+soqoq”

Sinceq is a unit quaternion, the time rate of change of its norm i®z€&his fact
allows us to easily establish that the scalar partg ©ff andqo * are both zero.
Furthermore, ifjoq* = (O,w), thengo g* = (0, —w). It follows that the vectorial part
of Sis 5= 2w x s. From this we identifyQ = 2w, whereQ is the angular velocity of
the body in space coordinates. Thus,

.1 ./0
-39 (2)
ddg]_1(a -q" >[0] 1( —q' >
— = ~ =2 . | Q 5.54
dt{Q] Z(q Qols—q ) | Q 2\ Qolz—4 (5-54)
It is generally more convenient to write these equationagisingular velocity in
body coordinates
dfg] 1~[0] 1/ —qd
E{Q]_EQL)]_E(QOH-FQ @ (5:59)

where w is the body angular velocity in body coordinates. Expandimigh w =
(oo, @y, @)

do —01 —02 —03 9
d|a 1/ g —a3 o
— == 5.56
dt | o2 2| 03 Qo —1 Zz ( )

Us —02 A1 Qo
Exact integration of these equations for any specifiét) and initial conditiorg (0)
of unit length produce a solutia(t) with ||q(t)|| = 1 for allt. However, imperfect
integration requires a correction. One common remedy fgitalicomputation is to
implement

Co g 92 O3 Jo
d o 1( g —a3 @ o}
— == A 557
dt [ Q2 2| B3 Qo —1 g T a2 (5:57)
a3 =02 01 Qo 03

whereA = (1—q%— g — g5 — q3) and the parameter is chosen so thath < 1 and
his the step size.

5.3.5 Euler Angles from Quaternion

It is frequently desirable to determine the Euler anglemftbe quaternion. For Eu-
ler angles in the 3-2-1 aryx convention, the rotation matrix, from body to space
coordinates, is

cosf cosy cosfsiny —sinf
L(p,0,¢) = | singsinBcosy — cosgsiny singsindsiny + cospcosy singcoso
cos@sing cosy + sin@siny cosgsind siny — singcosy cosycoso
(5.58)
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The corresponding rotation matrix in terms of quaterniens i

2(0p0h — GoGs) O3 — 02+ 0% — 03 2(203+ Golh)

B+ —05— 0% 2(qul2+0ods) 2(0d103 —Golk)
L(g) = (5.59)
2(01Gs+0ot) 2(d30z —GoG1) O3 — G5 — 03+ 03

Note that both of these matrices convert vector in body fix@alrdinates to space
coordinates. Equation (5.59) is obtained by inverting feajantly, transposing) the
matrix in (5.53).

Now, compare elements of (5.58) and (5.59) to obtained thaximg

_1 2(G203+qoh1)
p=tan t—2 T (5.60)
95— 02 — o3+ a3
6 = sin12 (ot — 0103) (5.61)
Y=tan? 2 (420 + Gods) (5.62)

g5+ af — 05— 03
For example, comparing elements (1,3) in (5.58) and (5&8Jd directly to (5.61).
Dividing (2,3) by (3,3) in (5.58) and (5.59), respectivedynd comparing the result
leads to (5.60). Similarly, dividing element (1,2) by (1ldads to (5.61).

5.3.6 Quaternion from Euler Angles

Itis convenientand sometimes necessary to be able solegfguaternion parame-
ters given a the Euler angles. For instance when integratjngtion (5.57), the initial

attitude is often specified in Euler angles which need to bweded to quaternion
parameters.

Comparing (5.58) and (5.59) we obtain the following four atipns

tan6 (03 — o2 — 03+ 03) = 2(0203+ ol
sin@ = 2 (o0 — g103) (5.63)
tany (g8 + g3 — g3 — 93) = 2(02001 + Gods) '
o5+ e+ +o5=1

It is easily verified that these equations are satisfied by

0o = COS%(,UCOS%@COS%(P-F sini%wsini%esin%q)

g1 = coS5 Y cos50sins @ — sins Y sin50.cos; @
q2:cos%tpsin%zecosg(p—i—sin%tpcos%@sing(p (5.64)
0z = — cossYsin30sin3p+siniycosiOcosl g
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5.4 Chain and Tree Configurations

In general a multibody system can be viewed in terms of annlyidg tree structure

upon which is imposed additional algebraic and/or difféedrconstraints. In this

section we describe the data structures used to define wadjtittee structures. In
later sections we show how to compute velocities and cordtgur coordinates of

reference frames at arbitrary locations in the tree. A tegelie defined in terms of a
set of chains, each beginning at the root body.

Representation of Chain & Tree Structures

ProPac provides tools to build models for mechanical systems thaelan under-
lying tree topology. Chain structures are a special cassteBys with closed loops
are accommodated by adding constraints to the underlyésg & tree consisting of

n bodies also containsjoints. Every system contains a base reference frame that is
designated body ‘0’. Otherwise, bodies and joints can bebared arbitrarily. Joint
data and body data are organized into lists by the analgst, i.

JointList={JointData_1,...,BodyData_n}
BodyList={BodyData 1,...,BodyData_n}

The structure of the individual data objects will be desedilbelow. Joints and bod-
ies are implicitly numbered by their position in the datasli€ach body contains a
unique ‘inboard’ node, corresponding to (the outboard sijia joint through which
the body connects to an inner branch of the tree, or to the(bmmty 0). See Fig-
ures (5.4) and (5.5). Each body may also contain ‘outboandes. The outboard
nodes are distinguished body locations that may be asedardth a joint location
(the inboard side of the joint), a sensor location, a poirgpglication of an external
force or any other feature of interest. Since one joint cotmthe tree to the root
(the root node may be considered an outboard node of bodyddg tust be at least
n— 1 outboard nodes among th&odies corresponding to the remainimg 1 joints.
These are tha ‘outboard joint nodes’. The outboard joint nodes must be Inerad
1 throughn and must correspond to the associated joint number. Théispessoci-
ation of numbers to joints is not essential but by convertti@root node is normally
assigned the number 1. The remaining outboard notes canrbeenad arbitrarily.
The inboard nodes need not be assigned numbers.

In summary there are two important book-keeping principles

e joints and bodies are numbered according to their positidhe data lists,

e outboard joint nodes must be numbered consistently witin thpective joints.

Atree is composed of a set of defining chains. For instancsidena tree composed
of the following sequences of bodies:
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0,1,2,4 0,1,2,3,5 0,1,2,3,6

All defining chains of any tree will start with body 0, so we dewmt list it. However,
the body sequences alone do not adequately define a treedtmdée bodies 5 and
6 both connect to body 3, but they will do so through diffefjeirts. This informa-
tion can be provided by defining each chain as an orderedfligaios - each pair
consisting of a body and its inboard joint: inboard jointdigoFor example, consider
the following three chains:

{{1.1}.{2,2}.{5.4}} {{1,1},{2,2}.{3,3}.{4.5}}
{{1.1},{2,2}.{3,3}.{6.6}}

Chain 1 consists of bodies 1, 2, and 4. Body 1 connects to fheerece (Body 0) at
Joint 1, Body 2 connects to Body 1 at Joint 2, and Body 4 comsrntedody 2 at Joint
5. The data also indicates that body 5 connects to body 3rt4ofin the second
chain), and body 6 connects to body 3 at joint 6 (third chd®@call that each joint
is uniquely associated with an outboard node of a partiduddly. A tree is defined
by the data structure:

Tree = {list of chains}
Chain = ordered list of pairs {inboard joint, body}
= {{first inboard joint, first body},...,
{last inboard joint, last body}}

Reference Frames

It is assumed that there is a single inertially fixed refeesftame whose origin is
the inboard side of the root joint. Each body has a primargresfce frame, fixed
in the body with origin at the inboard node. Body data is defiimethis frame. As
appropriate, there may be other body fixed frames as well evitfins at outboard
node locations. Normally, the axes of these frames arelpbi@althe primary frame
when the body is undeformed. For the system as a whole, thexré&éference con-
figuration’ corresponding to the nominal joint configuraso(associated with zero
joint motion parameters) and undeformed bodies. In theeafse configuration all
reference frames (body and space) are alligned. The arsdistup the reference
configuration when choosing body frame orientations fartjand body data defini-
tions. It is recommended that the analyst begin by definingysipally meaningful
reference configuration from which data definitions willikagly follow.

Rigid Body Data Structure

A rigid body is defined by its mass, inertia matrix and the tamraof distinguished
points or nodes where joints or sensors may be located. Wenasthe following:
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1. There is a distinguished point that corresponds to thearbjoint of the body.
The body frame has its origin located there.

2. The center of mass and all other points of interest (noides)ding outboard
joint locations are defined in the body frame.

3. The inertia matrix is defined in the body frame and it is thextia matrix about
the center of mass.

The data for a rigid body is organized in a list as follows. gidibody withk out-
board nodes is defined by the data structure:

{com {outl,..,outk},m,Inertia}
where

com is the center of mass location,

outi = {node number, location} for the ith outboard node,
m is the mass, and

Inertia is the inertia tensor (about the center of mass).

5.4.1 Configuration Relations

Consider a serial chain composedtoft 1 rigid bodies connected by joints as il-
lustrated in Figure (5.4). The bodies are numbered 0 thréyghith O denoting the
base or reference body, which may represent any convenientitil reference frame.
Thekth joint connects bodk — 1 at the poinCy_; with bodyk at the pointOy.

Let FX denote a reference frame fixed in bddyith origin at O. rX, denotes the
vector fromOy to C in F¥ andr® denotes the vector fro® to O, 1 in FX. We will
use a coordinate specific notation in which vectors reptesein F¥ (or its tangent
space) will be identified with a superscrigt’ Coordinate free relations carry no
superscript. Sometimes it is convenient to employ a franelfin bodyk and aligned
with F¥ but with origin at some poirf other thanOy. We use the designatid .

Letr¥, denote the vector fror@ to R in FX. Then the parallel translation & to
FFEK results in the configuraton matrix

Xa = %]

Thekth joint hasny, 1 < ng < 6 degrees of freedom which can be characterized by
nk coordinatesy(k) and, correspondinglyy quasi-velocitieg3 (k) and a configura-
tion matrix X(q(k)). We wish to compute the Euclidean configuraton matrix for a
reference frame fixed in the last body with origin at the termhinode of the chain,
designated. For example, this would be node 5 in Figure (5.4). We obta@ t
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Joint K

Joint 2

Joint 1

Fig. 5.4: A serial chain composed Kf+ 1 rigid bodies numbered 0 throughandK joints
numbered 1 througK.

F k, Body Frame

Fig. 5.5: On an arbitrari™ link the inboard and outboard joint hinge points are degiggha
Ok andCy. The body fixed reference frame has its origitOat

configuration relative to the space frame by successiveamstaction of joint 1—
translation taC; — --- — action of joint K— translation td:

Xpe = Xk pXk - .. X2,c, X2 X0, X1 (5.65)

Equation (5.65) can be modified to compute the relative cardigpn between body
fixed frames at any two nodes in a chain or tree. To accommaegin this calcu-
lation requires a simple procedure to find a chain connettiegwo nodes.
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5.4.2 Velocity Relations in Chains

Once again consider a chain compose#{ &f 1 bodies as illustrated in Figure (5.4).
Rodriguez et al [6-8] define the spatial velocity at p@ntf any body-fixed reference
frame with origin at poinC asV; = [w, v¢] wherev; is the velocity of poinCC and

w is the angular velocity of the body. L& be another point in the same body and
let reo denote the location o in the body frame with origin a®. Then the spatial
velocity at poiniC is related to that aD by the relation

VC — (p(rco)Vo (566)
where
I 0
q)(rco) = |:_FCO | :| 3
and its adjoint
. I T
@ (reo) = {o |°°] (5.67)

Jointk has a joint map matrikl (k) € R®" so that

VoK) — Ve(k— 1) = H(K)B(K) (5.68)

Thus, sequential application of (5.66) and (5.68) leadsh&following recursive
velocity relation that we write in coordinate specific naat

VI(K) = @(reo(k— 1)V (k—1) + H'(K)B'(K) (5.69)

where the superscriptdenotes the reference frame. Let us assumeHtik} and
B(k) are specified in the frame* andV (k — 1) has been computed in the frame
Fk-1 . Then it is convenient to computgk) in thekth frame

VE(k) = diag(Li-1k L 1) @(réo (k= D))VEH(k—1) + H*(K)B“(k)  (5.70)

If VO(0) is given, then equation (5.70) allows us to compute recabgivor k =
1,..,K, the linear velocity of the origin oF¥ and the angular velocity df¥, both
represented in the coordinatesFdf. In what follows we také/°(0) = 0. Abusing
notation somewhat, it is convenient to define

(k. k—1) = diag(Lk 1 Lk 1)@ (k— 1)) (5.71)
so that (5.70) can be written
VE(K) = ok, k—1)VEL(k—1) + HXK)BX(k), k = 1, ..., K, VO(0)=0 (5.72)
Equations (5.66) and (5.72) allow a sequential computatfaelocities at any point

along a chain. Notice thgt andH depend on joint configuration parameters so that
the joint configuration and velocity variables are needqgketdorm the computation.
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Remark 5.8We want to clarify the recursive velocity formula (5.72).€lgpatial
velocity, Vo,, at thek™ joint outboard nodeQy, can be computed in terms of the
velocity Vo, , and the joint configuratioX (k). The setup is shown in Figure 5.6.
Let us writeX (k) in the usual form

= [TRY)

Now, we proceed as follows. First compute the velocity agtbatC,_;:

Outboard Node

F

Body Frame

Jointk, X(K)

Body k-1

Fig. 5.6: Two links in a chain provide the basis for a singleursive step.

Ve, = 9ra(k= D)o, 1. 0= | ;7|

. . .. . . /
Next obtain the velocity across the joint in two parts, cotepthne velocity atO,

before the joint action
Vo, = P(RI) Vo,

and then add the joint action. If we assume that the actioefised in thek!" body
frame then we need to repres¥pt in that frame before addirtg3. Thus, we obtain
k

Vo, = diag(L (K), L (K)) @ (R(K)) (Feo (k— 1)) Vo, , +H (k) B (K)

Suppose we definé(k) := Vo, and
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@(kk—1) :=diag(L (k),L(k)) @(R(k)) @(rco(k—1))
Then, we have the recursive velocity relation

V(K =@kk-—1)V(k-1)+H(K)B k)

5.4.3 Configuration and Velocity Computations

In addition to the functiodoints  described above, there are other kinematic com-
putations implemented iProPac We will describe and illustrate three of them:
EndEffector , RelativeConfiguration andNodeVelocity

EndEffector[BodyList,X] returns the Euclidean configuration matrix of
a frame in the last body of a chain, with origin at the outbojidt location.
BodyList is list of body data in nonstandard chain form, X is a corresjag list

of joint Euler configuration matriceEndEffector ~ can also be used in the form
EndEffector[ChainList,TerminalNode,BodyList,X] whereBodyList
is the standard body data structutainList identifies the system subchain that
terminates withTerminalNode . EndEffector  can also be used in the form
EndEffector[TerminalNode, TreeList,BodyList,X] in the event that
the appropriate chain has not been identified. This last fisrprobably the most
useful.

RelativeConfiguration[Nodel,Node2, TreeList,BodyList X,q]
returns the configuration matrix for a body fixed frame at nddde2 as seen by an
observer in a body fixed frame at nodedel. Note that each node is defined in a
specific body and the frame is fixed in the body in which the riediefined.

NodeVelocity[ChainList,TerminalNode,BodyList,X,H,p] returns
the velocity afTerminalNode , where the body dat®odyList , the joint dataX
andH, and the quasivelocity nampsorresponds to the chain defined®gainList
The velocity is a six element vector defined in the body fixedfe. This function
is used byGeneralizedForce that will be described later. The following syntax
may also be used, similarly to the functiBndEffector

NodeVelocity[ChainList,TerminalNode,BodyList,X,H,q, p] ,
and
NodeVelocity[TerminalNode, TreeList,BodyList,X,H,q,p ].

Example 5.9 (5 dof Robot Arm)he functions described above will be illustrated
with an example of a 5 dof robot arm as shown in Figure (5.7).

First define the joint data:
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A A

2 z
I N 4 7
l 3 ‘(/G—>y q »é
X 3 X X
y
1)

Fig. 5.7: A 5 dof robot arm is illustrated. The body fixed refece frames located at the
inboard joint nodes are illustrated. Note that in the rafeesconfiguration the reference frames
are alligned.

In[33]:= rl={1};H1={{0},{0},{1},{0},{0},{O}};
gl= {thetal;pl={wl};
r2={1};H2 = Transpose [{{1,0,0,0,0,0}}];
g2 = {thetaz;p2= {w2};
r3={1};H3 = Transpose [{{0,0,0,0,1,0}}];
93={y};p3={v}
r4 = {2};H4 = Transpose [{{0,1,0,0,0,0},{1,0,0,0,0,0}}];
g4 = {theta3theta4; p4 = {w3,w4};

JointList= {{r1,H1,q1,p1},{r2,H2,q92 p2}, {r3,H3,q3,p3},{r4,H4,q4,p4} };
Define body data:
In[34]:= coml={0,0,11/2}; massl= m1; outl= {2,{0,0,11}};

Inertial= DiagonalMatrix  [{J1xJ1xJ1Z}];

com2={0,12/2,0}; mass2= m2; out2= {3,{0,12,0} };

Inertia2= DiagonalMatrix  [{J2x0,J2x}];

com3= {0,13/2,0}; mass3= m3; out3= {4,{0,13,0} };

Inertia3= DiagonalMatrix  [{J3x0,J3Z7];

comd={0,14/2,0}; mass4= m4; outd= {5,{0,0,14}};

Inertiad= DiagonalMatrix  [{J4xJ4y,J4Z}];

BodyList= {{coml {outl}, massllinertial}, {com2 {out2}, mass2inertia2},
{com3{out3}, mass3lnertia3}, {com4 {out4}, mass4linertiad} };

and the interconnection structure

I n[ 35] : = TreelList={{{1,1}{2,2} {3,3}.{4.,4}}};
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The joint parameters are computed with the command:
In[36]:= {V,X,H}=Joints [JointList;

The joint velocity transformation matrices can be dispthge follows.

In[37]:= V][1]]//MatrixForm
Qut[37]= (1)

In[38]:= V][[2)]//MatrixForm
Qut[38]= (1)

In[39]:= V][[3]]//MatrixForm
Qut[39]= (1)

In[40]:= V][[4]]//MatrixForm

1 0
Qut[40] = (O Cos{theta??)

Using the functiorEndEffector  the configuration of a frame fixed at node 4 can
be computed.

In[41] : = TerminalNode=4;

XE = EndEffector  [TerminalNodeTreeListBodyList X];

XE[[{1,2,3},4]]//MatrixForm
—I2 Cogtheta2 Sinthetal — I3 Codtheta2 Sinftheta] — y Codtheta2 Sin[thetal
Qut[42] = <I2 Cogthetal Codtheta2 + 13 Cogthetal Codtheta2 + y Cogthetal Cogtheta2 )
11+ 12 Sintheta2 + 13 Sintheta2 +y Sintheta2

In[43]:= XH][{1,2,3},{1,2,3}]]//MatrixForm
Codthetal —Cogtheta2Sinthetal Sin[thetalSinjtheta2
Qut[43] = (Sln[thetajr Codthetal Cogtheta? Cos[thetaiSm[theta@)
Sintheta? Codtheta2

In[42]:

As another example, we can compute the relative configurafia frame at node 4
as seen by an oberverin a frame at node 2. We use the fuftiative Configuration

I n[44]: = Nodel=2;Node2=4;q=Flatten [{gl,92 93,q4}];

RelativeConfiguration [NodelNode2 TreeListBodyList X, q]//MatrixForm

1 0 0 0
Qut [ 44] = 0 Codtheta2 —Sinjtheta2 (12 +13 +y) Cogtheta2
~ | 0 Sintheta2 Cogtheta2 (12+13+y)Sintheta2

0 o0 0 1

The configuration of a frame at node 4 relative to node 3 is a franslation:

I n[ 45] : = RelativeConfiguration [3,4, TreeList BodyList X, g //MatrixForm
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Qut [ 45] =

Finally, we compute the spatial velocity of a frame fixed imlp@® at node 4.

In[46]:= p=Flatten [{plp2,p3,p4}];
TerminalNode= 4;

NodeVelocity [TerminalNodeTreeListBodyList X,H,q,p]//MatrixForm
w2
w1 Sintheta2
_ w1 Costheta?
Qut [ 46] = (Wl(IZ +134y) Cos{theta@)
%
w2(12+13+y)

5.5 Problems

Problem 5.10 (Reconnaissance robot)The reconnaissance robot shown in Figure
(5.8) moves on a flat surface. The vehicle has three degrefeseafom, its linear
coordinates, y and its angular orientatiofh. The radar system also has three degrees
of freedom. It can move verticallg, and rotate in both azimuth and elevatigny,
relative to the vehicle. Suppose the radar system is pgjratira target, the vehicle
and radar configuration are known as well as the range tottagenpute the target
coordinates in a space fixed frame.

Problem 5.11 (Overhead crane).The overhead crane shown in Figure (5.9) is used
to move and position heavy loads in the z plane. The cart moves in ong) (inear
direction on rails, the arm connects to the cart via a reeojaint (angleg from
downwardz direction) and the cable lengthis variable. Assume that the cable is
always in tension and treat the payload as a point mass. Thealble joint can
be treated as a two degree of freedom compound joint camgisfi rotation and
extension (to model cable playout). Determine the spatiatadinates of the payload
in terms of the four joint parameters.
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Fig. 5.8: A reconnaissance vehicle carrying a range-findiagr system.

Cart

Payload

Fig. 5.9: An overhead crane used for moving and positioneeyi loads.
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6

Dynamics

6.1 Introduction

The purpose of this chapter is to describe symbolic comgutols for assembling
and manipulating control system design models for conmstthmultibody mechan-
ical systems. The methods introduced in [60] for chains a@estare summarized
and extended to constrained systems. New computing toatistipport the analysis
of constrained systems are described and illustrated.

The derivation of the explicit dynamical equations of motfor mechanical systems
of even moderate complexity is difficult and time consumir@onsequently, there
has been a growing interest in automated derivation usingoters [60, 73, 18, 11].
Much of this work has focused on chain and tree structurdsctieracterize impor-
tant robotic and vehicular systems. Many systems, howavemot tree structures;
they involve closed loops or other forms of algebraic andifferential constraints
imposed on top of an underlying tree. Typical examples wbeld grasping robotic
hand or a vehicle with rolling wheels. The additional comjileof such systems
magnifies the utility of computer assembly of the governiggations.

Our discussion is based ¢oinca®’s equationg2, 19, 20] also referred to dsa-
grange’s equations in quasi-coordinal8s, 86] orpseudo-coordinatg®7], and the
Euler-Poincagé’s equationin [83]. Poincaré’s equations preserve the underlying the
oretical structure and elegance of the Lagrange formulatiat they are often more
natural and can be substantially simpler than Lagrangastgns. Furthermore,
their assembly can be much easier to automate making thewctgal choice for
modeling ‘industrial strength’ systems. Perhaps most igmily, in the words of
[86]: “The main advantage. . . is the unification of the forntw# ordinary Lagrange
equations, the equations of motion of nonholonomic systemd also equations
such as Euler’'s dynamical equations of motion of a rigid bwitl a fixed point.”

INote that modeling and simulation software such as ADAMSRBA®S do not produce
explicit nonlinear equations of motion required for cohgstem analysis and design.
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The dynamical equations will be generated in the form

M(a)p+C(p,q)p+F(p,a) =Q (6.1)

wherep is a vector of quasi-velocities, is the generalized coordinate vect@rjs
a vector of externally applied generalized forces and tmetfansM(q), C(p,q)
andF(p,q) are the parameters of the system. The assemi@y; bf(q), C(p,q) and
F (p,q) is the main topic of this chapter. In combination with thedamatic equations
describe in the previous chapter

q=V(aq)p (6.2)
these equations provide a consistent closed set of eqaation

In Section 2 we develop Poincaré’s formulation of Lagramgguations and in Sec-
tion 3 we apply it to general chain and tree structures. Theeansider constrained
systems in Section 4 in which we treat both holonomic and ntwrtomic differen-
tial constraints as well as configuraton constraints. Weriles symbolic computing
tools and give examples along the way. Finally, in Sectionédescribe numerical
simulation.

6.2 Poincag’s Equations

It is well known that in some cases it is easier to formulatedgfjuations of motion
in terms of velocity variables that can not be expressedeasttie derivatives of any
corresponding configuration coordinates. Such veloci#tfescalled quasi-velocities
and are often associated with so-called quasi-coordin@tessi-velocities are mean-
ingful physical quantities. The angular velocity of a rignddy is a prime example.
Quasi-coordinates are not meaningful physical quantifieey make sense only in
terms of infinitesimal motions. The notion of quasi-vel@stand quasi-coordinates
leads to a generalization of Lagrange’s equations whichpsieable to systems with
nonholonomic as well as holonomic constraints. Such gdinatians were produced
at the turn of the century and are associated with the naméwiotare, Appell,
Maggi, Hamel, Gibbs and Boltzman (see, for example, Arnokl 2] and Niemark
and Fufaev [86], Gantmacher [27]).

6.2.1 Preliminaries

Consider a holonomically constrained system whose p@ssimfigurations corre-
spond to the points of a smooth manifddtl of dimensionm called theconfigura-
tion manifold Local coordinates oM can be used to define the system configu-
ration. They are calledeneralized coordinate#\ny motion of the system over a
time intervallty,ty] traces a path itM characterized in local coordinates by a map
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q(t) : [t1,t2] — M. At any pointg € M the generalized velocity belongs to the
tangent spacéo M at g denoted bylqgM. The state space for the dynamical system
is the 2n dimensional manifold M = (Jqem TqM, called thetangent bundle

A virtual displacemenbf the system at a configuratiane M is an infinitesimal
displacemendq that takes the system to an admissible configuragfonM,q =

g+ oq. Clearly, dq is a virtual displacement if and only if it is infinitesimal @n
satisfiesdq € TqM. If a system in configuration is acted upon by generalized
force, Q, then thevirtual work performed by the force under a virtual displacement
5qis OW = Q' 40

Let M be them-dimensional configuration manifold for a Lagrangian systend
supposer, ..., Vy constitute a system af linearly independent vector fields d.
Then each commutator or Lie bracket can be expressed

m
vi,vil = ¥ cff (a)w (6.3)
K=1
Indeed, the coefficients are easily computed in local coaiteis? Define
U1
U2 1 1.2 t
Vi=[ViVy V), U= =V X = [cj ¢ -] (6.4)
Um
Then (6.3) yields
Xij =UVi,vj] or o =ugvi,v. (6.5)

Suppose(t) : [t1,t] — M is a smooth path, theq(t) denotes the tangent vector to
the path at the poirg(t) € M. Thus, we can always expreg&) as a linear combi-
nation of the tangent vectovsi =1,...,m:

q= _;Vi @p
or. B
a=Vv(ap (6.6)
where
p=U(a)q (6.7)

The variables p are callegliasi-velocitiesSince these quantities are “velocities” we
might try to associate them with a set of coordinateim the sense thar= p. This
is not always possible because in view of (6.7) we must have
dm=U(q)dq
but, in fact, the right hand side (of eadlr) may not be an exact differential.
2In local coordinates, vector fields on a manifold of dimensiomay be thought of as

column vectors of lengtm and covector fields as row vectors of lengthWe will use this
device often to do calculations.
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6.2.2 Poincag’s Form of Lagrange’s Equations

First, let us review some elementary variational consioastthat will be used in the
drivation of Poincaré’s eqauations.fif: M — Ris a smooth function, then(f) is
the derivative off in the direction of the vector field. The rate of change dfalong
the path is given by

f'—a—f'—mv-(f)- (6.8)
= aqq = i; i(f)pi .
where the variablep; are the quasi—velocities defined above.

Once again, consider the smooth path and suppose the end poéq;, andqp,
i.e.,q(t1) = di1,q(t2) = . A variation ofq(t) is a smooth map|(e,t) : (—&o, &) x
[t1,t2] — M such thafy(0,t) = q(t). For every variation, we can define
99

w(t) = 52(0.) (6.9)
w(t) may be thought of as a vector field definedémlongg(t). Conversely, letv(t)
be any smooth vector field defined Bhalongq(t) with w(t;) = 0 andw(t,) = 0. For
any such vector field, there is a variation such that (6.9tisfed. The implication
of this is that we can define variationsqit) in the form

q(g,t) = q(t) + ew(t). (6.10)

Itis always possible to write the Lagrangian in terms ahdp. Set (p,q) =L(g,q).
In terms ofL Lagrange’s equations are attainable in the form given bydhewing
lemma.

Proposition 6.1.Hamilton’s principle leads to the equations of motion innber of
the coordinates p

dol M, oL - X
dtop, i;Jzzlcjkdpi P (L) = Qe k=1 m (641
or, in local coordinates,
dol T oL oL
— = —UXi— —V =QV 6.12
dt ap JZ]_ Pj ap J aq ( )

where V= [v{ Vo - - - V] and X = [[vj, V1] [Vj, V2] - - - [V}, Vim]].

Proof: (following Arnold et al [5]). Letq(e,t) be a variation of the path(t). Then

we can set of ¢
FMAED) _ 5 vih)p (6.13)
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af(q(e,t))
———= =S vj(f)w; (6.14)
ode 2
Among other things, this associates with each fiketbng the pathy(t), a virtual
displacemendq = S wwi = Vw. Differentiating (6.13) with respect to and using
K

the fact that differentiation with respectdands commute we obtain:

2*1(q(e.t) )2
“oear  2V(Gg Pl

opi

Vi(vi(F)wjpi+ S vi(f) 5=

| z 1 J J M IZ 1 (38
Similarly, differentiating (6.14) with respect taesults in

9%f(q dWJ
atas _ZVJ vi(f p'WJ+ZVJ at

Equating these expressions, we obtain

T 05 =3 W) —wtm (D)o + 3 (1 G

bl

0p 0w
: JZvl,vJ pleJerJ dtJ

2.ul

ap.

Z ch”vk p|WJ4—ZvJ

Now, renaming some summation indices

ka(f)ip Z chijWJ_FZVk awk

In view of the fact that this relation must hold for ahyand any variatiom(e,t) , we
have:

We can use this formula to calculate the variation of theoadtitegral

2 t
5 [Tpayt=tim 2 [T(p(e.0).a(z.0)ct
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. . -
£ [L(p(e.t),a(e.t)dt = .f{Lpﬁ—E + Lqﬁ—i}dt
t ty

ty

Integrating by parts the second term of the integral

d aL i oL
6/L pth_g—wk /Z[ dtap "‘ap pi + Vie(L) | widt
1]
Now, we use the fact that
Q'sq= ZQTVka

to obtain

t.

f{(SL p,q) +QToqg}dt = Z ’
(6.15)

+tf > |:_m(?_pk + Z C||< ,?p Pi +Vk(|:) + QT vi | widt
1

Since the variationsy are independent in the intervial< t < t, and vanish at its
end points, we have the desired result. [ ]

Remark 6.2 (Remarks on Poinégs Equations)We will make a few general obser-
vations about Equations (6.11) and (6.12):

1. These equations are referred to as Poincaré’s equdtiantd et al [5], Chetaev
[6, 7] and Lagrange’s equations in quasi-coordinates byrdéch [8] and
Neimark and Fufaev [9]. They are related to Caplygin’s eiguatand to the
Boltzman-Hamel equations [9] and also to the generalizegtarsge equations
of Noble (see Kwatny et al [64]).

2. Poincaré’s equation (6.11) or (6.12) along with (6.6)rfaa closed system of
first order differential equations which may be written ie form

a=Vv(@p (6.16)

L R L LU T8 oL v
pap2+p adap JZp,apux V Qv (6.17)

3. If Mis a Lie groupG andv;,i = 1,...,mare independent right-invariant vector

fields onG, thenckJ constant, i.e., they are independentoff, in addition,
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L is invariant under right translations @ thenvy(L) = 0 andL depends only

on the quasi-velocitiep. Thus, the Poincaré equations form a closed system of
differential equations on the Lie algelgaf the Lie groupG, i.e., in the quasi-
velocitiesp.

4. Notice that_(qg,q) = I:(U (9)9,q). Thus, Lagrange’s equations can be written

doL oL _d a_EU() L ou(q)q oL
dtdq odq dt\dp

from which we can derive:

dol M oL oL
aiop~ 2P o

Thus, formally, we can derive Poincare’s equations fromdage’s equations.

Example 6.3 (Rotating Rigid BodyA. classic example of the application of Poincaré’s
equations is a rigid body with one poiéX fixed in space so that the body is free to
rotate abouD. The configuration of the body at any tihean be associated with
the rotation matrixt-(t) € SQ(3) which characterizes the relative angular orientation
of a body fixed frame with origin & with respect to a space fixed frame with ori-
gin also atO. The velocity of rotatiorlL(t) may be thought of as a tangent vector
to the groupSQ(3) at the pointL(t). It is commonplace to translate this vector to
the tangent space to the group at the identity, therby estfogithe velocity with an
element of the Lie algebrso(3). As described in the previous chapter, we do this
with left translations so that the skew symmetric matbix= L~ (t)L(t) represents
the angular velocity of the the body in the body frame. Retbalt the matrixi, can

be associated with the vectay, via the relation

N 0 —w3 we
W= | W3 0 —wn
—Wh W 0

The mapping : L™ 1L — w defines an isomorphism of the Lie algels@3) to R°.
Notice also that a basis for the tangent spac8@®B) at the identity is

00 0 0 0 1 0 -1 0
A=1[0 0 —1|,A=]0 0 0/,As=|1 0 0O (6.18)
01 0 “1.0 0 0 0 0

We can regard these as a basis for the Lie algst{@).

If R(t) is the position vector, in the space frame, of a point fixechim hody, then
R(t) = L(t)R(0). Thus,

V(t) = R(t) = L(t)R(0) = L(1)@(t)R(t) = wx x R(t) (6.19)
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where ax is the angular velocity vector represented in the spacedrarhus the
abstract characterization of the rotational velocity ofgadrbody does indeed co-
incide with the conventional notion of angular velocitymrarly, if r(t) is the in-
ertial position vector of the body fixed point, representedhie body frame, then
r(t) = L~(t)R(t), and

Vt) =L MOV () =L tasx Rt) =L (D x L) (t) = @y(t)r(t) = an(t) xr(t)

which is the body frame equivalent of (6.19).

Suppose thal, = diag(l1,l2,13) is the inertia tensor in principle (orthogonal) body
coordinates and supposg ,, €3 denote unit vectors of the principle axes, indexed in
the usual way to provide a right hand systemx e; = e3, ex x €3 =€1, €3 X €] = €.
Letvy, V2, v3 denote the preimages ef, e;, e3 under the isomorphisrh: so(3) — R°.
Thenvy, v, v3 are left-invariant vector fields 08Q(3) and they satisfy.

[V1,V2] = V3, [Vo,Va] = V1, [V3,V1] = Vo (6.20)

Thus, we can define quasi-velocities in terms of these vdihls as in (6.6) and
(6.7). Let
Wh = Wh1€1 + W€ + Wh3s (6.21)

so that the kinetic energy can be written

T(wp) = 3 {110y + 20 + 130 } = 2y lp (6.22)

The potential energy is zero, so we hdve- T(aw,). SinceL is independent of the
coordinates and in the absence of external forces Pois@aréations reduce to

d ol 3 oL
- _ Wi—UX; =0 6.23
dt dc, 121 190, (6.23)

Recall that (think localX; = [[vj,v1] [vj, V2] [vj,Va]], from which we compute
X1 =[0v3 —Vz|, Xo =[-Vv30Vvy], X3 = [v2 —V1 O]

which can be expressed

0 0 O]

X]_:[Vl Vo V3] 0 0 -1 (6.24)
0 1 0]
[0 0 1]

Xo = [Vl Vo V3] 0 0 0 (6.25)
-1 0 0

3This can also be verified by computing the commutators of #sskelements (6.18) via

AB-BA
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0 -1 0
Xs=[vivav3] {1 0 O (6.26)
0 0 O

SinceU = [v1 V2 v3] "t we have

3 oL T 090 9
.Elwojmuxj =wylpq w1 |0 0O —1
=

01 O
{0 0 1] {o -1 0]}
+w2| 0 0 O|+aws|l O O
-1 00 0 0 O
=y @]
and finally,
Ihh + Gplpe, =0 (6.27)

These are recognized as Euler’s equations.

Example 6.4 (Submerged Rigid BodyXonsider a rigid body free to
translate and rotate in an fricitionless, incompressihla fbf densityp and infi-
nite extent. The configuration manifold is the group of riotas and translations of
R®, SE(3). As discussed in the previous chapter, the rigid body cordigpn may be
regarded as the matrix

X — [LT R]

0 1

and the corresponding velocity is an element in the cormedipg Lie algebrag3),
iy @ | [w

p=X X_[o 0 H[vb]

Recall thatSE(3) is the product of the rotation groi8(3) and the translation group
RS. Its Lie algebrasg(3) has basis vectors:

0 0 0 O 0 0 0 1
00 -1 0 0000
AM=101 0 o/'™=|o0 0 0
0 0 0 o l0 0 0 O
r0 0 1 O 0 0 0 O
0 00O 0001
=11 000" 0000
L0 0 0 o l0 0 0 O
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0 -1 0 00 0
1 0 00 0000
A=10 0 oo™ o001
0 0 00 0000

Let vy, V2,V3,Vy, V5, Ve denote the corresponding left-invariant vector fields.mive
easily compute the commutator relations. The nontrivigisoare:

[Vi,Vo] = V3, [V1,V3] = —V2, [V1,V5] =Vg, [V1,V6] = —V5, [Vo,V3] =V,
[V2,Va] = —V6, [V2,V6] =Va, [V3,Va] =V5, [V3,V5] =—Vy
Thus, we can express each of &gin the form
Xj = [V1V2aVaVaVsVe)\j = VA

where eacl\j is a 6x 6 column ‘reordering’ matrix. These are

0 0 00 O 00 0 0O O
0 0 00 O O 00 -100 0
A_|0 0O 1000 00 0 00 O
1"/o -1 00 0 o' |10 0o 00 -1
0 0 00 O 1 00 0 0O O
0 0 00-10 00 0 10 O
0 10 0 O 000O0O O
1 00 0 0O 000O0O0 -1
A |0 OO0 0 00 {00001 0
1o oo 0o 10 |000O0O0O O
0 00 -100 000O0O O
0 00 0 O 000O0O O
000O0O0 -1 000 0 1
000O0O O 000-100
A 00010 0 , 000 O 00O
“looooo o[’ |lo0o0 0 0O
000O0O O 000 O 00O
00O0O0O O 000 O O

Any motion of an ideal fluid can be characterized byedocity potentialg that
satisfies the partial differential equatioig = 0 in the coordinateg, y, z) of a body
fixed frame. The velocity of at any point within the fluid or dretbody surface is
given byu= —O¢g and the pressure = p ¢. Khirchoff showed that the if the fluid
is at rest at infinity U = 0 at infinity), the potential function is a linear function of
the rigid body velocity, i.e.,

P(xy,2) =a(xy,2)p

the coefficient row vector can be explicitly computed for glerigid body shapes,
such as an elipsoid, or it can be computed via finite elemeroxpmaton for shapes
of arbitrary complexity.
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The kinetic energy of the fluid can be expressed as the ifteftiae fluid pressure
times the normal velocity over the surface of the body. Ttseiltés that the fluid
kinetic energy is a quadratic function of the body velocity

M M
Tf _ %pTpr’ MT _ Mf — |: f11 f12:|

For convenience, we fix the origin of the body frame at the eeot buoyancy and
suppose that in this frame the center of mass is locategatlf the body has mass
my, and inertia matrixJ, (about the center of mass) the the body kinetic energy is

| —myf,
To=1p"Mpp, Mp=| P com
b=735P MpP, Mp [morcom J }
Thus, we have
T(p) = 3P"Mp, M =Ms +Mp

The system potential energy arises from the gravitatioahl.fif we assume that the
body has neutral buoyancy (displace fluid mass is the sanfeaghicle mass) and
that the center of buoyancy and center of mass coincide, ttteepotential energy
function is identically zero. The Lagrangian, thenl.is: T(p). Now, we compute

6 oL 6 o
2=UX; = (p™M) $ pjAj=p'™ [‘*’0 ]
j;pJap i=(p )lepl =P 0 ”br

2

and, finally
Wy W Yy Wy | _
vl (S Mm% -0
Notice that if we define the momentum

n [
Plms)
Then the equations can be expressed (regakl; & x b, a,b € R%)
M+awxM+vpxP=0

P+wpxP=0
These can be compared with those given by Leonard [72].

6.3 Chain and Tree Configurations

In general a multibody system can be viewed in terms of an nlyidg tree struc-
ture upon which is imposed additional algebraic and/oredéftial constraints. In
this section we describe the assembly of dynamical equafmmthe tree. In later
sections we show how these equations are modified to accoatmady additional
constraints. A tree can be defined in terms of a set of chaat$y beginning at the
root body. We describe in some detail the process of modalioain. Extending
the process to a tree requires is merely a book keeping moces
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6.3.1 Kinetic Energy and Poincag’s Equations

The key issue in developing Lagrange’s or Poincaré’s egusis the formulation
of the kinetic energy function and we focus on that consionctt is necessary to
define a spatial inertia tensor. Recall the recursive vileelation from the previous
Chapter.

VE(K) = ok, k—1)VEL(k—1)+ HXK)BX(k), k = 1, ..., K, V°(0)=0 (6.28)

Consider théxth rigid link and letl;n(k) denote the inertia tensor about the center of
mass in coordinateB, m(k) denote the mass, aragk) denote the position vector
from the center of mass to an arbitrary paintThe spatial inertia about the center
of massMcm, and abouO, M, are

I 0
Men = |'5" )
" | ma
Mo(K) = (@Merll0(a) = | 2 ] (6.29)
wherel, is the inertia tensor abo@i.

The spatial velocity and spatial inertia matrix and, hettoe kinetic energy function
for the entire chain can now be conveniently constructed.usedefine the chain
spatial velocity and joint quasi-velocity

V=NT1),... VIK)I, B=[BT(),....BT (K] (6.30)

so that we can write

V = 0B (6.31)
where
| 0 0
o_ 02D 0
oK) 0K2) .. |
HL) 0 0
w— | 9 H@ . 0 (6.32)
0 0 .. HK)

o(i,j) = o(i,i—1)...0(j+1,j), i=2,.,K and j=1..,K-1
The following result is easily verified.
Proposition 6.5.The kinetic energy function for the chain consisting of dirk

through K is
K.E-chain=3B".#f3 (6.33)

where the chain inertia matrix is

M=ATOTMO, M =diag{Mo(1),...,Mo(K)} (6.34)
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Remark 6.6 (The Structure of Poiné&s Equations)The above definitions and con-
structions provide the kinetic energy function in the form

T(a,p) = (1/2)p"M(9)p
Hence, we reduce Poincaré’s Equations to the form:

M(a)p+C(q,p)p+F(d) = Qp (6.35)
where
dM(q)p 1[oM(@)p,, 1" | & B
C(q,p)=—{ 29 V(q)]+§[ 29 V(Q)} + J_lejij VT (6.36)
F<q>=vT<q>‘9§fq(Tq’, Q=VT(9)Q (6.37)

7 (q) is the potential energy function. Notice ti@g denotes the generalized forces
represented in thp-coordinate frame where&3 denotes the generalized forces in
thed-coordinate frame (aligned wit).

Remark 6.7 (Remark on Computationf)e key point to be noted is that the matrix
@ (and hence the produ@.7#) can be recursively computed. Thus, we can com-
pute the spatial velocity of any or all of the bodies via (§.80d the inertia matrix
using (6.34). Once this is done, we compGte, p), F(q), andQ, explicitly using
equations (6.36) and (6.37), assuming that the potenteggrfunctionP(q) and
the generalized force vect@) are available. In general, bothandQ are defined

in terms of coordinates and velocities (in the cas®pbther than the configuration
coordinateg) and the quasi—velocitigs Thus, it is necessary to develop any trans-
formations required to obtaiR andQ in terms ofqg and p. We will illustrate this
process below. For now, we note that velocity transfornmatiare recursively con-
structed using relations like (6.28) or (6.31), and coaatBriransformations are built
up from the usual sequential multiplications of configuratinatrices. Assembly of
the system gravitational potential energy and end effqubsition and orientation,
needed below, require constructions of this type.

Remark 6.8 (Poincdr vs. Lagrange Equations)otice that the kinetic energy can
be expressed in terms qfrather tharp,

T(a,p) = (1/2)4" {V T (@M(a)V(a) '} g,

and hence we have the essential data to construct Lagraameggions rather than
Poincaré’s equations. However, Poincaré’s equationg n@ae important advan-
tages. An obvious and practical one is the relative sintyliof the inertia matrix.
However, there is an important theoretical consideratomwall. Lagrange’s equa-
tions fundamentally constitute a local representationnvelrer local coordinates are
introduced, whereas Poincaré’s equations may still adrgibbal description of the
dynamics. This is easily seen by comparing the Lagrange aimt&¢é formulations
for the dynamics of a rotating rigid body. We do this below.
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Example 6.9 (Double Pendulumhs a simple example we consider the double pen-
dulum.

Define Joint Data
In[47]:= r1=_{1};H1_=i{_1{}.{0} {0},{0}.{0}.{0}};
r2 {1}2 NG pi{lﬁ {0}, {0} {0}.{0}.{0}};
Jothst {{rl,Hl,ql,pl},{r2,H2,q2,p2}};
Define Body Data

I n[ 48] : = coml1={0,0,-1}; massl=m; outl={2,{0,0,-1}};
Inertial= DlagonaIMatrlx[{O 0,0}];

com2={0,0,-}; mass2=m; out2={3,{0,0,-1}};
Inertia2= DlagonaIMatrlx[{O 0,0}];

BodyLst={{com1,{outl},massl,Inertial},{com2 {out2}, mass2,Inertia2}};

Define Interconnection Structure
I n[ 49] : = TreeLst={{{1,1},{2,2}}};
Define Potential Energy

In this case only gravity contributes to the potential egefidhe only generalized
forces are external torques acting at the two joints.

I n[50]:

g=gc; PE=0; Q={T1,T2};
I n[51] : = {V,X,H,M,Cp,Fp,p,q}=CreateModel[JointLst,BodyLst,Tr eelst,g,PE,Q];
We can look at some results.
In[52]:=
Qut[52] = {{{1}},{{1}}}
Recall that V returns as a list of kinematic matrices - onesfh joint. Hence in this
case we get two 11 matrices. This can be assembled into a single block didgona
matrix but it is more efficient to retain the list form.
In[53]:=
Qut[53]= {{2 > m+1> m Coga2x+
| Cosa2q (I m+I m Coga2X)+1?> m Sinfa2¥?,1?> m+12 m Coga2x},
{I> m+1> m Coga2x,1> m}}
I n[ 54] : = Fp//MatrixForm

_ ~T1l—gc | m (-2 SinalX —Sinjalx+a2x)
Qut[54] = ( —T2+gc | m Sirfalx+a2x )

We will return to this example below.
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Example 6.10 (Thin Disk)As another example of the application of these functions
let us consider a thin disk free to rotate about its centeragsin space without any
external or gravitational forces. The single joint definietative motion between the
space frame and the body frame is considered as a simplecgiheint.

In[55]:= r1={3}
H1=Join [IdentityMatrix [3],DiagonalMatrix  [{0,0,0}]];
a=1{9L,92q3}; p={wl,w2w3};
JointLst= {{r1,H1,q,p}};
ml=5R1=2;l1=
DiagonalMatrix  [{(1/4)*m1xR1°2(1/4)+*m1xR1°2(1/2)*m1xR1°2}];
cml={0,0,0};0cl={2,{1,0,0}};
BodyLst= {{cm1 {oc1},m1,11}};
TreeLst= {{{1,1}}};Q = {0,0,0};
{V,X,H,M,CsysFsyspsysqsys =
CreateModel [JointLstBodyLst TreeLstg,0,Q];

We summarize the results as follows. The Euclidean configuranatrix X(q) is
given in Example (5.6). The kinematic equations are

q=V(a)p
1 singltang2 cogyltang2
V(g =|0 coxl —singl |,

0 se@2singl coxlse?

and the dynamic equations

5 0 0 Swiw2
M(g)=|0 5 0], F(t,w)=C(q,p)p= | —5wiw2
0 0 10 0

Poincaré’s equations are recognizable as Euler's equsatio

Itis interesting to repeat this calculation with the simgbderical joint replaced by a
compound 3 dof universal joint. The only change requiretiénabovevlathematica
code is to replace the definition df= {3} by r1= {1,1,1 }. As noted above, the
parameterization of the configuration of the rigid body ie #ame as that of the
simple joint, i.e. X(q) is unchanged and(q) = I3. The other relevant results are as
follows

M(q) =

5 0 —5sing2
0 5/2(3—cosql) —5/2cosg2sin 1
—5sing2 —5/2cosg2sinl  10cosy1? cosg2? + 5cosg2? singl? + 5sing2
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F1(g,w) = w3(—5w2 cos 211 cosy2 — 5w3 cosg2? sin 91) /2 + w2(5u3 cosg2
+ (—5w3cos 211 cosy2+ 5w2sin 1) /2)
F2(g,w) = 1(—5w3cos92/2+ 5w3 cos 211 cosg2 — 5w2sin 1)
— 5w2w3sinjlsing2/4
+ (W3(—5w1cosy2 -+ 5w2sin 211 sing2/2 — 5w3 cosgl? sin A32) ) /2
F3(g,w) = wi(5w2 cos 211 cosg2 + 5w3 cosg2? sin 1)
+ w2(5wl cosg2 — 5w2 sin 2yl sing2,/2 + 5w3 cosgl? sin A42)
These equations are, of course, Lagrange’s equations -sagoence of the fact that
the joint formulation commits us to velocity coordinatekgaled with the configu-
ration coordinates. The simplicity of the kinematic matsxnore than offset by the
complexity of the dynamical equations. Notice also thatdinieamical equations in
the previous case are independent of the configuration maessa They are globally
valid equations, whereas the latter are not.

6.3.2 Generalized Force Calculations

Building models not only requires the construction of theeknatic relations and
kinetic energy function but it is also necessary to charatehe forces that act

on the system. This is normally accomplished through theniliefn of a potential
energy function, a dissipation function and/or the speatiim of generalized forces.
The ProPacfunction CreateModel accepts each of these as arguments. Several
computational tools are provided ProPacto assist in the development of these
quantities.

Potential Energy Constructions

The potential energy functiot (q) is typically used to characterize forces due to
gravity and elastic storage elements. The associated ajexselforce is

__97(q)

F(a) = “Toq

or ow
Fa) = -v(@ 250

in the p-frame. Computing the gravitational potential energy fanaltibody me-
chanical system is a straightforward but tedious task,esihis necessary to locate
the center of mass for each body in space. For convenienseadltulation is au-
tomated inCreateModel for a uniform gravitational field acting in the negative
z-direction. To use a coordinate system wathxis pointing downward requires spec-
ification of the gravitational constant agy.

The potential energy associated with elastic componemtsats involve compli-
cated geometry. Two functions roPac can be helpful in performing these cal-
culations.SpringPotential computes the potential energy expression in terms
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of the configuration coordinates for a spring connected eetwtwo nodes located
anywhere in the system. It is assumed that the spring patemergy is known as a
function of the spring length.

LeafPotential is designed to facilitate computing the potential energgarh-
ponents (such as tires) that interact elastically with tece frame. The potential
energy function is presumed known in terms of the spatiahtioo of a contact
node. The potential energy function is computed as a funaifothe generalized
coordinates.

Dissipation Functions

Dissipation functions are generally specified in terms @f ¢bnfiguration coordi-
nates and velocities in the form of the Rayleigh dissipagiotential

#(6,0) = 4" A(Q)g+a’ (a)g (6.38)
or in the more general more general Lur’e form (see [92])
D(a,p) =) fi(a)vi(p) (6.39)
|

where p denotes the quasi-velocities. The generalized force &dedcwith the
Rayleigh dissipation function (in the-frame) is

OR

F(p.q) = —VT(Q)a—q(V(Q) p.q)

The generalized force associated with the Lur'e potergial i

F(p,C]) = _ag(p’q)

ap
The functionCreateModel accepts Lur’e type dissipation potential as an argu-
ment and computes the generalized force. The calculatorined for the Rayleigh
function is performed by the functidRayleighDissipationForce

A ProPacfunction,DamperPotential , can be used to construct the dissipation
potential associated with a damper connected between tdesrin the system. The
function is analogous t&pringPotential . It requires that the damper can be
characterized in terms of a dissipation function dependimghe relative velocity
across the damper. Then a Lur’e type potential function istracted as a function
of the system coordinates and quasi-velocities.

Applied Force

One way to construct the generalized force associated witxgernal force applied
at a specific node in the system is to view the node as an energySpuppose a force
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Fa € R, composed of three torques and three forces, acts at afiodemultibody
system. LeV, denote the spatial velocity &t Both Fa andVa are represented in the
coordinates of a body fixed frame at nofleThe instantaneous power flowing into
the systemis” = F,IVA. In general, the application of Equations (5.66) and (5072)
the last chapter, as in the derivation of Equation (6.3&d4eto the representation of
the spatial velocity at nod&in terms of the system coordinates and quasi-velocities.
If Fa is defined as a function of system coordinates and quascitiels, then?” can

be expressed in terms of these variables. O#g@, q) is constructed we obtain

02(p,q)
=7 6.40
To facilitate computingQp ProPac provides several computational tools. One of
these,GeneralizedForce , is based on the construction described above. The

force Fa is assumed to be given as an expression involving the spatiatity
components of a body fixed frame at the node of force apptinafrhe function
GeneralizedForce then computes the generalized force.

Impact

The Hertz model of impact incorporates a simple charaatar of the force in-
teraction between two elastic bodies during the contacs@léa collision. During
a collision the two actual colliding bodies deform. Howeuéertz introduces a pa-
rameter that defines the relative position of two nondefogmwirtual bodies (labeled
A andB), x (see Figure (6.1)). Then a force (on bo#lydisplacement relationship
that applies during the contact phase is introduced:

f(x) = —K %32

whereK is a constant that depends on the material properties acal)lgeometry
of the colliding bodies:

K= %{Q/ (QH—sz/ﬁJ)}

As an example, consider a sphere of radigslliding with a plane surface. In this
case,

A=B=1/2r, q=13 Q= (1— p2)/Ermt, Qo = (1— ) /Eamt

whereE; andy; denote Young's modulus and Poisson’s ratio for the respebtd-
ies.

Notice that the force interaction can be completely charasd by a potential en-
ergy function, e.g. for the interaction described abovieag the form:

[ (2/5KI¥AE2 x>0
7/(’()_{ 0 X< 0
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(o)

point of contact

Fig. 6.1: During the contact phase of a collision the two alchodies deform. The relative
position (sometimes called relative approach) of the twaidmis an indicator of the relative
location of two (virtual) undeformed bodies.

The interaction force is then recovered b) = —9¥ /dx. In summary, a Hertz
impact model consists of: a potential function(x) = m(x)u(x), where is a
differentiable maprr: R — R with 1(0) = 0, and an associated force function
f(X) = —=#%(x) = —&(X)u(x), whereu(x) is the unit step function.

Backlash

Suppose that a symmetric backlash element with dead zoamptere has a smooth
force functionf (x) during the contact phase defined by a potential energy fumcti
¥ (X). Then the backlash mechanism can be characterized by aipbfenction:

Yo =7 (X —¢&)=n(]x —e)u(]x —¢)
so that the backlash force is given by

f(x—¢) X>¢€
fo(X) = 0 —e<x<e¢
—f(—x+¢&) x<-—¢

Working with backlash is facilitated by two functionsiroPac

BacklashPotential ,
andBacklashForce
The former constructs the backlash potential given a Henfzact potential func-

tion and a backlash parameter. The latter returns the adsddiorce. Note that the
backlash potential can be included as part of the potent&igy function.

Friction

Friction, particularly in joints, is an important factor many situations. A basic
characterization of friction as a static function of comtaelocity should include
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viscous, coulomb and static (Stribeck) effects. In ordeddothis efficiently with
large scale multibody models we can use a dissipation gateftur’e type (6.39).

Suppose the friction depends on a single velocity variall¢hat can ultimately
be expressed as a function of the system coordinates andwpasities. Potential
functions giving rise to viscous, coulomb and static efeute:

e viscous:3c,\?

e coulomb:cevsgn(v)
o static: Jcovsy/merf (V/VS) sgn(v)
The friction parameters used above are:

cv, Viscous friction coefficient
Cc, coulomb friction coefficient
Cs, Static friction coefficient

Vs, Stribeck velocity

The dissipation potential associated with a joint can berabted with the function
JointFrictionPotential

Example 6.11 (Two masses with backlash and friction).Consider the

system illustrated in Figure (6.2). The system is composad@ bodies and two

joints. Body one translates relative to the space frame ady two translates relative
to body one. Thus, the joint definitions are as follows.

In[56]:= rl={1};H1=Transpose [{{0,0,0,1,0,0}}];
gl={x1};p1={vi};
r2={1};H2 = Transpose [{{0,0,0,1,0,0}}];
2= {x2};p2={v2};
JointLst= {{r1,H1,q1,p1},{r2,H2,q2,p2} };

Now, we define the body data. The masses can be treated asnpedses so we
define the inertia matrices to be zero.

In[57]:= coml={0,0,0};massl=m1;outl= {2,{0,0,0}};
Inertial= {{0,0,0},{0,0,0},{0,0,0}};
com2={0,0,0}; mass2= m2; out2= {3,{0,0,0} };
Inertia2= {{0,0,0},{0,0,0},{0,0,0} };
BodyLst=
{{com1 {outl}, masslinertial}, {com2 {out2},mass2Inertia2} };
TreeLst= {{{1,1},{2,2}}};
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Ay

Reference Configuration
space frame

spring unstressed

k

Fig. 6.2: Two masses interact through a ‘loose’ joint extinilgi backlash.

Bodies one and two interact through a backlash potentiatiom constructued as
follows. A simple linear material compliance is assumece Bhcklash parameter is
d/2.
I n[58]:= PEBack[x]:= (k1xX"2)/2;

PE1= BacklashPotential [PEBackd/2,x2]

2
Qut [ 58] = % k1 (—g+Abs[x2]) UnitStep[—%—kAbs[xZ]]

The spring is assumed linear so a simple quadratic potamtey function is used.
In[59]:= PE2=(1/2)xkx(x1+4x2)"2;
PE=PEL+PE2;

The sliding friction of body one is assumed to be significarda slissipation potential
function is constructed.

I n[ 60] : = DissPotl= JointFrictionPotential [v1,cv,cc,cs Vs
cv v12
Qut [ 60] =

+cc Abs[vl]+% (—cc+cs) Vm vs Erf [\\ll—i] Si gn[vl]

Allowing for forcesFF; andFF; to act on bodies one and two, respctively, the model
is assembled as follows.

In[61]:= Q= {FFLFF2};
{IV,IX,JH, MM, Cp, Fp. pp,qq} =
CreateModel [JointLstBodyLst TreeLst—g, PE DissPot1Q);
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Computing Joint Kinematics
Computing joint 1 kinematics
Computing joint 2 kinematics
Computing Potential Functions
Computing Inertia Matrix

Computing Poincare Function

Let us examine th&, function.
In[62]:
Qut [ 62] i
{—FFl+cv vi+k (x1+x2)+ (—cc+cs) e @ Si gn[vij+

cc (—Unit St ep[—vl]+Unit Step[vl]), —FF2+k (x1+4x2)+kl

Fp

(fg+Abs[x2}) (—Uni t St ep[—x2] +Uni t St ep[x2]) Uni t St ep[fg+Abs[x2]]}

The expression is mixed in sign and unit step functions. §f beconvert to all sign
functions.

In[63]:
Qut [ 63]

V2 V2
{—FFl+cv vi+k x1+k x2+e (cs+cc (—1+ev_17>) Si gn[vl],

UnitStep2Sign  [Fpl

ki x2 1

—FF2+k x1+k x2+ -2 d k1 Si gn[x2}+% ki x2 Si gn[—%—kAbs[xZ}]—

% d ki Sign[x2 Si gn[—%+Abs{x2]]}

Example 6.12 (Automobile directional stabilityys a somewhat more complex ex-
ample we consider building a simplified automobile modet¢ofised as a basis for
investigating directional stability (Figure 6.3 and Fig\@.4).

For simplicity of the resulting equations, we neglect th@ational energy of each
wheel around its axle, that ig, << 1. Also, we will assume thatt, andd are suffi-
ciently small that linear approximation in these varialideadequate. None of these
assumptions are necessary, by any means, but are usefyupfmsitry purposes. For
tire cornering force and alignment torque constitutiveatouns we take:

Feorner= KB, Talign =10

These are applied at the tire contact point.
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Space FrameX

Fig. 6.3: These figures define the dimensions and variablas afitomobile that moves in the
X —Y plane. Thex—y frame denotes a reference frame fixed in the begyk; are the front

and rear tire coefficients, respectively. The system is amag of the vehicle body and its four
wheels. The front wheels are used for steering with spiraligaed to provide small amounts

of caster and camber.
z xi v
camber slopa, [t W

Fig. 6.4: The tire rotation involves a revolute joint withation axis defined by the caster and
camber angles. Tire cornering force and alignment torgeduactions of the sideslip angle.

Joint definitions

There are three joints. The 3 dof main body joint between gaes frame and the
automobile body and the two front wheel spindles

In[64]:= r1={3};ql={0,x,y};pl={w,vx,vy};(* main body x)
H1= {{0,0,0},{0,0,0},{1,0,0},{0,1,0},{0,0,1},{0,0,0} };
r2={1};92 = {deltaz; p2= {wdel2}; (+ right spindle x)
H2 = Transpose [{{—sr,—tr,1,0,0,0}}];
r3={1};93 = {delta3;p3= {wdel3}; (+ left spindle x)
H3 = Transpose [{{-sl1,1,0,0,0}}];

JointLst= {{r1,H1,q1,p1},{r2,H2,92 p2},{r3,H3,q3 p3} };

We compute the joint parameters with

In[65]:= {V,X,H}=Joints [JointLst;
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Body data

The body data includes body inertial properties includiagter of mass locaton in
the body frame and outboard node locations.

In[66]:= cml={0,0,0};

outl={{2,{a,—¢/2,0}},(x front left tire spindle)
{3,{a,¢/2,0}},(x front right tire spindle)
{4,{—b,—£/2,—R}},(x rear left tire ground contact point)
{5,{—b,¢/2,—R}}};(x rear right tire ground contact point)

11 = {{Ixx,0,Ixz},{0,Jyy, 0}, {Ixz 0,JzZ} };

cm2={0,0,0};out2= {{6,{sr Rtr R,—R}}};

12 = DiagonalMatrix  [{Ixx,lyy,1zz}];

cm3={0,0,0};0ut3= {{7,{sl R —tl R,—R}}};

I3 = DiagonalMatrix  [{Ixx, lyy,lzz}];

In[67]:= BodyLst={{cmloutlmlI1},{cm2out2m212},{cm3 out3 m23}};

TreeLst= {{{1,1},{2,2}},{{1,1},{3,3}} };
g={0,x,y,delta2 delta3;
p = {w,vx,vy,wdel2 wdel3};

Notice that the system has a tree structure. The tree is cesdpaf two chains: 1)
main body and right tire, 2) main body and left tire.

Tire forces

We need to compute the tire generalized forces. This regjfore similar, and some-
what complicated, calculations. To do this we use the fancti

GeneralizedForce

Furthermore, to reduce computation time (by a factor of tethis case), we use
the function

KinematicReplacements

GeneralizedForce computes the generalized force associated with a force ap-
plied at any defined node in the system. Itis usually the desdtie applied force is
characterized in the reference frame of the body in whichtige is specified. The
simplest usage is:

GeneralizedForce[TerminalNode, TreelLst,BodyLst,
X,H,q,p,Force,VelNames]
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TerminalNode is the node number at which the force is appli€dis a list
of 6 expressions which defines the external torques (firgte)hand forces (last
three) in terms of body velocities (velocities of a body fiXeaime at the termi-
nal node). VelNames is a list of (6) names of the velocitiesdum the expres-
sionsF. There must be six names - the first 3 corresponding to thelangeloc-
ity and the last 3 to the linear velocitiinematicReplacements[V,X,H]
returns{Vnew,Xnew,Hnew,rules } where repeated groups of expressions in
V,X,H are replaced by temporary variables to prodvcew,Xnew,Hnew . The
original forms are recovered by applying the rule list “ailelt is often conve-
nient to use the syntalkinematicReplacements[V,X,H,q] , which returns
{Vnew,Xnew,Hnew,rules1,rules2 }. In this usage, rules is divided into two
sets. The set “rules1” depends on the coordingt&he set “rules2” do not. rules2 in-
volves expressions that depend only on system parameterspplication of rules1
must occur before usingreateModel but rules2 can be applied at any time.

In[68]:= {V,X,H,ruleslrules? = KinematicReplacements  [V,X,H,q];
Force= {0,0,0,0, —kappaf ArcTaﬂiX—Zi],O};(* right front %)

VelNames= {w6x, w6y, w6z, v6x, v6y,v6z};
TerminalNode= 6;
Q1= GeneralizedForde
TerminalNodeTreeLstBodyLst X, H, g, p, Force VeIName$;

Similar calculations yield the remaining three tire forcEsen we proceed to assem-
ble the model.

In[69]:= Q=0Q1+Q2+Q3+Q4;
{V,X,H,Q} = Chop[{V,X,H,Q}/.rules10.001;
{V,X,H,M,CsysFsyspsysasys =
CreateModel [JointLstBodyLst TreeLstg,0,Q,V, X, H];
{V,X,H,M,CsysFsyspsysasys =
{V,X,H,M,CsysFsyspsysqsys/.rules2;

For analysis purposes we create a model with the followirmfeatures. First, we
assume that delta2 and delta3 are inputs rather than catedidetermined by the
dynamics. Thus, we eliminate two degrees of freedom. Seaeadhoose to ignore
any steering imperfections and assume delta2 and delt&gjaed and call them both
0.
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In[70]:= qred=qgsys[{1,23}]];
pred= psyg[{1,2,3}]];

Mred =

M[[{1,2,3},{1,2,3}]]/.Inner [Rule{delta2delta3,{0,0},List];
Cred=

Csy§[{1,2,3},{1,2,3}]]/.Inner [Rule {delta2delta3, {0,0},List];
Fred= Simplify|

(Fsyd[{1,2,3}]]/.Inner [Rule {delta2delta3,{d,d},List])
/.{sl— > ssr— > s tl— > t,tr— >t ,kappaf- > k,kappar > k}];
Fred= Truncate [Fred{st},1];

Vred= V[[{1}]];

The results are summarized below.

6 1 0 0 W
X[ =10 cosB —sinB| |
y 0 sinB cosB Vy

Syt 2gp+ 282my + M2y 0 2amp | [@
0 my + 2mp 0 Vx
2amp 0 m+2my| [ W

2ampVyw
+ | — (Mg +2mp) vy — 2ampw? | + f(w, v, W, 8, F,8F) =0
(Mg + 2mp) vk

Because of its complexity, we displdyonly up to second order iy, c:

2K (—bw + Rs\ + (a2 + b?) w + a(vy + 2Rxw) /vy 0
f= 0 +|2|F

2K (2w + (a— b+ R9w)/ 0

¢ —2(a+R9K
+ | 0| 8F + | —2k (W +aw+ Rw) /v | &
0 —2K

6.4 Systems with Constraints

The above constructions apply to systems interconnectainipyle and compound
joints and which have a tree structure. Recall that simpéecampound joints as we
have defined them impose holonomic constraints on thevelatotion between two
bodies. We wish to generalize the class of systems to inchatee with closed loops
and nonholonomic differential constraints.
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6.4.1 Differential Constraints

Consider a system witin-dimensional configuration manifolsl and state space
T M. Suppose that additional (differential) constraints arpased on the motion of
the system in the form:

F(qg=0 (6.41)
whereF is anr x m matrix of (constant) rank, or equivalently
A(qQp=0 (6.42)

whereA(q) = F(q)V(q). We will examine how the imposition of differential con-
straints affects the equations of motion. Differential sioaints may bedjoinedto
the equations of motion via the introduction of Lagrangetipliérs orembedded
which avoids the addition of any auxiliary variables [14]e\bnsider the latter ap-
proach.

Recall that a virtual displacement from an admissible caméijonq was required
to belong to the tangent spatgM, that is the space to which velocitigsaturally
belong. When differential constraints such as (6.41) amR{Gapply, velocities are
further constrained to lie in the subspaceTgifl, kerF (). Accordingly, virtual dis-
placements are restricted by the same requirenfrd:dq = 0.

Proposition 6.13.Suppose the Lagrangian system of Proposition (6.1) is stilije
the constraint Ag) p= 0, withdim kerA(gq) = m—r (a constant). Then the dynamical
equations of motion are

q=V(a)T(a)p (6.43)
L 02L 2L m 9L oL
t¢ L ty st _ UE et _ ot
{p ap2+pV aqap JleJaDUXJ aqV}T(tﬂ QVT(q) (6.44)
p=T(q)p (6.45)

where T(q) is an mx (m—r) matrix whose columns sp&erA(q).

Proof: The calculations in the proof of Proposition (6.1) that ltméquation (6.15)
remain true even when the constraint (6.41) applies. Howevthis event, the vari-
ationw s not arbitrary. When (6.41) obtains, it is necessarywhsatisfyA(q)w =0
(recall thatdg = Vw), so that we can write

w=T(q)a (6.46)

where the columns of (q) span keJA(q)] anda € R™ " is arbitrary. Rewrite (6.15)
as
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t2

~ dl: t2
oL(p,g)+Q'oqldt=Y —Taq
[ (o0 + QT dajt= 5 T Ta

t1

t1

Tadt  (6.47)

/Z[ dt(?p Z 'k(?p p|+Vk( )+Q W

Now, we can invoke the independence of the variations tdiobte dynamical equa-

tions
dol I . oL N
[ad—m_ Z K ap pj — Vk(L)_Qth]T(Q)—O (6.48)

HES

Equation (6.48) is to be solved along with (6.42) and (6.16).

Remark 6.14 (Constrained dynamics).

1. In application, we use (6.45) to replapefter the expression in curly brackets
is evaluated. Then (6.43) and (6.44) form a closed systengadtéons in the
dependent variablg$,q) € RP™".

2. Notice that when the unconstrained dynamical equatiomefahe form
M(q)p+C(a, p)p+F(a) = Qp

then the constrained dynamics (6.44) are:

[TY(a)M(a)] p+ T (@)C(a, p)p+ T (Q)F (q) = T (a)Qp
or

T@M@T(@] b+ T(@ [Ca@T@pT(@+ Mo T Pv(@] 5

+T(@)F (@) = T'(@)Qp (6.49)
First, let us examine a simple example.

Example 6.15 (Sleigh on a horizontal plane). Consider a sleigh that
moves on a horizontal plane as shown in Figure (6.5). Neinaak Fufaev [86]
study the more general problem of a sleigh on an inclinedep(aae also Problem
(6.24)). The knife edge does not admit sideslip. Thus it isgsoa simple differential
constraintyy = 0. First, we formulate the equations of motion without thigeten-
tial constraint imposed by the knife edge. Define the singlaif body) joint:

In[71]:= r1={3};ql={@,xy};pl={w,vx,vy};(* main body x)
H1={{0,0,0},{0,0,0},{1,0,0},{0,1,0},{0,0,1},{0,0,0} };
JointLst= {{r1,H1,q1,p1}};
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center of mass

knife edge contact point

L X

Fig. 6.5: A sleigh on a horizontal plane.

Define the body data:

In[72]:= cml={d,0,0};outl={{2,{d,0,0}}};
11 = {{Ixx,0,Ixz},{0,Jyy,0},{Ixz 0,Jzz} };

BodyLst= {{cmloutlml11}};
TreeLst= {{{1,1}}};
a={e.xy}

p={w,vx,vy};

Suppose a drive forde acts along the knife edge axis and a torguacts about the
z-axis. Now, set up the generalized force and obtain the (ustcained) model:

In[73]:= Q={T,F0};

{V,X,H,M,CsysFsyspsysqsys =
CreateModel [JointLstBodyLst TreelLstg,0,QJ;

+x+ Dynamics successfully loaded kk
Computing Joint Kinematics

Computing joint 1 kinematics

Computing Potential Functions

Computing Inertia Matrix

Computing Poincare Function

Finally, add the constraint.
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In[74]:= {Mm,Cm,FmVm,Transphat =

DifferentialConstraints [M,CsysFsysV,{vy},p,q,{3}];
vVm
Mm
Cm
Fm
In[75]:= Vm
Qut [ 75] = {{1,0},{0,Cos¢]},{0,Sin[¢]}}
In[76]:= Mm
Qut[76] = {{Jzz+d? m1,0},{0,m1}}
InN[77]:= Cm
Qut[77] = {{d ml1l vx0},{—d ml w,0}}
In[78]:= Fm

Qut[78]= {-T,—F}

Thus, the dynamical equations of motion are

d|? 1 0 w
gt x| =10 cosp {v }
y 0 sinp| L™

Jzz+d2m1 0 E W n 0 dmw| |w + =T -0
0 my | dt | W —dmow 0 Viy —F |

Here is another example, only slightly more complicated.

Example 6.16 (Driven Planar VehicleGConsider the 3-wheeled planar vehicle shown
in Figure (6.6). Itillustrates the calculations requirecissemble a model involving
multiple differential constraints. This system is alsofubfor illustrating basic prop-
erties of nonlinear system controllability.

The system is assumed to be composed of a main body with twevresgels and one

front wheel. The front wheel is both the steering and drive&hThe rear wheels
rotate freely about an axle fixed in the body. The assumpfipoi rolling imposes a

sideslip constraint, but they play no other essential motaé system behavior. Thus,
we consider them to have no mass or inertia. The front wheethe other hand is

assumed to have nontrivial inertia properties and bottrisggand drive torques are
applied to it. It is also assumed to undergo pure rolling.

In summary, the model is composed of two bodies: (1) the meticle body includ-
ing the rear wheels and (2) the and the front wheel. The maaehho joints: (1)
the main body joint — a three degree of freedom (two displardgsand a rotation)
joint characterizing the motion of the body in a space fixaedgnfe, and (2) the main
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body/front wheel joint — a two degree of freedom (steerintyicm and front axle
rotations) joint that characterizes the relative motioritaf front wheel relative to
the main body.

body fixed frame

space frame
X

Fig. 6.6: This simple vehicle can be driven around the plasiegusteering and drive torques,
Ts andTy, respectively, that are applied to the front wheel. The Wieese is denoted and the
front wheel radiuRR.

Joint data
In[79]:=

In[80]:=

In[81]:=

Body data
In[82]:=

In[83]:=

r1={3};q1={@,x,y};pl={wb,vx,vy};
H1 = {{0,0,0},{0,0,0},{1,0,0},{0,1,0},{0,0,1},{0,0,0} };

r2={1,1};92= {6f,06}; p2 = {wf, w};
H2 = {{0,0},{1,0},{0,1},{0,0},{0,0},{0,0},{0,0} };

JointLst= {{r1,H1,q1,p1},{r2,H2,092 p2}};

cml= {-d/2,0,0};outl= {{2,{0,0,0}},{3,{—d,0,—R}}};
11 = {{Ixx,0,Ixz},{0,Jyy, 0}, {Ixz 0,JzZ} };

cm2= {0,0,0}; out2= {{4,{0,RSin6f], ~RCog6f] } } };

12 = DiagonalMatrix  [{Ix,J,Ix}];

BodyLst= {{cm1 outl, m1 11} ,{cm2 out2 m2,12}};
TreeLst= {{{1,1},{2,2}}};

g=Flatten [{q1,q2}]

p=Flatten [{pl,p2}]

Qut[83] = {gx,y,6f 6}
Qut [ 83] = {wb,vx,vy, wf, w}
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Unconstrained Model Assembly

In[84]:= Q={0,0,0,Ts, Td};

{V,X,H,M,CsysFsyspsysqsys =
CreateModel [JointLstBodyLst TreelLstg,0,QJ;

Computing Joint Kinematics
Computing joint 1 kinematics
Computing joint 2 kinematics
Computing Potential Functions
Computing Inertia Matrix

Computing Poincare Function

Adding Constraints

The rolling assumption implies that the wheel contact peglbcity is zero. We
compute the velocities for the unconstrained model at eaakact point using the
functionNodeVelocity . Because of our assumptions, some components are iden-
tically zero but the remaining velocity constraints musteméorced. In the case of
the rear wheels we need to enforce a single sideslip cons{lacaly-direction), and

for the front wheel we need to enforce the sideslip and tatigeonstraints (locak
andy-directions). To do this we use the functibifferentialConstraints

In[85]:= Vrear=NodeVelocity [3,TreeLstBodyLstX,H.q,p];
Vfront = NodeVelocity [4, TreeLstBodyLst X,H,q,p];
cl=Vrear [[5]]
c2 = FullSimplify [Vfront [[5]]/.{6f — O}]
c3= FullSimplify [Vfront [[4]]/.{6f — O}]

Qut [ 85] = vy —dwb

Qut [ 85] = vyCog6] —vxSin[6]
Qut [ 85] = —Rwf +vxCog8]+ vySin6]

In[86]:= {Mm,CmFmVm,Transphat =
Simplify  [DifferentialConstraints
M,CsysFsysV,{cl,c2c3},p,q,{1,2,3}]];

Vm
Mm
Cm

Fm
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In[87]:= Vny/MatrixForm
RSin 6]
RC 5?9 ] 0
_ 080 + @
Qut[87]1= | RsiNg+¢] 0
1 0
0 1
In[88]:= ¢
Qut[88] = {o,xy,6f 6}
In[89]:= Simplify [Mm]
2, 2 2
Qut[89]= {{ 4(Ix +Jz2 R4 d< (8J+ (5m1+8m2) R?)
 (41x+4Jzz- Sdéjzml R2Cog26]
8¢k ’
IxRSm IxRSm
b Ly}
In[90]: = (Cm.phat+ Fm)//Matrleorm
(41x+4Jzz— 3P m1) R? w wf Cog6] Sin 6]
Qut[90] = 42
CTd+ Iwao:‘Cos[G}

Suppose now, that the two control torques can be used tospigcegulate the two
remaining quasi-velocitie®, the steering angle rate, aag, the drive wheel angular
velocity. Then the problem of moving the vehicle around tlamp becomes purely a
kinematic one in which these two quasi-velocities can beifipd to steer the vehicle
along a desired path. Normally, the drive wheel rotation@ignot a coordinate of
interest, and since it does not entire into any of the elemefiv,,, we can ignore

it. Accordingly, eliminating thed; equation from the kinematics and reordering the
states for convenience we obtain:

In[91]: = Vnj[{2,3,1,5}]]//MatrixForm
RCog6+¢] 0
RSIN6 +¢] 0

Qut[91] = R Sin6]

d
0 1

Now, introduce the drive velocity= Rw; to replacew; and taked = 1 to obtain the
kinematic equations in the final form:

X cog6+¢) O
d|y| |sin@6+¢ O
dt a 0

1

dt | @ sin@
6 0

We will use this model in the next chapter (Example (7.10))lltestrate certain
important aspects of the controllability of nonlinear syss.
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Here is a more complex example.

Example 6.17 (Rolling Diskfs an illustration we take another example from Neimark
and Fufaev [9]. Consider a disk that rolls without slippingtbe x-y plane (z is up

as in Figure (6.7)). Assume that the disk is of mass m and saRlilOne approach

is to ignore the rolling constraints and formulate the equstof motion for the free
disk in space, and then add the required constraints.

Fig. 6.7: The rolling disk.

A body frame is established with origin at the center of thekdirhe six degree of
freedom, simple joint is defined by:

In[92] : = r={6};

[92] Ir—|:{lc§entityMatrix[6];
g={psi,theta,phi,x,y,z};

={WX,Wy,WZ,VX,Vy,VZ};
gointLi\sAg{{r,H,q,p 1

In this setup the,y,z coordinates locate the center of the disk in the space frawhe a

Y, 0, are Euler angles in the— y — x (or 3-2-1) convention. The body data is:

I n[ 93] : = Mass=m; CenterOfMass={0,0,0}; )
OutboardNode={2,{0,-R * Sln[p3|]],-R * Cos[psi}};

InertiaMatrix:DiagonaIMatrix[{J,Iy,Iy& ; ] )
BodyList={{CenterOfMass,{OutboardNode},Mass, Inertia Matrix}};

and the remaining data:
I n[ 94] : = TreeList={{{1,1}}};
[94] PE=0; Qﬁ{f’0,0,}a,}0,0,0};
The unconstrained disk model is obtained with

I n[95] : = {V,X,H,M,Cp,Fp,p,q}=CreateModel[JointList,BodyList, TreelList,g,PE,Q];
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Now, we formulate the differential constraints. Rollingaut slipping implies that
the velocity of the disk contact point must be zero. An exgims for the (angu-
lar and translational) velocity at the outboard node as atfan of the configura-
tion variables is easily obtained using the functiemdEffectorVelocity or
NodeVelocity

I n[ 96] : = {ChainList}=TreeList;

VCont= NodeVeIoc:lty[ChalnLlst BodyList,X,H,p]

{wx,wy,wz,vx —R wy Cogpsi+R wz Sinpsi,vy+R wx Cogpsi,

vz—R wx Sinpsi}

In[97] : = {Mm,Cm,Fm,Vm,T,phat}=
ifferentialConstraints[M,Cp,Fp,V,VCont[[Range[4,6] 11.p,q.{4,5,6}];

out [ 96]

The dynamics are reduced to three dimensions and the drigjinguasi-velocities
are reduced to three, in fact, we hapbat= {wx,wy,wz }. The set of configura-
tion coordinates is not reduced by the functifferentialConstraints

In general, a set of differential constraints may not admyt such reduction. Such
would be the case if the constraints were completely nomtatoc. In the present
case, however, the constraints are ‘partially’ integraiple from basic geometry one
can see that height,, = R(1 — cos8). Using this relationship, the coordinatean
be eliminated from the equations. Because the translatoanpeter,y,z are, in
fact, the space coordinateds precisely the height of the center of mass. Inspection
shows that only Mm and Vm depend @80 we define:

In[98] : ﬁols} =Solve r[y [£3 4]]]——R * (Cos[theta]-1)},{z}];

Simpli
Vmo=Simplify m[[ {1,2,3,4,5} ])/.Sols];

Now, we assemble the governing equations.
I n[ 99] : = Egns=MakeODEs[phat,q[[{1,2,3,4,5}]], Vmo,Mmo,Cm,Fm,t ]

Consider the equations of motion as given by the list Eqneef@kinspection of the
equations suggests that representation of the angulacitelo a frame that does
not rotate about the body-x axis may simplify them. Thus, reagform the angular
velocity coordinates, wy, wz, via the relations:

I n[100] : = Trans= {wy[t] — Cogpsilt]] wyy|t]+ Sin[psit]] wzz]t]
wz[t] — —Sin[psit]] wyy[t]+ Cogpsit]] wzz[t]};

The transformed equations are obtained with the fun@iate Transformation

I n[ 101] : = StateVars={psi,theta,phi,x,y,wx,wy,wz};
TrEqns= StateTransformatlon[Eqns StateVars,Trans,{wy y,wzz}i]

to obtain:

¢ = Se({e)sz
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Lp - WX + tar(e)WZZ

x = R(sin(@)wx + cog @) coq 6)wyy)
y = —Rcog @)Wy + Rcog 0) sin(@)wyy

i — MRWyy W,
T J+mR
o Wy (Iwy A+ Iytan(8)wy,)
Wzz =
ly
e gmRsin(8) — (J+ mR)wxw,,— lytan(8)w2,
we ly+mR

These equations are obviously equivalent to the disk egpustjiven by Neimark and
Fufaev [9].

Another derivation is given by Meirovitch [8]. To comparer@guations with his, it
is necessary to reduce them to second order form by elimioétie quasi-velocities
(thus, we get Lagrange’s equations), and to perform a miaasformation of angu-
lar coordinates:

I n[ 102] : = Rulesl=Flatten[Solve[TrEqns[[{1,2,8}]].{wx[t],wyy][t 1wzz[t}];
In[103]:

Rules2= {wx [t] >D[wx[t]/ Rules1,t],
H [ H/ Rules1.t],
wzz'[t]->D[wzz|t)/ Ruleslt}

I n[ 104] : = Rules3= {theta{t] >th[t -Pi/2,
theta'[t
theta'f]->th Et]}
I n[ 105] : = Rules4= {phlLt] ->- p|/2+ h[t],
ph| t] >ph t]}
I n[ 106] : = LagEqns=Simplify[TrEgns][[{5,6,7}]]/.Rulesl/.Rules2/ .Rules3/.Rules4]
_ , yq (3+2mR8) Sinth[t)] ph/[t] th/[t]
Qut [ 106] = {Costh[t]] ph'[t] + psi’[t] == TmRe ,
(21y — J) Codth[t]] pH [t] th'[t] — I psi[t] th'[t] + ly Sin[th[t]] ph"[t]
ly
th'[] == m (—gmR Costh[t]] -+ ly Cosith{t] Sin{th{t] pH[t2—

(3+mR2) Sinjth[t] pH [t] (Costh[t]] pH [t] + psi[t])) }

These equations are easily confirmed to be equivalent te thiwen by Meirovitch
[8], p. 163.
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6.4.2 Holonomy and Integrability

If the distributionA = KerF(q) is completely integrable (in the sense of Frobenius)
then any motion of the constrained system is confined to agiat manifold of

a submanifold oM. Thus, the differential constraint (6.41) can be replacgdb
configuration constraint of the form

f(q) =0 (6.50)

Such differential constraints are callbdlonomic Of course, an integrable distribu-
tion will have an infinity of integral manifolds and the one which motion takes
place is determined by the initial conditions of the syst&imce the distribution
is nonsingular and of dimensianall of the integral manifolds are of dimension
Thus, in principle, it is possible to reduce the configuraspace by coordinates.
If A is not completely integrable, then the constraint is saidemonholonomic. A
nonholonomic constraint may be ‘partially integrable.cgk that the distributio

is completely integrable if and only if it is involutive. Sppse this is not the case.
Then construct the smallest involutive distribution thatt@insA. Denote this distri-
butionA*. Now letG(q) be a matrix whose columAgj1(q), . .. ,gm-r(q) }spanA(q).
Then (6.41) is satisfied if and onlydft) satisfies the differential equation:

q=G(g)v(t) (6.51)

wherev(t) is arbitrary (except for any conditions necessary to aeh@uoothness
requirements om(t)). By considering (6.51) to be a control system, we can apply
known results on nonlinear system controllability to redeihfollowing conclusion.

If A* is nonsingular with dimensiom—r*, 0 < r* <, then there is amm—r*-
dimensional integral manifold af* passing through any poigp € M, saySy,, and

all points reachable from via an admissible motion (one that satisfies (6.41) or,
equivalently, (6.51)) belong t&,.

Consequently, the differential constraints restrict tlegion to anm—r* dimensional
submanifold of the spadd. If r* =r , then we have the holonomic case which yields
the maximally restricted configuration space.*lf= 0, the configuration space is the
entire spacéVl, there is no restriction of the accessible configuratiomghis case
the constraints are said to be completely nonholonomic.

A standard procedure that can be used to consttids described in Chapter 2,
Algorithm (3.54). Define

Ny =A

D1 = D+ (A, 4]
and terminate & = k* whenAy: ,; = Ay- . The integek* is sometimes referred to as

the ‘degree of nonholonomy’[12]. It represents the numlb&i®bracket operations
necessary to achieve integrability by expansion of theiligion.
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6.4.3 Configuration Constraints

Suppose that a set of constraints of the form of (6.50) ar@s®ag on a Lagrangian
system with configuration manifold. Assume further that

rank[df/dq =ronS={q| f(q) =0}

Then,Sis a regular submanifold afl of dimensiom —r andSis the configuration
manifold for the constrained system. There are a number géw@formulate the
equations of motion for the constrained system. The two mastmonly used are:

e If (6.50) can be solved for coordinates in terms of the remaining coordinates,
then these relations can be used to eliminateordinates from the unconstrained
equations of motion.

e lItis always possible to differentiate (6.50) to obtain

J(@a=0, J(q):= 3; (6.52)

Now proceed to use the procedure described above for ditiateonstraints. The
resulting equations describe the motion in terms of theirmaign coordinates but the
manifold S can be shown to be an invariant manifold so that if the ingt@ditions
satisfy

f(go) =0, J(do)Go = JI(do)V (do)Po =0 (6.53)

then the resultant motion evolves$h

Example 6.18 (Two bar linkage)Consider a planar two bar linkage in
which the lower end of bar 1 is constrained by a revolute jomthey-axis aty = 0
and the upper end of bar two slides on trexis. The upper end of bar 1 and the lower
end of bar 2 are connected by a revolute joint. Figure (6li8tiates the system.
In[107]: =

311 - Hansposel(1.0000.0)

5|22 {'{ir]z?asg}osg[{fl 0,0, 0 0 O}}]

JointList={{r1,H1,q1, pl} {r2 H2,92,p2}};

Massl=m1; CenterOfMass1={0,0,L1/2};
OutboardNode1={2,{0,0,L1
InertiaMatrix1= DlagonaIMatrlx[{ml *L172/12,m1 *L172/12,0}];

Mass2=m2; CenterOfMassZ {0,0,L2/2};

I n[108] :

OutboardNode2= {3,{0,0,L %

InertiaMatrix2= DlagonaIMa rix[{m2 *L272/12,m2 *L272/12,0}];
BodyList={{CenterOfMass1,{OutboardNodel},Mass1,Iner tiaMatrix1},
{CenterOfMass2,{OutboardNode2},Mass2,InertiaMatrix2 e

In[109]: = Erée:e(%;istsi{{{&,&}};,{z,Z}}};
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Fig. 6.8: A two bar assembly is illustrative of a closed chainfiguration.

In[110] : = {V,X,H,M,Cp,Fp,p,q}=CreateModel[JointList,BodyList, TreelList,g,PE,Q];

We have the model for the unconstrained tree structure. Nuesv,formulate
the constraint.

I n[111] : = ChnBodyList={{CenterOfMass1,{0,0,L1},Mass1,InertiaM atrix1},

{CenterOfMass2,{0,0,L2},Mass2,InertiaMatrix2}};
I n[ 112] : = EndPos=EndEffector[ChnBodyList,X];
G=EndPosJ[[{2},4]]
{-L1 Sinthetal+
L2 (—Codgtheta? Sinthetal — Codthetal Sintheta2)}

In[113]:
out[113]
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The relationG = 0 is not solvable for either thetal or theta2 for all valuekbfind
L2 - although, as we will describe below, it can be solved fartigular values of
these parameters. Thus, we will not try to eliminate any goméition coordinate.
The constrained dynamics are obtained with:

I n[ 114] : = {Mm,Cm,Fm,Vm,phat,ghat}=AlgebraicConstraints[M,Cp,F p.V.G,p,d]

These parameters define the constrained system dynamies|éls consider the

special case: L1=L2=L. This is the only situation where Gafl be solved for ei-

ther thetal or theta2, so that either angle can be used tonpsedze the system
configuration. For simplicity, also set m1=m2=m. Since L2=L it is easy to show

that theta2=-2 thetal. Hence we can make this replacenmetfiisl case the system
matrices are:

I n[ 115] : = {Mm,Cm,Fm,Vm}=Simplify[{Mm,Cm,Fm,vVm}/{L1->L,L2->L, m1l->m,m2->mj}]
It is convenient to assemble the corresponding differeetjaations.

I n[ 116] : = SpEqgns=
Simplify[MakeODEs[phat,ghat,Vm,Mm,Cm,Fm,t]/.theta2[ t]->-2  *thetall[t]]
The resultis: _
91 = —LCOSlel

62 = 2Lcosf;w,
. 12 . : .
(7 cosBy — 3cos P )Wy = —ngmel —L(2sin29; — 3sind0;) w2
Notice that the last two equations consitute a closed syefdamo first order differ-
ential equations i, andw;. Let us define some replacement rules to replace these
by a single second order equationflp i.e., Lagrange’s equation.

In[117]: = Rules={wl[t] — Dthetal [t],t]/(—LCodthetal [t]]),
Dw1]t],t] — D|Djthetal [t],t]/(—LCosgthetal [t]]),t]}

In[118]: = Simplify [SpEqgns][3]]/.Ruleg

Qut[118]= 0== %Lszos{theta:{t}] (—6gSirfthetat]]+

3LSin2thetat]] thetal[t]? — L (—5+ 3 Cog2thetalt]]) thetad'[t]

Simple trigonometric identities can be used to verify tha&se equations are equiv-
alent to those given by Ginsberg [30], p.275 for this example

6.5 Systems with Flexible Bodies

6.6 Simulation

The equations developed above can be further manipulateddically, for exam-
ple, they can be putinto state variable form or linearizeeorsformed in other ways
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of interest to control systems engineers. However, it sonest desired to perform
numerical computations or simulations with these modeélsidy be convenient to
perform simulations within Mathematica, or it may desieatd employ other stan-
dard simulation packages. We will describe and illustraii lapproaches.

6.6.1 Computing with Mathematica

It is easy to construct a simulation within Mathematicastiassemble the sys-
tem parameter matrices as computed above into a system iobordlifferential
equations using theroPacfunctionMakeODEs MakeODEs[p,q,V,M,C,F ]

builds and returns a list of ordinary differential equasan Mathematicasyntax.
They can be integrated using the built in differential eqnatolverNDSolve . The
process is illustrated with a simple example.

Example 6.19 (Double Pendulum Revisited)Let us revisit Example
6.9. All of the information required to invoke the functidakeODEshas been
assembled.

I n[ 119] : = Equations=MakeODEs|[p,q,V,M,Cp,Fp.t];

Before numerical computation can proceed it is necessagplace parameter sym-
bols by numbers and set up initial conditions.

I n[ 120] : = DataReplacements={m->1,I->1,gc->1,T1->0,T2->0};

In[121]:
Qut[121]

Equations1=Simplify[Equations/.DataReplacements]
{alx'[t] == wlx]t],
a2x'[t] == wex|t],
2 Sinalx[t]+Sinalx[t|+a2x[t]] -2 Sina2x[t] wix[t] w2x[t]—Sina2x[t]] wax[t]>+
3 wix'[t]+2 Coda2x[t]] wix'[t]+w2x'[t] + Coga2x[t]] w2x'[t] ==0,
Sinalx[t|+a2x[t]]+Sinfa2x[t]] wix[t]>+ (1+Coga2x[t]]) wix'[t]+wex'[t] ==
0}

Set up and join the initial conditions:

In[122]:= gétl?l?ondltlons ={w1x[0] == 0, w2x[0] == 0, alx[0] =

Equations2= J}om[Equatlonsl InitialConditions];

Finally, we are ready to integrate the equations usingMaghematicafunction
NDSolve and plot the results.

I n[ 123] : = sols=NDSolve[Equations2,vars.{t,0,40}];

In[124]: Plot [Evaluate [alXt]/.sold,{t,0,40}, AxesLabel > {t,alx}|
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alx

6.6.2 Computing with SIMULINK

It may be desirable to use the system model in an externat@mdVatlab/SIMULINK
is especially popular among control systems engineersulBiknprovides a con-
venient block diagram environment for building and runngiguulations.ProPac
provides functions to create C-Code that compiles as a MHXfBr use as an S-
function in SIMULINK. The code is computationally optimideAn S-function may
have inputs and outputs so that it can be interconnectedthir subsystems within
SIMULINK and it can have parameters that can be defined frothiwSIMULINK.
The main tool for building MEX-files is the functid@ireateModelMEX . It has the
calling syntax:

CreateModelMEX[p,q,Inputs,Outputs,PassedParameters,
PassedParametersDimensions,V,C,Fp,M,MEXFilename]

Example 6.20 (Double Pendulum Revisiteld).this example, we define the joint

torques as inputs and tHg,z) coordinates of mass 2 as the outputs. Parameters

include the two masses, the two lengths and the gravitdttmmetant.
TheProPacfunctionEndEffector  is employed to define the output expressions.

I n[ 125] : = ChainLst={{1, 1} {2 2}
ermlnaINode—
Xout=EndEffector >QChalant TerminalNode,BodyLst,X];
yout={Xout[[2,4]], Xout[[3,4]]}

Qut[125] = {I Sin[al¥—1 (—Coda2X¥ Sinal{ —Codal¥ Sina2x),
—| Codald —1 (Codal¥ Coda2X —Sin[alX{ Sina2x)}

Now, the data foCreateModelMEX is set up and the function is executed.



6.6 Simulation 173

In[126] : = Inputs = Q;
Outputs = yout;
MEXFilename = "dbl _{}pend.c";
paramvec = {m1,11,m2,12,gc 4
PassedParams = {"X0","m1","I1","m2","2","gc" h
PassedParamsDimensions =
{{2~Lengthjp],1  } {11} {11} {11} {11} {11 }}
CreateModelMEX]p,q,Inputs,Outputs,PassedParams,Pass edParamsDimensions,
V,Cp,Fp,M,MEXFilename];

...Generating Header Code

...Generating Initial Condition Function Code
...Generating State Derivative Function Code
...Collecting all function terms

...Generating temp variable declarations
...Converting Expressions to C form
...Generating Output Function Code

MEX File created with name: dbl _pend.c

Detailed information on compiling and using MEX files with N&b/SIMULINK
can be found in the appropriate MATLAB references. Creaté®dEX (and also
CreateControllerMEX) assemble C source code that needs tmimpiled. During
the compilation process the compiled code will be linkechvaitiditional code seg-
ments and libraries provided withroPacor MATLAB or the compiler. It is neces-
sary that this code be available at the time of compilatidre &asiest way to proceed
is to perform the compilation from within MATLAB using scti provided with
MATLAB (either cmex with MATLAB 4 or mex with MATLAB 5). This $ould
automatically define the locations of all required MATLAB compiler code seg-
ments. In addition to the file created ByoPac(e.g, dblpend.c) you will need the
files linsolv.c, f2c.h and trigfun.h - all provided withroPac

One way to compile dbpend.c is to place the files dpkend.c, linsolv.c, f2c.h and
trigfun.hin a common directory, for example\@oublePend. Then in the MATLAB
command window set the current directory td, BoublePend to insure that the four
required files are in the search path:

cd C\DoublePend

then use the command
mex dblpend.c linsolv.c
in MATLAB 5, or

Icmex dblpend.c linsolv.c
in MATLAB 4.2.
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If you have followed the MATLAB installation instructionsappropriate for your
compiler this should work fine. Otherwise, you can reingt&TLAB 5 and follow
the instructions (which setsup the appropriate paths in)pogxn MATLAB 4.2 you
can edit cmex as described therein.

6.7 Problems

Problem 6.21 (Reconaissance robot, continuedReconsider the robot of Problem
(5.10). Suppose the vehicle has masand inertial,; about the verticle axis, at its
center of mass. The radar is mounted at the vehicle centeas$ nft has magssy

and it rotates about its center of mass with body fixed ingftig andlyy. The drive
forceT and steering anglé are inputs to the system. Assume perfect rolling without
side slip and derive the equations of the motion for the syste

Problem 6.22 (Overhead crane, continued)Consider the overhead crane of Prob-
lem (5.11). Assume the cable is massless and treat the pbatoa point mass. As-
sign inertial parameters and dimensions as required arindds the equations of
motion for this system. Consider the three following coliitae inputs to be applied
to the system: a drive forc&,, applied to the cart, a joint torqué,, applied to the
revolute upper arm joint, and a cable tension fofige,

Problem 6.23 (Synchronous motor). Consider a three phase synchronous motor
with the variables and parameters defined in Table (6.1).l0&e torqueT, is an
exogenous disturbance and the voltaggsy, v3, vs are control inputs. The general-
ized coordinates alg=1[6 q; 02 03 gr]. Define the Blondel transformation
matrix
cosd cos(6— ) cos(6+ )
2 H H 21 H 2
B—\/; 526 sm((l ) sm(ej- )
V2 V2 V2

Note thatB~! = BT. Define the quasi-velocitiep] =[w ig iq o if],viag=
V(q)p, in this case

6 w
o 1 0 0]ig
R|=|0 B 0] |iq
s 0 0 1 |io
A it

The currentsy,iq,io are called the Blondel currents. It is also convenient tongefi
the Blondel voltagesy, vq, Vo,

Vd Vi
Vqg| =B w2
Vo V3
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6 rotor angle relative inertial referenc
w motor speed

2 field winding voltage

vi,i=1,23 stator winding voltages

it field current

ij,1=1,2,3 stator winding currents

gt field winding charge

g,i=123 stator winding charges

J rotor inertia

M inertia matrix in rotor (Blondel) fram
T load torque

li=L,1=1,23 stator windings self inductances

lij = —La, i # ], i = 1,2,3|stator windings mutual inductances
lts =La field windings self inductances

lt1 = L5cosf field/stator mutual inductances

lip = L5CO§9 — 27'[/3)
lt3 =Lscog 0+ 2m/3)
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v

[¢)

r

stator winding resistance

It

field winding resistance

R

dissipation matrix

Table 6.1:AC motor nomenclature

The kinetic energy of the system can be expressed in terrhg gfitasivelocities, the
potential energy is trivial and the generalized force camlmtained from a (Lur’e)
potential functionQ =92 /dp

T (p,a)=3p"Mp
%(q)=0

2(p.9) =3p'Rp+[-TL Vg Vg Vo Vi]p

O OO O «

0 0 0
L1+Ls 0 0

0 L1+Ls 0

0 0 L1 —2L3

3Ls 0 0

R=diag{0,r,r,r,r¢}

Show that Poincaré’s equations are
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J 0 0 0 0 ©
0 Li+ls 0O 0 \/§L5 iy
0 0 Li+ks O 0 | 4iq
0 o0 0 Li-2l3 0 i
0 \/§L5 0 0 Ly i

0 0 —if §L5 0 O w —TL

0 r w(L1+L3) 0O O |ig Vg

= lify/3Ls —w(L1+Lg) r o of|lalT] Va

0 0 0 rool| |l Vo

0 0 0 0 rel - Vi

Problem 6.24 (Sleigh on inclined plane).Consider the problem of a sleigh on an
inclined plane as described in [15] and illustrated in Fey(#.9). A single knife
edge along the centerline represents the runners. Assaniiécenter of mass lies
along a straight line forward of the knife edge a distathdbe sleigh has massand
moment of inertial about the center of mass. The sleigh is constrained by ttie kni
edge so that it can not side slip. Supose that a drive feraets along the centerline
and a turning torqu& acts about the-axis.

(a) Derive the equatons of motion.
(b) Derive an expression for the total energy of the system.

(c) Supposel = 0 so that the center of mass is alligned with the knife edgéambn
pointm=1,F =0, T = 0. Verify that the total energy is constant along trajec-
tories. Consider trajectories that begin with only an aagutlocity and derive
expressions fok(t),y(t) using the fact that total energy is constant. Plot some
typical curves in théx, y)-plane.

(d) Continue with the assumptions of (c) and suppmse0 so that the motion takes
place on a horizontal plane. Notice that the potential gnengn now vanishes.
Show that the sleigh moves with constant angular velocitya@mstant forward
speed, i.e., it moves in a circle of constant radius. Whatesadius?
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a

Fig. 6.9: Sleigh on incline.






Part Il

Smooth Control Systems






7

Control of Smooth Affine Systems

7.1 Introduction

This chapter is concerned with the analysis and design dfaisrfor nonlinear sys-
tems that are linear in control. They take the form:

x = f(x)+G(x)u
y=h(x)

wherex € R", y € R?, ue R™and f,G andh are smooth functions. Systems of this
type are calledmooth, affine systemSonsistent with the main theme of this book,
the discussion to follow emphasizes computations. We wilimarize the theoretical
concepts that underlie the computations. More completeldpments can be found
elsewhere, notably, in [46, 87].

(7.1)

In Chapter 3 we discussed some basic tools and computatiarising vector fields
and distributions. This material is an essential preretguisr what follows. Section
7.2 of this chapter deals with controllability and Sectio@ deals with linearization
via feedback. Section 7.4 discusses input-output linatioir and exact linearization
via state feedback. The related topic of dynamic inversaxamined in Section 7.4
and dynamic extension is considered in Section 7.5. In eethrice, we summarize
the method, describe the relevant computations and giveges.

7.2 Controllability

The notions of reachability and controllability are fundamtal to control system
design for nonlinear systems just as they are for linearesyst Perhaps more so,
because there are important nuances of nonlinear cortild@ifavhose counterparts
in the linear context are nonexistant or inconsequentialvA will see, these lead to
new paradigms for nonlinear control.
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Roughly speaking, reachability is the ability to reach aagickd terminal state from
a given initial state in finite time and controllability isafability to reach a given ter-
minal state from any initial state in finite time. For linegsgeems the two properties
are equivalent but this may not be the case for nonlineaesystThe controllability
of nonlinear systems has many subtleties that will not bdoezd here. We shall
provide only some basic definitions and results. For mo@métion about the con-
trollability of affine systems along the lines of our disdossbelow see [46, 87].

The notion of controllability to be used herein is providedhe following definition.
Readers desiring a deeper motivation for these conceptsdsbonsult the pioneer-
ing paper [40].

Definition 7.1. 1. The state xis U-reachable from if given a neighborhood U
of Xy containing %, there exists a timeg t> 0 and a piecewise constant control
u(t), t € [0,tf] such that if the system (7.1) starts in the stajeaktime 0, it
reaches the statepat time t along a trajectory that remains entirely in U.

2. The control system (7.1) is said to be locally reachatimfy if for each neigh-
borhood U of ¥ the set of states U-reachable from contains a neighborhood
of x. If the reachable set contains merely an open set (not a peigind) the
system is said to be locally weakly reachable frgm x

3. The control system (7.1) is said to be locally controkabh R if it is locally
reachable from every initial stateyx R". It is locally weakly controllable on'R
if it is locally weakly reachable from every initial state & R".

Now, let us define two related distributions (sometimesrrefkto ascontrollability
distributiony:
AC:<f,g]_...gm|spar{f,gl,...,gm}> (72)

i.e., the smallest involutive distribution containing Bp&,g; ...gm} and invariant
with respect tof ,g; ... gm, and

Aco = (f,01.--Om[spar{gy,.-.,Gm}) (7.3)
i.e., the smallest involutive distribution containing Bp@; . . . gm} and invariant with

respect tof ,0; ...gm. These distributions are clearly closely related. The nirost
portant relationships are given by the following Lemma fridh

Lemma 7.2.The distributionsAc andAc, satisfy

1. Ac,+spad f} C Ac
2. ifxis aregular point ofdc, (x) +spar f (x) }, thenAc, (x) +spar f (x)} = Ac(x).
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3. if Ac, andAc, +spar{ f } are of constant dimension, theimAc — dimAc, < 1.

Proof: see[46], p. 61. ]

When the distributio\¢ is of constant dimension on a neighborhood of a state
we can construct a local coordinate transformation thataksvthe controllability
properties of the system. We summarize the main result ifollving Lemma.

Lemma 7.3.Suppos@c andAc, are of constant dimension on some open set U of
R". Furthermore, suppose thal, is properly contained if\c, so thatdimAc, =

r —1 anddimAc = r. Then for each pointxe U there exists a neighborhoochU

of X and a local coordinate transformation-z ®(x) on Uy such that in the new
coordinates the system equations take the form:

b= f1({1,02) + G1({1,{2)u
8= f2(20)

wherely = (z1,..,%2-1), {2 = (%,...2Zn)

fr(Zz)
0
f2({o) = -
0
Moreover, ifAc = Ac, (so thatdimAc, =r — 1 anddimAc = r — 1) then the first
component of fvanishes so tha = 0.

Proof: Recall Lemma (3.50). It follows that there exists a localrclimate transfor-
mation (matched talc,) such that each of the vector fieldsg,,...,gm have the

form
f1(z-1,...24,%,...,2)

. _ frfl(zla"'szlazl’a-'wzn)
f(Z)_ fr(zf772l1)

fn(zfa"'vzn)

Furthermore, since;,...,gm belong toAc,, their lastn —r 4 1 coordinates must
vanish in the new coordinate system. Now, in view of the faatAc is of dimension

r and containgc, as well asf, the lastn —r components of must vanish in the
new coordinate system. Finally, in the ca&e= Ac,, the same arguments lead to
the stated conclusion. ]
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Remark 7.4Suppose that dithc = r and consider the controlled motion from any
initial statexp € U. Trajectories are resticted to thelimensional set

So ={X€Uo|@11(X) = @1(X0);- -, th(X) = ¢h(x0) }

by virtue of the fact that the derivatives, 1,...,z all vanish. Thus a necessary
condition for local weak reachability fromg is that dimAc = n.

Remark 7.5Suppose that ditic = n and dimAc, = n—1 onU. The controlled
motion from an initial stateg € U is again in the se§,, defined above, with = n.
But we can still exploit the last equation which is

z = fi(z0)

Now, f can not belong tdic, SinceAc is strictly larger thaic, (everywhere otJ).
Thus, fy can not vanish anywhere @h. Suppose,(t) denotes the solution of this
differential equation which has the boundary conditzg{®) = ¢h(xo). This relation
defines a diffeomorphism

Uitz

on a time interval —¢, €) to its image on the, axis. Thus, we can take tinte=
u~1(z,) as the new'" coordinate. In terms of the transformed stdtes 1, ...z, —
1,t), the points reachable frory at precisely timel' belong to the set

Sk = {xeUo |1 (gn(x) =T}

It follows thatxg is on the boundary of the reachable set, it can not be in iksiont
Consequently, the set of states reachable frgris not a neighborhood ofp. It
follows that dimAc, = nis a necessary condition for local reachability.

Example 7.6Consider the following example (Isidori [46], Example #.8.involv-
ing the system:

X1X3 + Xo€2 X1
« — _ X3 1
x=f(x)+g(x)u= Ko — XpXa Tl
X3+ XoXq — X3X3 X3
In[127]: = f={x1 x3+x2 Expx2],x3,x4—x2 x3,x3"2+x2 x4—x2"2 Xx3};
g={x1,1,0,x3};
var = {x1,x2,x3,x4};
del= Span[{g}]

Qut[127] = {{x1,1,0,x3}}
First, compute the smalle$tg invriant distribution containing spdg}.

In[128]: = Del0= SmallestinvariantDistribution [{f,g},del,var]
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Qut[128] = {{1,0,0,0},{0,1,0,x3}}
Now, augment this distribution with two additional vectalfis,

In[129]: = Del=Join [Del0,{{0,0,1,0},{0,0,0,1}}]
out[129] = {{1,0,0,0},{0,1,0,x3},{0,0,1,0},{0,0,0,1}}

and check that the distribution does sgiin

In[130]: = Span|Del]
Qut [ 130] = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

Finally, we generate the transformation and the systemtimsain the new state
variables.

In[131]: = TriangularDecomposition [f+gx*u,Del,var,{0,0,0,0}, ]
Qut [131] = {{z1,22,23/22 z3+z4},{x1,x2,x3,—Xx2 X3+ x4},
{u z1+€? z2+71 z3u+23,24,0}}

So, we obtain the system in triangular form as anticipated:

2173+ 2,67 2

. z3 1
Z= Z + 0 u

0 0

Now, we are in a position to establish the main result.

Proposition 7.7.Supposéc andAc, are of constant dimension o' RThen

1. A necessary and sufficient condition for the control systé.1) to be locally
weakly controllable on Ris thatdim Ac(Xp) = n for all xo € R".

2. A necessary and sufficient condition for the control systé.1) to be locally
controllable on R is thatdim Ac,(Xo) = n for all xo € R".

Proof: Only a sketch of the central ideas will be given. The main argnt follows
[46].

necessity: Necessity is a consequence of the remarks fojdvemma (7.3).

sufficiency: We will summarize a constructive proof thatto@dition dimAc =nis
sufficient for local weak controllability. To do this we wahow that from any point
X0 € R" we can construct a piecewise continuous control that steema arbitrary
point in an open set contained in the sli§g. First, let us make several preliminary
observations.
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(a) Suppose that ditdc =r < n on a neighborhoody of xp. All trajectories from
Xp are restricted to the-dimensional sliceS,,. At any pointx we can steer the
trajectory in the direction

6 (X) = f(X)+ga(X)ul + - - - + gm(X)ul, (7.4)

Whereuil, ...ul, are real numbers. By choosikg< m sets of constant controls
we can definek vector fieldsé(x) of the form (7.4),i = 1,... k. Define the
mappingF :V = (—¢,€)k — S, realized by

F(t1,...,t) = @¥o---0 @!(xo) (7.5)

where<gti is the flow corresponding to the vector fiedd Suppose that the dif-
ferential ats, ..., S, 0< § < € is of rankk, then fore sufficiently small,

M= {x€ S x=F(ts,....1), ti € (5,€), ok}
is a regular submanifold &,,.

(b) For anyx € M, TMy C Ac(x). If k <r, it can not be true that for alt € M,
f(x) e TMy andgi(x) € TMy, i = 1,...,k. Because if it were truel My would
define an involutive distribution containirfggs, . .., gm that is smaller thad,
a contradiction. But if it is not true, then it is possible todianx € M and con-
stantsuft?, ..Uk such thaiBy, 1(X) ¢ TMx. In fact, X can be found arbitrarily
close tox (because‘ can be taken arbitrarily small). Let=F (S, ...,%), S > S,
i=1,...,k Define the mappina_(tl, cootiotrr) = (gt(‘jll oF(ty,...,t%). Itcan be
shown that this mapping has rakk- 1 at the poin{sy, ... 5, 0) (see [1], p66).

Now, let us turn to the main construction. We can choose eotsti, . .., ui to
define a vecor field

m
6="F+ Oi U-l
5%
that is not zero aty. Define the map
Fl . (07 8) — S<()

Fi(t) = ¢ (%)
and letM* be the image of;.

Letx; = Fy(st) be a point oM?* and6, be a vector field

m
Bh=1f+Y gu?
2,9

suchthabBh(x1) ¢ T M)%l. Define the mapping

Fz:(ﬁ,f) X (0,8)—>S<0
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Fa(ty, tz) = @F o ¢} (%)
By construction this mapping has rank 2 on its domain. Répgalhis procedure,
at thek" step we choose a poirt= F_1(S{,..., 81, with 71 > g2 fori =
1,...,k—2,9°} >0, and constants® such that the vector fielk ¢ TME L. Then
construct the map

Rt (s)h8) - x (91, 8) x (0,€) = S
Fe(ty, ... t) = (qt(ko---o(p_tll(xo)
The procedure stops with=r.

Notice that any poink = K (ts,...,t;) in the image ofM; can be reached fromy
with the piecewise control

ui(t) = ut te0t)
Ui(t) =uf teftit -+t ti++t)

Now, by construction, each mappifg parametrically defines regular submanifolds
of S, of dimensiork. Thus, the images undgér of open sets

Ve= (8748) x - x (§73e) x (0.6)

are open sets @&, of dimensiorr. |

Example 7.8 (Linear system controllabilityllet us consider the controllability of a
linear system
X=Ax+Bu, xc R, uecR"

by computing the distributiondc andAc, using algorithm (3.54). In this case the

relevant vector fields arf(x) = Axandg;i(x) = b, i = 1,...,m. Notice that
O0AX
[AX,b|] = _Wbl = —Ah
and

[bj,bi] =0, [Ax,AX =0
To computeAc, begin withA = spar{B} and apply the algorithm.

Ao = span{B}
A; =span{B AB}
Ac=span{B AB ... A<IB}

In view of the Caley-Hamilton theorem, we may as well stok atn. Thus, we find
that the linear system is locally controllable if and only if

rankB AB ... A“IB]=n (7.6)
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To compute)c we begin the process with = spar{ Ax, B} to obtain
Ac =span{Ax B AB --- A™!B}

If rankAc, = n— 1it is possible that ramk: = n at points other thar = 0, so weak
local reachability around pointg # 0 is possible. However, controllability still re-
quires (7.6).

ProPacprovides functions that construct the distributidigsandAc, and implement
the test for controllability. The following example expoithese calculations to il-
lustrate the distinction between local controllabilitydameak local controllability.

Example 7.9 (Bilinear System Controllability)Consider the following bilinear,
scalar input system (Example 7.35 in Vidyasagar [105]):

0O 0 —-14 1 2 4
x=10 0 O [x+]|0 2 O|xu
0O 0 —-19 0O 0 3

We use théProPacpackage to compute the control distributions. First, theritiu-
tion
(f,91---Om|f,01---Om)

In[132]:= A={{0,0,—14},{0,0,0},{0,0,—1}};

B={{1,2,4},{0,2,0},{0,0,3}};

X = {x1,x2,x3};

f=AX

g=B.x

ControlDistribution [f,9,%]//MatrixForm

100
Qut[132]= (010
001

The control distribution has constant dimension 3 (=n) g the system iweakly
locally controllable

It does not always make sense to rely on the drift tefrnto steer a system from one
state to another. So an option to compute the control digtab without the drift
term is made available, i.e.,

(f,01...Om|91...Om)

I n[133]: = ControlDistribution [f, 9, X, IncludeDrift— > Fals¢//MatrixForm
/1 0 o0
Que[133] = (02 X2 3 x3>

In this case the generic rank is 2. Thus without accountimgHe drift term, the
bilinear system is not controllable, i.e., it is Hotally controllable
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The following example illustrates another important argtidctive aspect of nonlin-
ear system controllability.

Example 7.10 (Parking)A classic problem in control system analysis is the ‘parking
problem’ [106]. The simplified equations of motion of the e to be parked are
(see Example (6.16)):

X cogep+6) 0
dly| |[sin(g+6) Of|v
dt |@| | sinB) O {W}

0 0 1

wherex, y and ¢ represent the planar location and orientation of the casitarass,
and®@ represents the steering angle. The contwvalsdw represent the drive velocity
and the angular velocity of the steering angle, respegtiiéle equations represent
the kinematics of the vehicle motion. It is assumed that tHeaities can be changed
instantaneously. There are two control actions defined @ydctor fields:

cogp+0) 0

. | sin(p+0) 10
drive= sin(8) , Steer= 0
0 1

First, let us compute the controllability distribution. téathat since the system is
drift free (f = 0), Ac = Ac,.

In[134]:= f={0,0,0,0};
G = {{Codp+ 6], Sin[p+ 6], Sin6],0},{0,0,0,1} };
Var: {x7y7 (p7 9};
ControlDistribution [f, Transpose [G],val//MatrixForm
1000
0100
0010
0001

Qut [ 134] =

The control distribution has constant dimension 4 (=n) st the system is locally
controllable. Thus, the vehicle can be moved from any pwsigind orientation to
any other position and orientation in finite time. Noticewewer, the linearization
of the system at any point is not controllable. To better apiate the information
contained in the controllability distibutioAc (or Ac,) let us consider the details
of its construction. Sincé = 0, we begin with spafdrive steert and expand this
distribution by taking Lie brackets of its component vedtelds until we achieve a
distribution of maximum dimension.

As it turns out we need to add two vector fields to reach the mari dimension of
4. These are calledriggle andslide
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In[135] : = drive={Cog¢@+ 6],Sin@+ 6],Sin6],0};
steer={0,0,0,1};
wriggle = LieBracket [steerdrive,{Xx,y, @, 6}];
wriggle //MatrixForm
—Sin[6 + |
_ | Cod6+¢]
Qut[135] = Cog6]
0
In[136] : = slide=Simplify [LieBracket [wriggle,G[[1]],{x,y, @, 6}]];
slide //MatrixForm
—Sin¢]
Qut [ 136] = Cog‘p]
0

These two new control vector fields enable complete configuraontrol of the

vehicle. Experienced drivers will recognize that maneingea vehicle in and out
of parking a space requires the control action generatedrimngle. The wriggle

vector is the Lie bracket of the steer and the drive vectoddielo actually move
the vehicle in the direction of this vector field, at leastapimately, would require
infinitesimal excursions along the steer vector field, thendrive vector field, then
the reverse of the steer vector field, then the reverse ofrtevkctor field. Thus, the
name wriggle. Movement along higher order bracket diregti@.g. slide) involves
more complicated switching schemes.

The following example shows that, in contrast to linearsys, local controllability
does not imply asymptotic stabilizability via simple stédedback control.

Example 7.11 (Sleigh on a horizontal plane, continudddt us return to the sleigh
of Example (6.15). We will first show that the system is logalbntrollable. To do
this, we need to put the equations obtained previously itatie Space form.

In[137]: = fl=Vm.phat
f2 =Inverse [Mm].(—Cm.phat—Fm);
f = Join [f1,f2]/.{T — 0,F — 0}
d m2 vx @ d ml @Jzz+d? ml) o?
S Jzz mi+d m12° Jzz mird2 mi12 }

Qut[137] = {w,vx Cogg],vx Sin¢],

In[138]: = G=Simplify [Transpose [MapCoefficient  [Join [f1,f2],#&,{T,F}]]]
Qut[138] = {{0,0},{0,0} {001 { 555 =301 {0. 7 }}

In[139]: = var=Join [gsysphai

Qut[139] = {@.x,y,w,vx}

In summary, the state equations are:
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) w 0 0
X Vy COSQ 0 0
d Vi Sing 0 ol |T
— |y = X +
dt __dm o —1 _ o]lF
w Tz d2m, VX Jzz+d?m,
Vx dw? 0 %
Now, we can apply the controllability test.
I n[ 140] : = Controllability [f, G, var, LocalControllability— True

Cut [ 140] = True

Thus we confirm that the system is locally controllable. We chtain more details
about controllability by computing the controllabilitystiibutionAc,. In the follow-
ing calculation we display intermediate results. Thatégibning with spafigi, -},
each time the distribution is expanded by addition of a nestordield arising from
Lie bracket operations, the new distribution is displayed.

I n[ 141] : = ControlDistribution [f, G, var, IntermediateResults> True,
ControlDrift — False

Intermediate distribution is:

{{w7 VX Coq(vax Sln[q)}?o? 0}7{07 07 07 17 0}7{07 07 07 07 l}}

Intermediate distribution is:

{{17 07 07 07 0}7 {07 17 tan[(p} 7 07 0}7 {07 07 07 17 0}7 {07 07 07 07 l}}

Intermediate distribution is:

({£0.0,0,0},{0,1,0,0,0},{0,0,1,0,0}.{0,0,0,1,0}, ,

{0,0,0,0,1}

Qut [ 141] = {{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0},
{07 07 07 07 l}}

Since the system is locally controllable consider the ghitsilof asymptotically sta-
bilizing the origin via smooth state feedback. Suppmse, X, y, w, vx) anduz (@, X, Y, w, Vy)
are arbitrary feedback functions that have continuousdesvatives andy (0,0,0,0,0) =
uz(0,0,0,0,0) = 0. The closed loop dynamics are:

In[142]: = fcl=f+G.{ul[@,X,y,w,vX],u2[®,X,Y, w,vx]};

fcl //MatrixForm
w
vx Cog¢]
vx Sin[¢|
dm2vxw ulle,x,y,w,vx|
Jzzml 2 m1? Jzz+ d2m1
dml(dzz+d?ml) w?  u2[@,x,y,w,vx]
Jzzmi+d2 m12 mi

Qut [ 142]
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Equilibria of the closed loop system occur whép = 0. Clearly, the origin is an
equilibrium point. However, it is not an isolated equililom point. To see this, ob-
serve thatfg) = 0 if and only if w = 0, vy = 0, andu(@, x,y,0,0) = 0, i.e., all points

(@, x,y) that satisfy the two equationgg, x,y,0,0) = 0 are equilibrium points. No-

tice that
u1(0)  Jdu(0) du(0)

20 X dy
rank| 5,000 au0) au) | =2
20 ox ay

If the rank is 2, the Implicit Function Theorem establishieattthere are explicit
smooth functions expressing two of the variablgss,y, as functions of the third
and passing through the origin. Consequently, there is aionensional set of equi-
librium states in every neighborhood of the origin. If thakas 1, then there is a two
dimensional set and if it is zero, there is a three dimensigeta(all values ofp,x,y
are equilibria).

Thus, the origin is certainly not an isolated equilibriunirgolt follows from Lemma
(2.16) that the origin can not be asymptotically stable. Wectude that even though
the system is locally controllable it can not be asymptditicgtabilized via smooth
state feedback.

In order to better appreciate the relationship of conthility for nonlinear and linear
systems we consider two additional distributions.

AL = spar{f,adfg,1<i<mO0<k<n-1} (7.7)

and

A, =sparadig,1<i<mO<k<n-1} (7.8)

Note thatd, € Ac andAL, C Ag,. What is missing in these distributions, in relation
to Ac andAc,, are the Lie brackets among the control vector fiegfisThese new
distributions have obvious connections to the Kalman tastdntrollability of linear
systems.

Example 7.12 (Linear system controllability, revisitelélpr the linear system of Ex-
ample (7.8) we havé(x) = Ax, G=B, so it is easy to compute

Ac = AL = span{ Ax B,AB,...,A" !B}

Ac, = Ay, = span{ B,AB,... A" 1B}

With linear systems the control vector fields are constanthat the missing Lie
brackets contribute nothing to the controllability distriions.

Now, let us state the following obvious results:
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Proposition 7.13. 1. A sufficient condition for the control system (1) to be lyca
weakly reachable aroundyis thatdim A (Xg) = n.

2. A sufficient condition for the control system (1) to be Ilyoaeakly controllable
on R'is thatdim A (Xp) = n for all xp € R".

The relationships between the various distributions, weaél controllability and
local controllability are summarized in the following diagn.

weaklocal controllability & dimAc=n <« dimA.=n

fr fr Ll

local controllability & dimAc,=n < dimA,,=n

7.3 Input—Output Linearization

When confronted with a nonlinear control design problerig feasonable to ask if
it is transformable into a linear one. The earliest invedtans of this question con-
sidered the possibility of using a state transformationddtds. Of course, the set
of transformable systems turns out to be quite limited. Teaiof using feedback
to accomplish linearization is generally attributed to &ett [17]. As a matter of
fact, many practical control system designs already usedbfeck to accomplish lin-
earization. We will consider a constructive process foedirizing the input-output
dynamics of a given nonlinear system using state transfitwmaand feedback.
When this is possible, a reasonable approach for contrdésign is a two level
strategy that implements first the linearizing control amehta linear feedback that
regulates the linearized systeRroPaccontains the constructions required to imple-
ment this process. We describe the essentials in the foltpp@aragraphs.

A system is exactly linearizable or input-state linearleabthe state equations are
linearizable by a combination of a state transformationstate feedback. If a sys-
tem is not exactly feedback linearizable, it may still be#nizable in an input-output
sense. In this event, we can find a state transformation andlmear state feedback
control such that the input-output behavior is described liryear dynamical system.
However, in this case there remain residual nonlinear dycgmalled the internal
dynamics, which are decoupled from the output. Hence thetinptput behavior
is linear even though the entire state dynamics are not.i$nstiction we consider
input-output linearization and in the next section we cdesinput-state lineariza-
tion.

7.3.1 SISO Case

First, we consider the single-input single-output case:
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x = f(x)+g(x)u
y=h(x)

wherex € R", u € Randy € R. Now, let us differentiatg = h(x) with respect to time
to obtain

(7.9)

y=L¢h(x) + Lgh(x)u
If Lgh(x) # 0 we stop, ifLgh(x) = 0, we differentiate again to obtain

¥ = LFh(x) + LgLth(x)u

Again, the coefficient ofi vanishes or it does not. If not, we continue to differentiate
until afterr steps we have

¥y = L5h(x) + Lol th(x)u (7.10)

with LgL’f’lh(x) =# 0 and the process is terminated. Assume that the process does
stop in a finite number of steps.

Definition 7.14. Consider the system (7.9). Let U be a neighborhood afixd sup-
pose there is a finite integer r such that

LgL¥h(x) =0, ¥xc U, k=0,...,r —2 LgL' th(xp) # 0 (7.11)

Then r is the relative degree of (7.9). If the sequence spdcifi (7.11) does not
terminate in finite steps the system relative degree-ss«.

Example 7.15 (Linear system relative degré&nsider a SISO linear system
X = Ax+ bu
y =X

We make the associations with (7.9)Yx) = Ax, g(x) = b andh(x) = cx It is easy
enough to verify thatXh = cA< andLgL%h = cAkb. Thus, the conditions expressed
in (7.11) for a system of finite relative degrees

cb=0, cAb=0,...,cA?b=0,cA b#£0

Define the functions .
z(x) = L th(x) (7.12)

We intend to show, that these functions define a partial $tatesformation that
reduces the system to an importaormal formfrom which a linearizing feedback
control is obvious. To do this we need to establish two egsdfaicts. First, if the
process terminates in finite steps, it does so withn. Second, the functions(x)
are independent. Independence will be considered first.ederwwe will need the
following identity.
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Lemma 7.16.Suppose the system (7.9) has finite relative degree r. Then

0 ifi+k<r-—1

1 kp — .
Lad'fgth_{(—l)'Lgerlh ifitk=r—1 (7.13)

Proof: Let us fixk and prove the claim by induction énFirst note that for = 0, the
claim (7.13) reduces to the definition of relative degre&1Y..Now, assume that the
(7.13) is true fori = 0,..., p— 1. We will prove that it is true for = p. Recall that
ad;g = [f, ad1g] and compute

LagpgLfh =1Ly LadfpflgLﬁh —Lgpaghs Lkh

In view of the induction hypothesis this reduces to
Kpy _ Kpy k+1
Lad?gth_ —Lad?—lgl_ﬂ_fh— —Ladf)—lgl_f h
Now, p+k<r—1implies(p—1)+ (k+1) < r —1 so that by the induction hypoth-
esis
LagpgLfh=0, p+k<r—1

If p+k=r—1the induction hypothesis allows the sequential reduction

LagpgLfh=—L, dfHgL';*lh = (=1)PLgL} h

Lemma 7.17.Consider the system (7.9) and suppose it has finite relatgeee r.
Then the covectorsdz,dz,...,dz} associated with the functiong() defined in
(7.12) are independent and n.

Proof: We will show that the only set of constardts ..., a; for which the relation
r
adz(xp) =0 (7.14)
2

is satisfied is the trivial sedy = 0 fori = 1,...,r. To do this consider the scalar
function

a(x) = Zaaz ) (7.15)

First we show tha#, = 0. Suppose that (7.14) is true, which means tteatxg) = 0.
Then
Lyt (Xo) = da(X) - g(X)|y—y, =0 (7.16)

Now,
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r-1 .
Lot = 3 Lok ihix (7.17)
=
But, by assumptiohgL¥h(x) =0, k=0,...,r —2, gL} "1 # 0, so we have
Lga (X) = arLgL h(x) (7.18)

Thus, we conclude, = 0, so that
r-1
a(x) =3 az(x) (7.19)
2

Now, we show thaé,_; = 0. Note that
Lad g (X0) =0 (7.20)

From the previous lemma, we have

r—2 )
Lag,g0 (X) = Zy Lagd,gLth(X) = —ar_1LgLt *h(x) (7.21)
1=

so that we must hava _; = 0. Continuing in this way, we show thatal=0. =

If r < nwe can always complete the mappixg~ z(x) to be a transformation by
specifyingn—r functionsé (x) independent o£(x) in the sense that the set of covec-
tors dé1(xp), .. .,dén—r(X0),dz (Xp),...,dZ (xo) are linearly independent. Then the
transformed equations are

§=F(&,zu)
z=Az+b[a (x(&,2) +p(X(&,2) U]
where
01 O 0
00 1 O :
A= |: , b= :
U 0
0 0 O 1
and

However, we can actually do more that that. We seek func§dxswith the property
thatLgéi(x) = 0 aroundxg. Thatis,dé1(x),...,dénr(X) € @1, where4 = spar{g}.

Proposition 7.18.Suppose the system (7.9) has finite relative degree g.athen
r <n. Moreover, if r< nitis possible to find A-r functionsés(x), ..., én—r such that
the mapping
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o= [£44]

Z(x)

is a local coordinate transformation on a neighborhood @fMoreover, it is always
possible to choos&(x), ..., &n_r(X) so that

Lg&i(x)=0,1<i<n-—r

The transformed equations are

§=F(£,2) (7.22)
z=Az+bla (x(&,2) +p(x(&,2)u] (7.23)
y=cz (7.24)
where
01 O 0
00 1 0 :
A=|: b=
o1 0
0 0 O 1
c=[1 0 0]
and

Proof: By the definition of relative degreg(xp) is not zero. Thus, the distribu-
tion ¥ = spar{g} is nonsingular aroungy. Since it is one dimensional it is also
involutive. Thus, the Frobenius theorem implies the existeofn — 1 functions
A1,...,An_1 defined on a neighborhood &f such that

spaf{dAy,...,dA, 1} =9+ (7.25)
Now, it must be that
dim (%L +span{dh,deh, . .,dL’;lh}) —n
atxg. Otherwise,
% (x0) mker(span{dh(xo),deh(xo), . ,du(lh(xo)}) 40 (7.26)

In other words, the vect@(Xp) is annihilated by all of the covectors in
span{ dh(xo), dLih(x), ..., dL} *h(x) }

But this is a contradiction becau{el Lr]ilh(xo),g(xo)> = LgL*h(xo) is nonzero

by assumption. Since sp%d h,dL¢h,... ,der’lh} has dimensiom, it follows from
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(7.25) and (7.26) that there are-r covectors in+, say,dAy,...,dA,_ so that
dh,dLsh,.. .,dL}’lh,d/\l,...,d)\n— r are independent ag. Furthermore, by con-
struction, we havégAi(x) =0, 1 <i < n—r. Finally, the form of the equations
follows from the construction of the functiom&)and& (x) . [ |

Remark 7.19Equations (7.23) and (7.24) are called tearizable dynamicbe-
cause we can introduce a new control variabknd definea + pu = v to reduce
(7.23) and (7.24) to the linear system

z=Az+bv, y=cXx

with inputv and outpuly. Equation (7.22) are called tlieternal dynamicdecause
they are decoupled from the (linearized) input-output dyica. Moreover, since the
linear system is controllable (it is in controllable fornt)cian be stabilized by an
appropriate linear control of the formn= Kz If this is done, then the overall system
is stabilized if and only if the system

E=F(£,0) (7.27)

The system of equations (7.27) are referred to azére dynamic®r zero output
dynamicsof (7.9) because they represent the residual dynamicavimhthat can
take place under the constrayit) = 0.

The following is an important property of ‘relative degrégthat it is invariant under
state transformation and feedback

Lemma 7.20.Suppose the system (7.9) has finite relative degree r, trenvariant
under state transformation and feedback.

Proof: Consider a transformation— z realized by the mapping= ®(x) and its
inversex = ®1(z). In the new state coordinates the system equations are

z=do (o (2)[f (¢ 1(2)+9(P1(2)u]
=f(2)+9(2

and

Now, let us computegh(z):

_oh o0too
ox x=0-1(2) dz  0x x=0"1(2)

Lsh(2) g(¢ ()

But, the relation
x=0"1(®(x)
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implies
|00 toe
- 0z 0X

so that we conclude

Lgh(z) = Lgh (@7(2))

Identical calculations lead to the result

Lih(z) =Lth (@ (2)
and indeed, B
LgL¥h(z) = LgLkh (@7 (2))

Thus, in view of the definition of relative degree we have tasuit that relative
degree is invariant under state coordinate transformsition

Now, let is apply state feedback= Kk (x) + v so that the system equations become

X = 1x) + 90K (%) +gOu = () +g(x)u

y=h(x)

Now compute
Lih(x) = Lth(X) + Lgch(x)

but notice that
Laxh(x) = Lgh(x) K (X)

So we have
Lh(x) = Lth(x) + Lgh(X) kK (X) = Lth(X)

sinceLgh(x) = 0. Similarly, we successively compute
Lth(x) = Lth(x) + LgL *th(x) k() = Lkh(x), 1<i<r-1
using the fact thdLgLi(lh(x) =0, 1<i<r-1.Thuswe have
LoL'th(x) = LgLh(x), 1<i<r-1

S0 thatLgLif—h(x) =0, 1<i<r-2andLgLth(x) # 0. Consequently, the system
system retains relative degree ‘r’ under feedback. [ ]
In the SISO case, the coordinate transformation can alwayhbsen such that the

decoupled (internal) dynamics are independent of the obifi6] Chapter 4.3. This
calculation has been implemented in BrePacfunctionSISONormalFormTrans

Example 7.21 (I-O Linearization and normal formSpnsider the following exam-
ple (example 4.1.5 in Isidori [46]):
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X1 X1Xp — X3 0
X | X1 24 2X3
sl ~ | —x | T 1 | (7.28)
X4 X%+X2 0
y=X4

Below we perform the required computations. Notice that @trod can be chosen
such that the outpyt= x4 = z; is identically equal to zero if and only # = 0 and
o = 0.

When this obtains, the internal dynamics reduce to the zrrp(t) dynamics .

In[143]:= f29={x1 x2—x13 x1,—x3,x1% +x2};

g29={0,2+2 x3,1,0};h29= {x4};

var29= {x1,x2,x3,x4};newvar29= {z1,z2 23 z4};

{T1,T2} = SISONormalFormTrans [f29,929 h29 var29
Qut [ 143] = {{x4,x12+x2},{x1,x2—2 x3—x3?}}
In[144]:= Trans=Join [T1,T2;

InvTrans= InverseTransformation [var29 newvar29Trang;
In[145]: = {Newf Newg} =

TransformSystem  [f29,929 var29 newvar29Trans InvTrans;
Newf //MatrixForm
Newg//MatrixForm
z2
out [ 145] = 7342 72 2% -4 3
73 (z2-2 z3)
242 224+23-2 2% +2 V1+z2- 2% 742 74
0
out[145]= | 2 \/1+20272327z4
0
I n[146]: = ZeroDyn= Inner [Equald{z3][t],z4t]},
(Newf[[{3,4}]]/.{z1— 0,z2— 0,z3— z3[t],z4 — z4[t]}), List]//
MatrixForm
z3'[t] == -2 z3[t®

Qut[146] =

<z4’[t] —=2+123[t] -2 z3[t]>+2 \/1—2z3[t]2—z4[t] -2 z4[t]>

7.3.2 MIMO Case

Consider the square MIMO case as described by Equationitti )p = m. Recall
that thekth Lie derivative (directional derivative) of the scalanfiion ¢(x) with
respect to the vector fielfi(x) is denoted X (). Then by successive differentiation
of the elements of the output vectpwe arrive at the following definitions.
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ric=inf{klLg (LY (h)) #£0 foratleastong}
ai(x) =L{(h), i=1,.,m (7.29)
pij () = Lgy (L Y(h)), i,j=1,.,m

Definition 7.22. Suppose there exists a set of finite intedeis. . .,rm} as specified
in Equation (7.29) withdet{ p(xo)} # O, then(ry,..,ry| is called the vector relative
degree at ¥.

An important result is the MIMO generalization of Lemma (7).1

Lemma 7.23.Consider the system (7.1) and suppose it has finite vectativelde-
greelry,..,rm) at x. Letr=ry+.. + rm and define the functiong,z=1,...,r,

L L T I o
Z r 71 :
Li () Yt
z(x) = = = (7.30)
hm Ym
z" : :
R A (™ B B RV

where Ze Ri. Then the covectorsdz,dz,...,dz} are independent and< n on
some neighborhood ofx

Proof: We need to show that thren-dimensional row vectors
{dL‘]Shi(xo) 0<k<ri-1,1<i< m}

are linearly independent. Then it follows imediately thaan not be greater that

To establish independence, select real numbgr® <k <r;—1, 1<i <m, such
that

mri—1
32 aydLshi (x0) =0 (7.31)
i=1K=1
We will show that the only set of such constants is the trig&l Define
m ri—1 ‘
a(x) = adLth; (7.32)
i; kzl
Now, the assumption of finite relative degree impl'L@,:t‘Fhi (x)=0fork=...,ri —

2. Thus, compute
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m _— m
ng a= Zai,rifll—gj I—fI hi = Zai,riflpij (733)
i= i=

Now, using (7.31) we can compute
Lg;a(xo) = da-gj|x0 =0
which implies
[@Lr_y5-»8mrm-1] P(X0) =0

Since p(Xp) is nonsingular we conclude that time numbersa;,_1 = 0, for i =
1,...m. Thus,a(x) reduces to

m ri—2

a(x) = Zi kzla‘kd Lkhy (7.34)

Now compute aq,ga using (7.34) for each. An identical argument as above leads
to the conclusion thag; ;> = 0, fori = 1,...manda(x) reduces to

m ri—3
a(x) = aidLkhy (7.35)
i; kzl
The argument is repeated to show thaigll= 0. ]

Now, we consider the partial state transformation ze R',r=r;+..+rp<nas
defined in equation (7.30). It is a straightforward caldolato verify that

z = Az+EJa(x)+ p(x)y]

y—Cz (7.36)

whereA, E, andC have the special structure:

e Ais of the form

A= diag(Ay, ... Am), A = {8 '”ol] e R

e the only nonzero rows dE are the m rowsq,r1 +ro,...,r and these form the
identity I,

e the only nonzero columns & are them columns 1ry+1,ri+rp+1,...,r —
rm—+ 1 and these form the identity,

The remaining part of the transformation can be defined birarlly choosing ad-
ditional independent coordinates. The conditionadeg) # O insures the existence
of a local (aroundg) change of coordinates— (£,2),& € R ",ze R such that

E=F(&,zu) (7.37)
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z=Az+Ela(x(&,2)) + p(x(&,2)y] (7.38)

It is common to call (7.37) the internal dynamics and (7.88)ltnearizable dynam-
ics.

Notice that in view of (7.38), we can apply the control
u=p tx){-a(x)+v} (7.39)
and reduce (7.38) to a linear system

z=Az+Ev

y—Cz (7.40)

This justifies the terminology of linearizable dynamics @r38). Notice that when
the control (7.39) is applied the internal dynamics (7.3&)decoupled from the out-
put (not necessarily the input, as is the case for SISO sy3ténis a simple matter
to design a linear stabilizing controller for (7.40) — foeexple a state feedback law
of the formv=Kzthat insureg(t) — 0 ast — . Such a control does not necessarily
stabilize the complete system (7.37) and (7.38), becauseee® to account for the
decoupled internal dynamics (7.37).

Lemma 7.24.Suppose thab(x) has continuous first derivatives with
detp(x) # 0 onMp = {X|z(x) = 0}

Thendz(x)/dx is of maximum rank on the sepM

Proof: The result follows directly from Lemma (7.23). ]

The Lemma is extremely important because it relates thetibiléy of the decou-
pling matrix with the geometry of the skly. With it, we can obtain several important
results, one of which we state here.

Proposition 7.25.Suppose thab(x) has continuous first derivatives with
detp(x) # 0 onMp = {X|z(x) = 0}

Then M is a regular, n—r dimensional submanifold of Rind any trajectory segment
x(t),t € T, T an open interval of R which satisfies {x(t)) = 0on T lies entirely in
Mo. Moreover, the control that obtainson T is

W(X) = —p (¥)a(x) (7.41)
and every such trajectory segment with boundary conditity) x xo, to € T satisfies

x=f(x)—G(X)p (x)a(x), z(x(tp))=0. (7.42)
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Proof: In view of Lemmas (7.23) and (7.24), it follows from ¢&i) # 0 onMg that

1. the covector$dz,dz,...,dz} are independent around every poge My,

2. 0z(x)/0dx is of maximum rank on the séy = {x|z(x) = 0}.

This maximal rank condition insures thisly is a well defined regular manifold of
dimensionn —r. From the definition of(x), it follows thaty is identically zero on
an open time interval if and only & is zero on that interval. Thus, it follows from
(7.36) that the unique (provided get4 0) control which must obtain during any
motion constrained bli(x) = 0 is (7.41). With this control (7.1) reduces to (7.48).

The analysis above leads to the following observations:

e The manifoldMp is invariant with respect to the dynamics (7.42).

e These equations are equivalent to the output constraineahigs

x = f(xX)+ G(x)u
0= h(x) (7.43)

hence they are called the zero dynamics.

e The proposition defines the zero dynamics in global form. Auiwalent local
formis

¢

(€,0,0)
F(E.2v) (7.44)

=F
=F(&,zp1(x(&,2){—a(x(¢,2) +V})

Let us collect these results in the following propositioattjustifies the design pro-
cedure depicted in Figure (7.1).

Proposition 7.26.Suppose the conditions of (7.25) hold, and

1. X € Mg is an equilibrium point of (7.1) which implieg x> (&o,20) = (&o,0)
2. & is a stable equilibrium point of the zero dynamics, and
3. v=Kz s a stabilizing controller for (7.40).
Then
u=p X {—a(x)+Kzx)} (7.45)

is a stabilizing controller for the system (7.1).

Before proceeding with examples, let us consider the coatiout of the local zero
dynamics. One approach is to obtain the internal dynamiasobypleting the local
transformation and then to set 0,v = 0. We will describe an alternative in which
the local zero dynamics are computed directly. Note thafihetionsz(x) can be
computed using (7.30). Once they are obtained, we are inidqo® compute the
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x=f(x)+G(x)u y

\% » _U’
—0 e y=h09

v

X
a(x)
)
Kz(x) @
e N
£=F(£zV)
v 2= Az+Ev y
—»
y=Cz
N /

Fig. 7.1: The two level controller design process of Projpmsi(7.26) is depicted in this dia-
gram.

local form of the zero dynamics near any poige Mg in the following way. Without
loss of generality assumg = 0. Now, splitz(x) into its linear and nonlinear parts:

0z
=—(0

=0
We assume thay = 0 is a regular pointd is nonsingular) so thak is of full rank.

Let A* denote a right inverse ok and defineK such that its columns span Ker
Define new coordinatesw so that

Z(x) = Ax+N(x), A (7.46)

x=A'v+Kw (7.47)
Then on the zero dynamics manifold, we have
V+N(A'V+Kw) =0 (7.48)

Clearly, the Implicit Function Theorem guarantees theterise of a local solution
to (7.48),v*(w), that is

V(W) + N(AV (W) + Kw) = 0 (7.49)
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on a neighborhood ofv = 0, andv*(0) = 0. Furthermorey*(w) can be efficiently
estimated because the mapping

Viz1 = —N(A*v;, + Kw) (7.50)

is a contraction. In fact, we have the following result.

Proposition 7.27.Suppose () is smooth, and A is of full rank. Then

1. there exists a smooth functiof(w) = 0+ O(||w/||),

2. if vi (w) satisfies|v* — vi|| = O(||w||¥), then v, 1(w), obtained via (7.50), satisfies
IV = Vi = O(|wl[*).

Proof: The first conclusion follows directly from the implicit fution theorem and
the fact that*(w) is smooth. To prove the second, first subtract (7.50) frombtaia

V= Vi1 = —N(A"V" + Kw) + N(A"V; + Kw) (7.51)

Now, consider the functioNy(x) := dN(x)/dx. SinceN is smooth, withdN(0) /dx =

0, we haveNy(0) = 0 and by continuity of the second derivative of N, we conclude
that dNx(x)/dx is bounded on a neigborhood »f= 0. LetL be such a bound on
an appropriately defined neighborhotd,so that the usual arguments based on the
Mean Value Theorem provide

INe(X) = Nx(Y)[| < L[Ix=y][, ¥xyeU (7.52)
Thus, we can write
N(X) — N(x+ X) = Ny(X)dx+ O(||8X||%) (7.53)
which in view of (7.52) gives
IN(X) — N(x+3x)[| = O(]|5x]|*) (7.54)

for x,y = x4+ dx € U. In order to apply this result to (7.51), take= A*v* + Kw and
ox = A*"(v* —v;). Then (7.51) and (7.54) yield

IV = Visa]| = O(JA" (v = W) ]| %) = O(||wl|™) (7.55)
which is the desired conclusion. [ |
Recall the global form of the zero dynamics:

x=f(x)—G(X)p LX) a(x) (7.56)

which defines the zero dynamics flow everywheréyi Nearxy we simply project
the flow onto the tangent spaceNty atxp. K has a left invers&* so that



7.3 Input—Output Linearization 207
W= K" (X (W) — K*G(x* (W) p (X" (W) ar (X" (W) (7.57)
X*(wW) = A*V* (W) + Kw (7.58)

ProPacprovides the computations necessary to implement the atmnteol design
method. The main functions

e |OLinearize
e NormalCoordinates

e LocalZeroDynamics

are illustrated in the following examples.

Example 7.28 (A basic exampl€onsider the following simple single-input single-
output example from [46]:

0 e?
f}) = |x+x5 |, GX) = |€2|, h(x)=x3
X1 — X2 0

Below, we compute the relative degree vector, the decogpiiatrix and the feed-
back linearizing using the functio®Linearize . Then to compute the zero dy-
namics, we obtain the partial state transformation,4(g) and the control with
vi(t) =0, i=1,...,m, and finally we compute the local zero dynamics.

I n[147]: var2 = {x1,x2,x3}
f2:={0, x1 + x2°2, x1 — x2}
92 = {Exp[x2], Exp[x2], 0}

h2 = {x3}

I n[ 148] : {p,a,ro,controlt = |OLinearize  [f2,92 h2,var2
Computing Decoupling Matrix
Computing linearizing/decoupling control

out[148] = {{{-€2-2 &2 x2}},{-2 x2 (xL+x2)}. {3} {022 (x1+x2?)

_eX2_2 X2 x2 }}

In[149]: = z=NormalCoordinates [f2,g2 h2 var2rol;
u0= control/.{vl — 0};
LocalZeroDynamics  [f2,92 h2 var2 u0,z]

The system is completely linearizable.

There are no zero dynamics.
Qut[149] = {}

The result should have been anticipated. Sinee3 = n, there are no decoupled
dynamics.
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Example 7.29 (Zero dynamics of a simple vehicl€onsider a simple
wheeled vehicle that moves in the plane as illustrated irfrtgere (7.2). The model
incorporates two simplificationsn, = 0,s << 1, so that only first order terms &
are included.

kinematics:
6 1 0 0 O] [we
X| | 0cog8) —sin(B) 0| | w
y 0 sin(B) cog0) O | v
o) 0 O 0 1] | ws
dynamics:
lzz4+Jzz 0 0 Iz 009 0 fl
0 mOaO O Vy n M Vy (e fa| 0
0 Om O Vy — My Vg fa |
lzz 0 0 lz| |ws 0 fa

The coordinates andy locate the center of mass of the main body, &rit orienta-
tion. The front wheels rotate an amounébout an axis of slopg(s= 0, results in a
vertical axis) sis assumed small as are the tire inertial parameters. Thotiduns f;,
which include a description of how the steering torduand the drive forc& enter
the model, are omitted for the sake of space.

rotation axis
slope, s

H\H |
K |
- — combined tire
74 inertial parameters
b

Fig. 7.2: The essential parameters of the example arerdigst in this figure.

Our goal is to consider the problem of steering the vehida@la path of constant
radius, and at constant speéd There are several ways of formulating this problem.
One common approach is to replace the constant radius @mbit the requirement
that the angular velocityyg is a constant, sagy. This leads to a constant curvature
path of radius, witlR = Vy/ay.. Thus, we introduce two output relations

y1=Ve+ V] —V§
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Y2 =Wy — Gy
We are interested in the zero dynamics relative to these wiputs and the two
controlsT, F. Notice that in this formulation it is not necessary to nettie kine-
matic equations which define the vehicle location and oaitionh in the plane, i.e.,

6,x,y. Thus, the system equations include dynamics and only shed¢miation of the
kinematics.

We will compute the zero dynamics corresponding/go=constant,wy = 0. The
equilibrium point is(x1, X2, X3, X4,X%s) = (0,Vy,0,0,0), so we compute the local zero
dynamics near this point. In order to exhibit a complete gxerwithout using ex-
cessive space we exhibit results for the case0.

In[150]: = f27:={—k*(a"2«xx1 + b"2xx1 + axx3 —
bxx3 — axx2xx5)/(Jzzxx2),
—(mlxx1xx3 — Kx*(axxl 4+ x3)xx5/x2)/ml,
—(—(M1xx1xx2) +Kk=x(axxl — bxxl + 2xx3 — x2xx5)/x2)/ml,
—(k*(—(a2%x1) — b2xx1 — axx3 + b*x3 +
axx2xx5)/(Jzzxx2)),
x4},
927 = {{-1/3zz0},{0,1/m1},{0,0},{(1/1zz + 1/Jz2),0},{0,0}};
h27 = {x2"2+x3"2—Vd"2,x1 —wd},
var27 = {x1,x2,x3,x4,x5};
In[151] : = {p,a,ro,control} = IOLinearize  [f27,927,h27,var27;
za= NormalCoordinates  [f27,927,h27,var27ro]/.{wd— > 0};
{fa,ga ha controlsaza} =
{f27,927,h27,control za} /. {x2— > x2+Vd};
u0= controlsa.{vl— > 0,v2— > O};
fO = LocalZeroDynamics  [fa,ga ha var27,u0,za 4];
Simplify  [f0]//MatrixForm

Computing Decoupling Matrix

Computing linearizing/decoupling control

w2
(b w3 (2 Vd®+w3?)+a (2 Vd® wl-2 Vd® w3—w3®)) «
Qut[151] = ( 2 1zz VP )
(Vd® wi-2 Vd? w3—-ws®) «
ml vd®

We can test the stability of the equilibrium point, by exam@the linearized zero
dynamics. The eigenvalues are readily obtained but thelgagthy functions of the
parameters. Some insight is obtained, however, by exagthispecial case,= b,
in which case the eigenvalues simplify to those shown wkeasethe tire coefficient
that determines the cornering force. In this case, the zamaics are unstable.
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I n[152] : = Anu=Jacobian [f0,{wl,w2 w3}]/.{wl— > 0,w2— >0,w3— >0,b— >a+n};
Eigenvalues [Anu/.{n— > 0}]
{_ va vk va vk 2 K

Qut[ 152] Vizz * Vizz = ml Vd}

7.3.3 Exact (Input-State) Linearization

We begin consideration of the exact linearization problgnsdnsidering the single
input case,

x=f(x)+9g(x)u (7.59)

Definition 7.30. The single input control system (7.59) is locally exactiydfgack
linearizable around ¥ if there exists a state transformation-z¢(x) and nonlinear
feedback u= ¢ (x) + @(x)v, @(xg) # 0, all defined on a neighborhood X of & R",
that transforms (7.59) into the controllable linear stapmse system

z=Az+bv (7.60)

Thesingle input state space exact feedback linearizationl@nois is that of finding
the transformation and the feedback, if they exist, giverctintrol system (7.59).

Recall that any linear controllable single input systemiisilar to the canonical
system

0 0

z=|: : 0 . 0o|z+|:]|u (7.61)
A 0
0 00 ---0 1

Thus, the exact linearization problem is equivalent to eahig the form (7.61) by
state transformation and feedback.

Proposition 7.31.The single input exact feedback linearization problem Igadae
if and only if there exists a functior(Xx) such the relative degree of the control system

x=f(X)+g(x)u

y—hx (7.62)

Proof: Sufficiency is obvious in view of the input-output lineatioa result. To
establish necessity, assume the the existence of a stasfomaation and feedback
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control that transforms (7.59) to (7.61). Then take z;, so that (7.61) with this
output has relative degr@e The corresponding output mag(x), is h(x) = @;1(x).
Now since relative degree is invarient under state transfition and feedback, we
conclude that (7.59) with outpyt= h(x) has relative degre [ ]

This theorem implies thdt(x) must satisfy the system of partial differential equa-
tions _
LgLth(x)=0, 0<i<n-2

and the boundary condition
LgL? th(xo) #0
Using Lemma (7.16) it can be shown that these equations aireadent to

Laggh®) =0, 0<i<n-2 (7.63)
Logp-1(%0) # 0 (7.64)

These relations lead to the following result, in which we @yphe following nota-
tion:
% =span{g(x) adg(x) - adg(x)} (7.65)

Proposition 7.32.The SISO linear control system (7.62) is exactly feedbaektiz-
able around ¥ if and only if
1. the distributior4,_» is involutive on a neighborhood of x

2.rank%,_1(Xp) =n

Proof: Notice that .
Lag () = (dLsh(x),ad;g)

so that Lemma (7.16) leads us to conclude, for a system diveldegreer, the
matrix

Lo
dL¢h
f;xo (9x) adkg(x) --- aditg(xo)) =
dLr(l.h(xo)
0 0 (dL *hixg),ad; g() )
0 .
(dLih0o).000)) *
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has rankr. Thus, ifh(x) exists, producing relative degree we have necessity of
condition (2).

If (2) holds then the distributioff,,_»(x) is nonsingular and of dimension-1 on a
neighborhood okg. Equations (7.63) can be written in the form

dh(x) (99 adg(¥) --- ad?g(x)) =0

This implies that the covector fieldh(x) is a basis for the codistributia#;- , (al-
ternatively, anf%, »). As a consequence, the Frobenius theorem implies¢hatis
involutive, establishing the necessity of (1).

Conversely, if (2) holds the distributio#,_» is honsingular aneh — 1 dimensional
aroundxp. If (1) also holds, then the Frobenius theorem implies exist of the func-
tion h(x) on a neighborhood of; such thatdh(x) solves (7.63). Moreovedh(xp)
spans the one one dimensional linear subs@ace(xo)*. Thus, (7.64) is also satis-
fied because otherwisth(xp) would annihilate a set af linear independent vectors,
a contradiction. ]

When a system is exactly linearizable several methods aitable for constructing
the coordinate transformation and computing the requigedtback control. One ap-
proach transforms the system into a normal form in which itmealrizing control is
obvious. We consider a simple example.

Example 7.33 (Feedback linearizatiothe function
FeedbackLinearizable

implements the specified test. Consider the system:

X1 GXE—I—XQ 0
X | = X3 +10|u
X3 0 1
First check for linearizability
In[153]:= f30={6 x13+x2 x3,0};
g30={0,0,1};

var30= {x1,x2,x3};

FeedbackLinearizable [f30,930 var3(d
Qut [ 153] = True

From these computations, we see that this system is lirsddeizThus, we can pro-
ceed to obtain the exact feedback linearizing state tramsftion with the function
SIExactFBL , which implements the feedback linearization algorithraadibed in
[46] Chapter 4.2.

I n[154] : = Trans= SIExactFBL [f30,930,var3Q True
Qut[154] = {x1,0 x13+x2,3 6 x1?> (6 x13+x2)+x3}
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To obtain the linearizable system in normal form coordinatee need to first invert
the transformation using

InverseTransformation
and then use
TransformSystem

to obtain the system representation in the new coordinatesse computations are
illustrated below.

I n[155] : = InvTrans= InverseTransformation [var3Q{z1,z2 z3}, Trang;

I n[ 156] :
out [ 156]

TransformSystem  [f30,930 var3Q {z1,z2,z3}, Trans InvTrang
{{z2,233 6 z1 (2 z2+21 23},{0,0,1}}

In these coordinates it is seen that the control:
U= —3602(22+223) +Vv

reduces the system to

?1 V4] 0
| =|zz|+|0]|vV
73 0 1

The control can be obtained as a function of the originaéstatiables by using the
transformation equations.

Now, we turn to the MIMO case. Formally, the MIMO exact feedbénearization
problem is defined as follows. Consider the system

x= f(x)+G(x)u (7.66)
wherex € R", u € R™and f (x), G(x) are smooth.

Definition 7.34.Given a control system (7.66), it is said to be exactly feeklia-
earizable if there exists a coordinate transformatios ¥(z) on a neighborhood X
of the origin of R and a feedback control & ¢ (x) + ®(x)v, also defined on X with
@(x) nonsingular on X such that the transformed system is of time fo

z=Az+Bv
with (A, B) controllable.
To determine if a system is feedback linearizable, we cartheseonditions estab-

lished in the following proposition that generalizes Prsiion (6.196) to the MIMO
case.
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Proposition 7.35.Suppose the matrix &) has rank m. Then the system (7.66) is
exactly feedback linearizable arounglikand only if:

1. the distributions
¢, ={adfg: 0<k<j,1<i<m}, 0<j<n-—1,
where g are the columns of G, have constant dimension ngar x

2. the distribution4,_, has dimension n atyx

3. for each j,0 < j < n—2, the distributior; is involutive near .

Proof: [46], Chapter 5. ]

Notice that#,_1 = A, so that local controllability is necessary for exact feedkba
linearizability.

Example 7.36 (Feedback linearizability).

Another illustration of the functiofFeedbackLinearizable is:
X1 14X+ X3 14X+ X3 0
X2 | = 1+x% + 1+x 0 \Y;
X3 —X3 0 €8 4 X1Xo
In[157] : = f33={1+x1+x3,1+x2,—x3};

g33= {{1+x1+x3,0},{1+x2,0},{0,Exp[x3] +x1 x2}};
var33= {x1,x2,x3};

FeedbackLinearizable [f33,933 var33
False

I n[158] :
Qut [ 158]

We see that the system is not feedback linearizable. Thisfaot remarkable, but
the way in which linearizability fails is interesting. Hirsve test controllability and
find that the system is controllable.

I n[ 159] : = Controllability [f33,933 var33
CQut [ 159] = True

Actually, we need a stronger version of controllabilitg.j.rankd , = n= 3. The
calculation is
I n[160] : = Rank[{g1,92 Ad[f33,g1,var33,Ad[f33,92,var33,

Ad[f33,91,var33 2], Ad[f33,92 var33 2]}]

Qut[160] = 3

The system satisfies this more restrictive controllabiitydition. Now, let us test
for involutivity of the requisite distributions. There argo of them and one fails.

In[161]: = {g1,92} = Transpose [g33;
Involutive  [{g1,92},var33
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CQut [ 161] = False

In[162]: = Involutive  [{g1,92 Ad[f33,91 var33,Ad[f33,g2 var33},var33
Qut [ 162] = True

7.4 Control via Dynamic Inversion

Control design based on input-output linearization breddwsn if the decoupling
matrix p(x) does not have an inverse. Nevertheless, the basic ideag@ddnded
to a wider class of systems with some modification. The aptreea take is from

the vantage point of system invertibility. Given a contrgdtem such as (7.1), with
initial state fixed, we can define both a right and a left ingeRoughly speaking,
a right inverse generates a conttothat will produce a given outpuyt, and a left

inverse generates the control that produced an observpdtout

Definition 7.37 (Invertible).

1. The system (7.1) invertibleat x, € R" if whenever y(t) and w(t) are distinct
admissible (real, analytic) controls(yus,Xo) # Y(+,Uz,Xo).

2. The system (7.1) &rongly invertibleat xp € R" if there exists a neighborhood
V of % such that for all xc V the system is ivertible at x.

3. The system (7.1) istrongly invertibleif it is strongly invertible at y for all
X0 € R

First, observe that if the system (7.1) is square=(m) and can be input—output lin-
earized as described above, that is if{gek) } £ 0, then both right and left inverses
exist. Notice that the linearized input—output dynamicé@J can be written

y =y
where r is the vector relative degree and

(rn

Yy = (L yimhT

Consequently, in view of (7.37), (7.38) and (7.39), the iseecan be explicitly rep-
resented:

§=F(&,zyY)
7= Azt Ey (7.67)

u=px(&2){—a(x(&2)+ys}

The system (7.67) can serve either as a rig[:j)t (s a prescribed reference output)
or a left @g) is an observed output) inverse. As a right inverse, we cengigt)
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to be prescribed and sufficiently smooth so that all of itsvd¢ives, including the
highest order derivatives which drive (7.67) are know&), = [y,g‘ll), ..,yg’m. As

a left inverse the required smoothness is automatigtif is piecewise continuous.
Note that (7.67) is equivalent to:

x = f(x)+G(x)u = f(x)+G(x)u

u=pt0{-a+} 7 W = a+pmu

(7.68)
Equations (7.67) and (7.68) represent the same systemilukxbdn different state
coordinates.

Equation (7.67) clearly displays the relationship betwie@ut—output linearization
and inversion. We have seen above that if the decouplingxisatnonsingular then
a system inverse exists. On the other hand, singularityeofidtoupling matrix does
not imply that an inverse fails to exist. We seek a more gémarsstruction for an
inverse with the goal of identifying a larger class of cohtaws. The basic tool for
constructing a right inverse is thstructure algorithmintroduced by Hirshorn [42]
and Singh [95]. If the system (7.1) has an inverse, then eqjidin of the structure al-
gorithm leads to identification of a finite integ@iand matricesiz (x), Cg(x), Dg(X)
such that

where ; ; ;

Yp(t) = [y @y BT (7.70)
andDg(x) is anp x mmatrix with rank mirfm, p). Thus, (7.69) may be thought of as
a generalization of the second equation of (7.68). Suppesenin(m, p). It follows
thatDg(x) has a right (matrix) invers@;g (x). Consequently, the right system inverse
is defined by:

x= f(x)+G(x)u
u =D} (x) {~Cp(x) +Hg(0)Ya(t)}

In this case, given a referengg(t), a controlu(t) is obtained that will reproduce
it when applied to the system (assuming the correct initete3. Whileu(t) is not
unique (if p < m), it does the job. On the other handnif= min(m, p), thenDg(x)

has a left (matrix) invers@; (x) and (7.71) defines a left system inverse. In this case

an observed(t) drives the (left) inverse system which produces the unicqurrol
that generatedl(t). However, there may be different observed outputs thatltresu
the same control.

(7.71)

The following summarizes the Structure algorithm.
Algorithm 7.38 (Structure Algorithm) Consider the system (7.1).

1. Step 1 Compute
y= 3—2 [f +Gu =: Lth(x) + Lgh(x)u (7.72)
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and define 1 := rank_gh(x)*. Permute the output components so that the first r
rows of Lgh are independent. Since the last-p; rows are linearly dependent
on the first § rows, combinations of the first rows can be used to zero out the
last rows. Let B and E2(x) be the permutation and row zeroing matrices. Then
define

2 = Ef(WELY (7.73)

7 = E2(X)EL(Lth(x) + Lgh(x)u) (7.74)

Now, write 2 = (Z,2])T, with z; € R'1, 2, € RP~"1. From the first § rows of
(7.74)

71 =C1(X)+D1(X)u, rankD;=ry (7.75)

and from the last p- r; rows of

= él(X) (7.76)

where

. Step 2 Differentiat&; to obtain
N (921
21 =—[f+GuU
1= 5% [f+Gu
which can be written as

2.1 = Lfél(X) + Lc;él(X)U

Now, consider

[.z‘l] _ { c_l(x))] +D(X)U, DY) = { D1 (%) }

) LtCy(x LaCi(x)

Letr, = rankD. Then permute the rows of D to make the figgows independent
and the zero out the last rows. Leg Bnd E(x) be the permutation and row
zeroing matrices. Define

Z
%~ E4Ed |3

and divide z into z, € R2 and2, € RP"2;

1By the notation_gh, we mean the matrix whose columns aggh.
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_|2|_

= [22} = C2(X) +D2(x)u

(X) _ [D2(%)

(] P2 ="

3. Step k+ 1 Suppose that in steps 1 through k, the integers r,rg and the func-
tionszy € R, ...,z € Rk, 2 € Rp—ry have been defined so that we h&es-
temk:

x= f(x)+G(x)u

ck(X) + Dk(X)u

IN
Il
ISIY
I

with

Then differentiateé

£ 0%
=—/f+G 7.77
% 0x[ +Gy (7.77)
which can be rewritten as
2= Lt&(X) + Lat(x)u (7.78)

Now, consider

3] - (1580 o o= [ 55

Let 1 := rankD. Permute the rows of D to make the firgt { rows indepen-
dent. Use combinations of these rows to zero out the reng{digpendent) rows.
Denote the permutation matrix and row zeroing matricgs,Eand E2, ; (x), re-
spectively. Then define

LR

Zi1 = B2 1 (0B [; } (7.79)
Finally, defineSystemk + 1

x= f(x)+G(x)u
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Ley1 = [;kkiﬂ = Ckt1(X) + Dra(X)u
ith _
" G | Gka(X) D _ [ Dks1(x)
k+l(X) - 6k+1(X) ; k+l(X) - 0

4. Stop By construction the integerssatisfy  <r, < ... <r¢. Moreover, there
is a smallest positive integer lsuch that - < min(m, p) is maximal. If the
procedure terminates in finite steps, it does so at stegith ry« = min(m, p) and
an inverse can be constructed (a right inverse i# min(m, p) and a left inverse
if m = min(m, p). Therelative order is k* if the procedure terminates in finite
steps, otherwis@ = «. The numbeiB identifies the highest order derivative
required to drive the inverse. Thus, it can not be greatentlttze number of
states, n. Thus, the procedure should not proceed beyorapba. st

In ProPag the structure algorithm is implemented in the function

StructureAlgorithm

Example 7.39 (Inverse system, output restrictiof®)is first example is considered
in both Hirschorn [7] and Singh [9].

In[163]:= x={x1,x2,x3};
f={0,x3,0};G = {{x1,0},{—x3,0},{0,x1}};
h={x1,x2};
{DD,CC,HH,ZZ} = StructureAlgorithm [f,G,h,x,1];
In[164]: = u=Simplify [Rightinverse [DD].(—CC+ZZ)];
(f+G.u)//MatrixForm
yrm
3yl
Qut[ 164] = X3- %
—x3 yU[P+x1 (x3 y1”[t] +x1 y2"[t))
x1 (x1—y1'[t])

It is to be anticipated that a complete discussion of systemarses would include
a characterization of the system input and output spacd4.2ln Hirschorn gives
sufficient conditions for the existence of an inverse andvshtbat they do not apply
in the case of this example. Modifying the arguments in [&gh in [95] derives
sufficient conditions for existence of a left system invahae apply with restrictions
imposed on the system output space. These conditionsedgplithis example, es-
tablish the existence of a left inverse provic;éjci # X1. Clearly, if our inverse is to
be meaningful, this condition must be satisfied.

Example 7.40 (Inverse systenTjhe following example is from Neijmeijer and Van
der Schaft [87].
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In[165]: = x={x1,x2,x3,x4};
f ={0,x3,x4,0};G = {{1,0}, {x4,0},{0,0},{0,1} };
h={x1,x2};
{DD,CC,HH,ZZ} = StructureAlgorithm [f,G,h,x,1];
In[166]: = u=Rightinverse [DD].(—CC+2Z);
(f+G.u)//MatrixForm
y1'[t]
x3+x4 y1'[t]
Qut[166] = x4
—x4—x4 y1"[t]+y2"[t]
y1[t]

7.4.1 Tracking Control

There are a number of ways in which the results of the stracilgorithm can be
used to construct feedback controllers. It is an importact that not all of the ele-
ments inYg actually survive multiplication by (x). Let us denote by andN; the
lowest and highest order derivativeypfappearing irHg (x)Yg. Then, we can write

Hg(x)Yg = HY (7.80)
where
e VAR RVANRYAY (7.81)
so that (7.71) can be written as:
% = f(x)+G(x)u
U= D} (%) {~Cp(x) + AX5(t)} (7.82)

One approach to tracking control is based on the concepirmg tise inverse system
to compute a feedforward control and then add a perturbatiatroller based on the
tracking error (see Figure (7.3)). For instancggt) is the reference trajectory, we
could implement the control

u=Dp(x) {~Cp(x) +HJR() +V(t)} (7.83)

wherev(t) is the perturbation controller.

One choice for the perturbation controller is [95]:

ni—1 . .
v=vo [ r=wdes 3 oy 7). =10 (7.84)
=

Stability of the closed loop requires that the followingywmials are Hurwitz:
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Yr inverse system » Y
+some +some
derivatives derivatives

regulator

Fig. 7.3: A tracking control concept based on the systent iiglerse.

ni+1 J_ _
J;yu-s =0, i=1,.,l (7.85)
with yij = pij-1, j=1,..,m+1.
A variant of this controller is given by Singh [96]. Here (3)8s replaced by
u=D(){~Cp(X) + M(X)Jo+N)v(t)} (7.86)

where
Hp (X)Y5 = M(X)5o + N(x)y" (7.87)

}70 = [y(1n1+1)7 s ay:(I_Nl)a cee 7Y|(n|+1)7 cee ay|(Nl>]T and y(n) = [YQIa cee 7y|(n|)]T (788)

andN(x) is an invertible matrix. It is easily verified, by substingi(7.86) and (7.87)
into (7.69), that this is a decoupling controller that reglithe input—output equa-
tions to

Yy =v, i=1,.. (7.89)

The perturbation controller is

n—1 ) . )
vi = W,O/(YRi—Yi)dt+ 3 P v v e (7.90)
=
Substituting the perturbation control yields the closemplerror dynamics
gi(ni+1) +¥in £i(ni) + M,niflfi(niil) +...4+¥0=0

whereg; := Vi — Yri. Implementation of this controller requires measureméhe
statex and output derivatives up tyéNi), and knowledge of the reference trajectory

and its derivatives up tpg}”. While output derivatives up to ordgﬁ”*l) are indeed
necessary to implement a perfect tracking controller, tighdr order derivatives
are not. The need to measure or compute the higher ordeatieely of the output,
specificallyyp can be a serious problem, because they may be noncausakiertbe
that computing them may require computing derivatives efitiputu. But this can

be remedied as follows in the next section.
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7.4.2 Dynamic Decoupling Control

Let us rewrite (7.82) in the form

U= D) { ~C(x) + A9 (t) + Fo0)y™ | (7.92)

)71: [yrj]_la"yTlila"ay{]l"awlil]T and y(N) = [ g_Nl)a"anyl)]T (792)

so that we have pulled out the highest order derivative dfow, letn; € RN N j =
1,...,1, setv=yN) and consider the dynamical systems

ni=Ani+Bv, i=1..]1 (7.93)

with (A;, B;) in Brunovsky canonical form. Notice th;ﬁNi*j) = nij, i=1...,N—

n;. The control (7.86) can be written
u=DJ(x){~Cp(x) +H1()n + Ha(x)v}. (7.94)

The dynamic compensator defined by (7.93) and (7.94) is axgiiog, input—output
linearizing controller. Its application results in the Utpoutput dynamics:

yW =, =1 (7.95)

Thus, we can apply the controller
Nty )
Vi = M,o/(YRi—Yi)dt+ > Pi (VR — i) + Vi -
]J=

to obtain the closed loop error dynamics

Ni+1) (Ni—-1)

g™ L yne™ 4y g™V +y0=0

whereg; ‘=Y — YRi.

Implementation of this controller requires measurementhef statex, and ei-

ther computation or measurement of the output derivalw,e;él), e ,yi("‘fn, for
i =1,...,1. Such an implementation is illustrated in Figure (7.4).

7.5 Dynamic Extension

Another way of dealing with the singularity of the decouplimatrix is a process
known as dynamic extension [22, 46]. Dynamic extensionilBsnéagmenting the
dynamical equations with integrators added at the inpuhigbis. The algorithm
of Descusse and Moog [22] converges in a finite number of dfeipe original
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Y 7 u y
n=An+By | la g Dj(| b X7 T 60U |
i=1,.) - y=h(x

X

V= Ok =S O - ) + % [

Fig. 7.4: This figure illustrates the implementation of ackiag controller using dynamic
decoupling.

system is strongly invertible. It has been implementedPioPac as the function
DynamicExtension

To motivate the procedure, consider the simple linear systeown in Figure (7.5):
X1 = Xo+ Uy

XZZ V5]
X3 = 2%X2 + Ug

Yi=X1
Y2 =X3

Let us try to decouple the system by following the input—otilnearization pro-

1 | %
U ——» T s ™%
L 1

1

= (> = -

S X SXyz
3

Fig. 7.5: This simple linear system illustrates the delagpdearance of the second control
input.

cedure of Section 6.5. To do this, successively differéagiaandy, until a control

appears,
y1=Xo+ Uy

Yo = 2Xp+ Uz

Thus, we see that
{1 0
P=11 0
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It is singular and the system does not have a well-definetveldegree vector. But
the second control has not had an influence because of thepneappearance of
u; simultaneously in both outputs. Let us delay the appearahuoe by placing an
integrator before the first input. Thus, the new state eqoatare

X1 = X2+ Up
XzZUZ
X3 = 2Xo + Ug
Ulzv

Now attempt to decouple the augmented system. Succesffimedtiation leads to

yi=Uz2+Vv

Vo =2up+V
So

(11

P=12 1

The augmented system decoupling matrix is nonsingular haddlative degree
is well definedr = {2,2}. A systematic procedure for attempting to achieve well-
defined relative degree by integrator augmentation of thatinhannels is given in
the following Algorithm.

Algorithm 7.41 (Dynamic Extension) Consider the system (7.1) withpm (a
square system).

1. Compute the matrig(x). If ranko = m Stop!

2. if rankp = s < m, perform elementary column operations to make the first s
columns independent and the lastra columns zero. Let E(x) denote the square,
nonsingular matrix that does thign (x) = p(X)E(X).

3. Suppose there are g columns (say,.i.,iq) each having two or more elements
that are not identically zero aroungxIf g = 0, Stop! The process fails.

4. If q# 0, define the index set = {iy,...,iq} and leta denote its complment.
Put an integrator in series with the q corresponding cordrt obtain a new
augmented system

[ x ] _ {f(x>+zi§agi<x>ui] N [zieagmx)ui}

UC{ Va
5. Goto step 1 and repeat the process with the new augmergthsy

Example 7.42 (Dynamic inversion revisitett us reconsider Examples (7.39) and
(7.40). First, Example (7.39). Recall tHBff, {x,n }] is the Mathematica function
for then'™" partial derivative with respect to
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In[167]: = {fnew,Gnewhnew xnew} = DynamicExtension [f,G,h,x];

In[168]:= {p,a,r0,u} =I0Linearize [fnew,Gnew hnew xnew;
u= (u/{vl=>Dly1[t], {t,r0 [[1]]}],v2— > Dly2[t], {t,r0 [[2]]}]});
Simplify  [(fnew+ Gnewu)]//MatrixForm

Computing Decoupling Matrix

Computing linearizing/decoupling control
x1 z1
x3—-x3 z1
x1 x3 zB—x3 y1”[f]—x1 y2"[{]
x1 (—1+2z1)
y1"[t

7212 z -
+ x1

out[168] =

Now, let us turn to the system from Example (7.40). Dynamie®esion can also be
used to construct the inverse.

In[169]: = IOLinearize [f,G,h,x]

{fnew, Gnew hnew; xnew} = DynamicExtension [f,G,h,x];
Computing Decoupling Matrix
Decoupling matrix is singular!

Dynamic extension completed

In[170]: = {p,a,r0,u} =I0Linearize [fnew,Gnew hnew xnew;
u= (u/{vl=>Dly1[t], {t,r0 [[1]]}],v2— > Dly2[t], {t,r0 [[2]]}]});
(fnew+ Gnewu)//MatrixForm

Computing Decoupling Matrix

Computing linearizing/decoupling control

z1
x3+x4 z1

x4

x4 y1"tf]  —x4+y2"[t]

- +
z1

y1"[t

Qut[170] =

Example 7.43 (Dynamic extensiomjere is another example for which the decou-
pling matrix is singular and thus feedback linearizationgat be employed directly:

X1 cogx3) 0

. . Uz
X2 | = | sin(x3) O {u ]
X3 0 1|t

)= 1]
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In[171]:= f12:={0,0,0};
g12 =Transpose [{{Cosx3],Sin[x3],0},{0,0,1}}];
h12 = {x1,x2};varl2 = {x1,x2,x3}
{fnew, Gnew hnew; xnew} = DynamicExtension  [f12,g12 h12 varlZ
Dynamic extension completed
Qut[171] = {{z1 Co$x3,z1 Sirx3],0,0},{{0,0},{0,0},{0,1},{1,0}},
{x1,x2},{x1,x2,x3,z1} }

Thus, we find that the extended state vectofxisx,x3,z) and f , G andh are
modified to:

73 co9X3) 00
| z1Sin(x3) |00 xa
=170 "% o1 " |x
0 10

The extended system has a nonsingular decoupling matrix.

7.6 Problems

7.6.1 Controllability

Problem 7.44.Check controllability for the system:

X1 = U1X3+ Uy
X2 = U1Xg

X3 = U1Xp

Problem 7.45.Consider the control systems given below. Compute and ibestitre
maximal integral manifolds of the controllability disttitonsAc andAcg,.

(a) the linear system

1 0 O 1
x={0 =1 Ofx+ |(0ju
0 0 1 0
(b) the bilinear system
0 1 0 0 01
Xx=]-1 0 0|x+u| 0O 0O 0O|x
0 0O -1 00

Problem 7.46.Investigate the controllability properties of the nonkneystem

Xo + X5+ %5 1
X= |X3+sSin(xy—x3) [+ [0fu
X2 1
3
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Problem 7.47.Consider the (angular) velocity control of a sattelite im&p using
gas jets. The dynamical equations are:

Jo=wx (Jw)+T1

wherew is the angular velocity; is the control torque vector, add= Diag{ J, Jy, J;}
is the inertia matrix, all in principal axis body coordinate

(a) Show that the system is not (locally) controllable if ame actuator is used.

(b) Supposel, > Jy > J,. Show that the system is controllable if any two of the
actuators are used.

(c) Supposéy = Jy > J;. Show that the system is controllablerifand s are used
or if o andrs, but not controllable ifr; and 1, are used.

(d) Supposél = Jy = J,. Show that the system is not controllable unless all three
actuators are used.

Problem 7.48.A simplied model for the configuration of a vehicle moving iplane

X sin@ 0
y|=|cosB|u+ [O|u
6 0 1

Herex,y denote the planar location of the vehicle ghdenotes its orientation. The
model is purely kinematic. It is assumed that the forwaraey u; and angular
velocity u, are control inputs. Show that the system is controllable.

Problem 7.49.A purely kinematic model for the rolling penny is

Q 1 0

d [y 0 1

di | x|~ o™ | cosp| 2
y 0 sing

Is it controllable?

Problem 7.50 (Sleigh, continued)Consider the sleigh of Problem (6.24) in Chapter
5 (consider the case = 0).

(a) Show that the sleigh is locally controllable.

(b) Show that the origin is an equilibrium point with consgF = 0, T = 0 but
that it can not be asymptotically stabilized by any smoo#béek control. Hint:
recall Lemma (2.16) of Chapter 2.
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7.6.2 Feedback Linearization

Problem 7.51.Consider a linear system characterized by the SISO trafisfetion

gn gl
—K +am-1 +---+a n>m

Gls) = S+byS 1+ +bg T T

Determine a state space realization for this system. Shatitlle definition of rel-

ative degree given in Definition (7.14) is consistent witk thaditional concept of
relative degree in SISO linear systems. Compute the zerardias.

Problem 7.52.Consider the simplified vehicle model

(a) Vehicle dynamics:
mx = F — px®sgn(x) — dm

(b) Engine:

. E u
= — —, F=m

¢ 7(X) + mt(X) d

m, p, dm, are constants, andis the throttle input. Write these equations in state space

form and examine the linearizability of the system from inptio outputx. Deter-

mine the relative degree and zero dynamics of the system.

Problem 7.53.Find a feedback linearizing and stabilizing control suchttthe
closed loop poles are -1,-2,-3, for the system:

X1 = SinXo
Xo = SinXg
X3 =u

Taylor linearize the system and find a linear perturbationrad that places the poles
at -1,-2,-3. Compare the two controllers.

Problem 7.54.Consider the bilinear system

0O 0 3 1 2 4
x=1[0 0 6 |x+|2 2 0|xu
0 0 -2 0O 0 3

(a) Determine if this system is locally controllable arouhe origin.

(b) Consider the Taylor linearization of this system andcedwatne if it is control-
lable.

(c) Determine if the system is exactly feedback linearigasbund the origin.
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(d) Design an asymptotically stabilizing state feedbaakialer.

Problem 7.55.(from [2]) Consider the system

with f(xg) = 0. Denote its linearization arount= Xg, u= 0 by x = Ax + Buwith
A=0f (xo)/ﬁx andB = G(Xp). Suppose the system is exactly feedback linearizable
aroundxg. Show that the system can be transformed via state tranafammand
feedback to the linear system="Az+ Bvwith A, B as given above.

Problem 7.56.(from [87]) Consider the Hamiltonian control system

. _OH(@p) . _ JdH(@p)
= ap y Pi= i + Ui

wherei = 1,...,n and the Hamiltonian is

H(q,p) = 3p"G(a)p+V(q)

with G(q) a positive definite matrix for eacdnanddV(qo)/dq = 0. Check feedback
linearizability about the poinfgp, 0).

Problem 7.57 (Overhead crane, continued)Consider the overhead crane of Prob-
lems (5.11) and (6.22).

(a) Design a feedback linearizing control that steers tlytopa to a specified loca-
tion, X = X4, Z= 2z, in the plane with the arm pointing straight dovwgn—= 0. Use
all three control inputs.

(b) Compute the zero dynamics.
(c) Specify numerical values for the parameters and siratitet closed loop behav-
ior.

Problem 7.58.([99], Example 6.14) Consider the system

5(1 = X%Xz
Xo = 3Xo+U

(a) Taylor linearize the system at the origin= 0,x; = 0,x, = 0 and show that the
linear system is not controllable. Examine the controligbof the nonlinear
system and explain your findings.

(b) Test to see if the system is exactly feedback linearedbso, compute the nor-
mal form transformation and feedback linearizing contféhat's wrong with
this picture?
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(c) Consider the output = —2x; — X2. Find the input—output linearizing control.
Obtain the zero dynamics and evaluate their stability. @arsystem be asymp-
totically stabilized?

Problem 7.59 (Stabilizing Nonminimum Phase Systems)Consider the following
system

X1 =—X5+ (2+x8)u

Xz = X3

X3 = —X3+ X5 — X1X2

(a) Transform the system to normal form and determine thdbfaek linearizing
control law. Show that the feedback linearized system is

21 =V
22 =273
3= —2122+£—é
wherev is the new control.
(b) Determine if the zero dynamics have a stable origin.
(c) Now, stabilize the system using a two-step (backstapgirocedure:

(1) Considery to be a psuedo-control and use it to stabilize the zero dycami
Hint: Consider the Lyapunov function (why this function?)

Vo=33+43
for the system
L=12
n=-pn+3-7
and picku = u(z,z3) to insure stability.

(2) Chooser to stablize the full system using the Lyapunov function

V=Vo+i(z—pUz2z))°
(d) What is the final controbj(x, X2, x3)?

Problem 7.60 (Issues with Decoupling)Consider the system

X1 = X§+X1X2+ (1+x)u
Xp = —Xo+ (14 2X2)2X1

y=X1

(a) Put the system in normal form and show that the zero dycsare globally
exponentially stable.
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(b) Use a feedback linearizing control law to stablize timedirizable part so that
y — 0. Show, by simulation or other means, that if the initialuest; (0) (the
new first state) is large enough, then the trajectory is untled. Thus, even
though the linearized part and the zero dynamics are bobatijoexponentially
stable, the closed loop system is not globally stable.

Problem 7.61 (Tracking Contol).Consider a SISO system
x=f(x)+g(x)u, y=h(x)

Assume the system has well-defined relative degrse that the feedback linearized

input-output dynamics are:
y =y

Suppose/r(t) is a smooth (continuous derivatives upyéb) will suffice) reference
trajectory.
(a) Design a tracking controller based on stabilizing threretynamics.

(b) Consider the following flexible joint robot:
11 +mglsings + k(gL —d2) =0

Iz — k(g1 —g2) = u
Takel =1, mgl=1,J =1, k= 10. Design a tracking controller so tha(t)
tracksyr(t) = 1—e /5,

(c) Add friction to the joint
[ G2+ mglsingy + k(g — G2) +¢(G1—G2) =0

I — k(1 — G2) —¢(q1 — G2) =u
Takec = 0.05 and repeat the above design.
(d) Apply both controllers to the system with friction andcliss your results.
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Observability and Observer Design

8.1 Introduction

When nonlinearities are essential, observability and fesedesign present new
complexities and opportunities that are absent in lineablgms. Unlike linear sys-

tems, a nonlinear system may be observable for some inpdtaatrso for others.

A positive consequence of this is that there are opporesiior state estimation
in nonlinear systems even when its linearization is not nladse or there is some
other pathology associated with observability (see Se@ig). There are important
practical implications because problems like this occuembperating around bifur-
cation points, such as an aircraft operating near stall,pooveer network operating
near voltage limits. They also arise in problems involviaglf detection and iden-
tification. However, to take advantage of these possiéditt is necessary to build
observers using new design paradigms, some of which haveyethim recent years.

This Chapter begins with an overview of observability andiammsary of nonlinear
observer design methods is given in Section 8.2. An obséityafierarchy is de-
fined that progresses, in weakening degree, from ‘linedrbeovable’ to ‘zero-input
observable’ to satisfaction of the ‘observability rank diion’ to ‘locally observ-
able.’ The tools we describe herein apply to all of thesexasgeneral observable
form for nonautonomous nonlinear systems, introduce®infgs well as a multiple
output generalization of the observer form constructiaegiin [37] are discussed
in Section 8.4. We also describe in detail the computatieggired to construct
the observable and observer forms. In Section 8.5.1 oureimeghtation of them in
Mathematicais discussed. Examples that illustrate all of the obselialypes in
our hierarchy follow in Section 8.5.2.
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8.2 Observability

Like controllability, observability is a fundamental prenty of nonlinear control sys-
tems just as it is for linear systems. Our treatment will Ingilsir in many ways to the
previous discussion of controllability. While observétyildoes not have precisely
the dual structure to controllability as it has in lineartsys theory, there are in-
teresting parallels. Moreover, we will see that nonlindaseyvability has important
nuances that distinguish it from the linear counterpart.

8.2.1 Definitions and Tests

Consider the nonlinear affine system described by Equafid) énd rewritten here
as

m
X = f(x)—i-_zlgi(x)ui = fu(X)
1=
y =h(x)
wherex € M (a neighborhood o%kp in R"), u e R™, andy € RP. Assumexg is an
equilibrium point corresponding to zero input and outpuat, if (xo) = 0, h(xp) = 0.

The functionsf,gj,h are smooth. We write the right hand side of the differential
equation ag,(x) to emphasize the role ofas a parameter of the vector field.

(8.1)

Denote byy(-;xp,u) the entire output responsgt;xo,u), Vt > 0 corresponding to
the initial statexp and control(t), WVt > 0.

Definition 8.1. 1. Let U be an open set in"RTwo states xx, € U are said to
be U-distinguishable if there exists a contrdity vt > 0, whose trajectories
from both %, x remain in U, such that(y; x1,u) # y(+; X2, u). Otherwise they are
U-indistinguishable.

2. The control system (7.1) is said to be strongly locallyeotable at ¥ € R" if for
every neighborhood U of)xevery state in U other thamys U-distinguishable
from . It is said to be locally observable ag x R" if there exists a neighbor-
hood W of ¥ such that for every neighborhood U of gontained in W every
state in U other thanis U-distinguishable from

3. The control system (7.1) is sad to be strongly locally okzge if it is strongly
locally observable atxfor every x € R". It is said to be locally observable if it
is locally at observablegfor every x € R".

In essence, local observabilityaf requires only thaxy be distinguishable from its

immediate neighbors. More insight into the distinctionvietn strong local observ-
ability and local observability can be found in [40] (whehey are termed, respec-
tively, local observability and weak local observability )
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We can establish an observability triangular decompasgimilar to the controlla-

bility decomposition of Lemma (7.3). First, we define thigservability codistribu-
tion

Qo=(f,01,...,0m| span{dhy,...,dhp}) (8.2)
and its kernel
Ao = Q3 (8.3)

This distribution is invariant with respect thgs,...,gm and it is contained in the
kernel of spafdhy,...,dhp}. Ifitis nonsingular, it is also involutive.

Proposition 8.2. Supposé\g is of constant dimension r on some open set Uof R

(i) Then for each pointxe U there exists a neighborhoodyf Xy and a local
coordinate transformation z ®(x) on Uy such that in the new coordinates the
system equations take the form:

4= 11(41,22) + G1(d, L2)u

8 = f2(22) + Go(Zp)u
y=h(Z2)
where(; = (z,...,z) and (o = (41, .., Zn).
(i) Moreover,

a) any two initial states xand % in Ug such that
@) = @(x), i=r+1....n

produce identical output functions for any input that ketiygstrajectory in
Uo.

b) any initial state xc Uy that cannot be distinguished frong ¥ Ug under
piecewise constant input functions belongs to the slice

So={x€Ug a(X) =q@(X), i=r+1,...,n}
Proof: For part (i), Again, recall Lemma (3.50) from which it follenthat there
exists a local coordinate transformation (matcheddp such that each of the vector
fields f,gs,...,gm have the form

1z, 24,241, Z0)

= fi(z1,...2,Z41,---,2Zn)
f Z — ) ) ) )
( ) fr+1(zr+17---azn)

fn(z11,..,20)
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In the new coordinates the covector fiettls, ... ,dh, must belong td2g = Aé, SO
that ah
i
—1_-0
021'
forall0< j <rand1<i < p. For part (ii), we provide a sketch of the proof, along
the lines of [1]. Consider the following points.

(a) Consider a piecewise constant control function (reballproof of Proposition

(7.7)
ui(t) =ut te[0ty)

ui(t) = U!< tefti+-+t i+ +t), k>1
fori=1,...,m, and define the vector field

m
6 =f+3 gu
e

Let qf( denote its flow. The state reached at tipérom xg at timet = 0 is given
by the composition

X(t) = @0+ 0 i (%0)
The output at timéy is
y(te) = h(x,)

Accordingly, we may define an output m¥g : (—¢,£)k — RP

Yxo(tlv---,tk) :hoqqt(ko...o(pil(xo)

If two arbitrarily close initial stateg; andx, produce identical outputs for any
possible piecewise input, we have

Yxl(tl,...,tk) :sz(tl’ oo tk)

for all possible(ts,...,t), ti € [0,€). From this we can verify by direct compu-
tation that
Lg, .. Lgkhi (x1) = Lg, .- Lekhi (X2)

(b) Sincef;, j =1,...,kdepends on the constar@ui, " .7u§n), and the equality of
(a) must hold for all possible choices (cufjl, ...,ul) € R, it can be verified that

LVl e kahi (X]_) - Lvl e kahi (XZ)

for any set of vector fieldsy, ..., v belong to{ f,g1,...,dm}.

(c) Recall that the distributiodg is invariant with respect td,g1,...,gm and is
contained in the kernel of spéd hy,... ,dhp}. Consequently, in view of (b), we
can conclude that, belongs to a set that is contained in the maximal integral
manifold of Ap that passes througd, i.e., it belongs t&,, .
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An immediate consequence of the above theorem is the fallpwi

Corollary 8.3. If Qo (equivalentlyAp) is of constant dimension on some open set
U then the system (7.1) is locally observable on U if and ohtizé observability
codistributionQg has dimension n, or equivalently, its kerdg) has dimensiof.

As a first example of the necessary computations consideoltkervability of a
linear system.

Example 8.4 (Linear System Observabilitiy®t us consider the observability of a
linear system
Xx= Ax+Bu
y=Cx

We will compute the codistributiof2o. To do this, we apply the algorithm (3.59) and
the formula for the directional derivative of a covectordiek defined in (3.32). For
the linear system the necessary vector fields é&g= Axandgi(x) =bj,i=1,...m.
Also, h(x) = Cx so that codistributiodh = spar€C. Notice that for any constant cov-
ector field,cj, using (3.32),

LaxCj = CjA, andLy,cj =0
Thus, compute

C

C CA
Qo=spar{C}, Q; = span{CA} yo, Qx = spal

CA'k71

From the Caley-Hamilton theorem, we may as well stop-atn. Consequently, the
observability necessary condition reduces to the familiar

C

CA
rank . =n

CA'”*l
The following example illustrates the decomposition clathin Proposition (8.2).

Example 8.5We consider a modification of Example (7.6) in which a singlépat
equation is added:

y=Xx3

First, define the system
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In[172]: = f={x1 x3+x2 Expx2],x3,x4—x2 x3,x3"2+x2 x4—x2"2 x3};
g={x1,1,0,x3};
h={x3};
var = {x1,x2,x3,x4};

Now, compute the distributioAg:

In[173]: DelO = LargestinvariantDistribution [{f,g},h,var]
Qut[173] = {{0,1,0,x3},{1,0,0,0}}

SinceAop is not empty, the system is not observable. Proceed to othtaitransfor-
mation by appending a set of independent vector field§tto obtain a distribution
of rank 4.

In[174]:= Del=Join [DelO,{{0,0,1,0},{0,0,0,1}}]
Qut[174] = {{0,1,0,x3},{1,0,0,0},{0,0,1,0},{0,0,0,1}}
Check the rank,

In[175]: = Span[Del
Qut [175] = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

and compute the transformed system equations.

In[176] : = TriangularDecomposition [f+g=u,h,Del,var,{0,0,0,0},
o]

Qut[176] = {{z2,z1,z3,z1 z3+2z4},{x2,x1,X3,—x2 X3+ x4},
{u+2z3,é! z1+2z2 (u+23),24,0},{z3}}

Thus, the equations are in the anticipated form wjth= (zz z) and {, =
(zz 7).

Z3 1
. |zt 273 v
z= 2 + NE
0 0
y=123

The next example shows that nonlinear system observatidiég provide some new
twists not evident in linear systems.

Example 8.6This example is from Vidyasagar [4] (Example 65, Sectior).C®n-
sider the system

Xl X2 0
Xo| =X+ |X|u y=x
X3 0 0

Based on linear system results it would be anticipated thaslstem is not observ-
able. However, let us compuy .
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In[2]:=

f={x2,x3,0}; g={0,x1,0}; hl=x1; h2=x2; var={x1,x2,x3};

In[177]:= f={x2,x3,0};

g={0,x1,0};

h=x2;

var = {x1,x2,x3};
In[178]: = LargestinvariantDistribution [{f, g}, {h},var]
Qut[178] = {}

Thus, we conclude that the system is indeed observable.€s®n for this is that
the statex; can be easily ascertained by observing the response tdispgemntrol
signals.

The question of observability can be answered directly thidProPactestObservability ,
and the observability codistribution can be obtained withftinctionObservabilityCodistribution
Here are the calculations with and without the control input

In[3]:=

Observability[f,g,h,var]

Out[3]= True
In[179]: = Observabiity [f,g,h2 var
Qut[179] = True

I n[180] : = Observability [f,{{}},{h2},var
Cut [ 180] = False

I n[181]: = ObservabilityCodistribution [f, Transpose [{g}],{h2},var]
OJt [ 181] = {{17070}7{07 170}7{0707 1}}
I n[182]: = ObservabilityCodistribution [f,{{}},{h2},var

Qut[182] = {{0,0,1},{0,1,0}}
Similarly to the case of controllability, it is of interest introduce the codistribution
Q. = spanfLf(dh), 1<i<p,0<k<n-1} (8.4)

Clearly, Q| is a subdistribution of2p. Thus, a sufficient condition for local observ-
ability aroundxg is dimQy (xo) = n. Moreover, for a linear system it is easy enough
to verify thatQo = Qy, so that in a crude sense dita(xp) = n establishes an ob-
servability that is linear-like. Indeed, what is missing®n as compared t€g are:

1) the Lie derivatives of the covector field; with respect to the control input vec-
tor fields and 2) the higher order(n— 1) Lie derivatives. Thus, if din®(xg) = n,
observability is achieved without the need to exploit thetom input.
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8.2.2 The Observation Space
Definition 8.7. Observation Space. Thebservation spacé of system (8.1) is the
linear space of functions M» R over the field R spanned by all functions of the form
LVk"'Lvl(hi)v kZ 07 1 < [ < P, Vi, --,V1 € {fagla"'agm} (85)

ie.,

0 =spag{Ly...L,(M)[1<i<p, k>0, vi,...,wc € {f,01,...0m} }  (8.6)
It is important to emphasize that the observation spaceistsnsf all linear com-
binations of the functions (8.5) with real constant coefiits — viz., ‘over the field
R.

Another characterization of the observation space is diyethe following result.

Lemma 8.8.The observation spac€’ is equivalent to the linear vector space of
functions M— R over the field R

ﬁ:sparh{quk...qul(hi) 1<i<p k>0 ul,. . . e {o,1}m} (8.7)

Proof: Obviously, each vector fielél,, u € {0,1}™, is a linear combination ové of

the vector field] f,gs,...,gm}. We need to show the converse, i.e., that each vector
fieldin{f,qg1,...,9m} is alinear combination of the vector fields in (8.7). To see th
first note thatf is of the form in (8.7) withu = 0. Now, anyg; can be written

gi=(f+g)—f
We obtainfy = f +gj by takinguj = 0j # i andu; = 1. It follows that
spak{f,g1,...0m} = spag{fuluc {0,1}"} (8.8)

For any two vector fields,w we have
I—v+whi = I—vhi + LWhi

This relation can be used repeatedly, along with (8.8) tevthat (8.6) and (8.7) are
equivalent. For example, suppdsg € ¢ implying that

vespa{f,gi,...gm}
Then, by (8.8), there exists a set of vector fiefds, ..., w, }, with
wi € spag{fylue {0,1}™}

such that
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V= C1W1+ "'+CrWr
Consequently,
Lvhi - LC1W1+"'CTWT h| — ClLW]_ h| 44 Cr I_Wr h| S 5}
Similar calculations work the other way and with higher aride derivatives. In this
way we show that any function it is in ¢ and vice-versa. [ ]

Observability can be characterized in terms of the obsienrvapace.

Lemma 8.9.An analytic system (8.1) is observable on M if and only if theeova-
tion spacer distinguishes the points of M, that is, for anyx € M, x; # Xp, there
is a function® € & such that®(x1) # ®(x2).

Proof:
| ]

An analytic system (8.1) is observable lhif for any x1,x2 € M, X1 # X, there is a
function® € & such that®(x1) # ®(x2).

Associated with the observation spages it's differentiald &, the codistribution

do =span{dA |A € O}
We can connectd with the observability codistributiof®o.

Lemma 8.10.The kernel ofl@, do, is invariant with respect to the vector fields
{f,01,...,0m}. If d& is nonsingular, then it too is invariant with respect to theetor

fields{f,g1,...,9m}-

Proof: To establish the first conclusion, l&te ¢ and suppose is a vector field in
do~. Then(dA, 1) = 0 by definition and(dLfA,T) = 0 becausé.A also belongs
to do. Consequently,

(dA,[f,1]) = Lg (dA,T) — (dLgA,T) =0

This means thdtf, 7] annihilates all members df € & so that{f, 7] is a vector field
in do+ establishing that @~ is invariant with respect td. Identical calculations
establish invariance with respectdg, . .., gm.

The second conclusion now follows from the fact that if thetrdbution do+ is
smooth —i.e., when the codistributio@ds nonsingular — then it's annihilator/d
is also invariant with respect to the vector fieldg, . . . , gm. ]

This result leads to the following.
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Lemma 8.11.The differential of the observation spad& and the observability
codistribution are related in the following way

1.dot C Ao
2. if d¢ is nonsingular, them& - = Ao, equivalentlydd = Qo.

Proof: By definitonAq is the largest distribution contained in the kernel of Sitm, . .. ,dhy}
that is also invariant with respect togs, . .., gm. But do* is contained in the kernel

of spa{dhy,...,dhy} and itis invariant with respect tb,gs, ..., gm. Consequently,

do+ C Aop.

By definitionQg is the smallest codistribution that contains the covediding, . .. ,dh,}
and is invariant with respect to the vector fielflsys,...,gn. But d&' contains
{dhy,...,dhp} and if it is regular, by Lemma (8.10) it is also invariant wigspect
to the vector fields, g1, ...,9m. Thus, it must be true tha2o C do.

Now, it is easy to show tha®p contains all of the covectors o#al By definition of
Qo, dhj € Qp, 1 <i < p. Since it is invariant with respect th gy, . .., gm, we have

Lvdhi € Qo,1<i<p,ve{f,g1,...,0m}
Recursive application of the invariance property leads to
Ly ... Lydhi€ Qo,1<i<p,vq,...,vi € {f,01,...,0m}, Yk >0

But these are all of the elements af'do it must be tha@g = d&. [ |

Remark 8.12Remarks on the Observability Codistributions. The systetodally
observable atg if the observability codistributiorQo has rankn atxg. This is called
the observability rank conditionf Xg is a regular point 0f25(xg), the observability
rank condition is necessary as well as sufficient. If theesyshas zero input, then
the observability codistribution reduces®@p.

When dimQo(xg) = nbut dimQ, (xo) < n, the implication is that some states are dis-
tinguishable only under the action of control inputs. Wheis bccurs, most control
inputs do distinguish the states. There are agawular inputs notablyu = 0, that
do not. Thus, when dif2,_(xg) = n we will use the terminologpbservable for zero
input at %. It is also possible to test the linearization of (8.1xafor observability.

That is, define
of dh

Ao = E(XO)a Co= 0_)((X0)

and test the paifAy,Co). If the linearization is observable then we say that it is
linearly observable atx Linear observability implies zero-input observabilityis
easy to prove that a system is linearly observabig dtand only if dimQy (xg) = n.
Thus, we have the following hierarchy
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dimQo(x)=n = locally observable

f
dimQy(xp) =n = zero input observable
T f
Co
CoAo
dim . =n < linearly observable
CoAl

Consider a time intervd0, T], divided intor subintervals of length,to, ... ,t.. Now,
define a piecewise constant control input

=u forteti+ -+t pti+--+t), 1<k<r, ukeR"

Here we havég = 0 andt; +---+t, = T. Letyj(Xo,t1,...,t) denote tha' output
variable at timel starting atxg and under the action of the contralThe following
result gives the joint sensitivity of the outpytwith respect to the times, ... t; in
the limit asT — 0.

Lemma 8.13.Consider the output;yof the system (8.1), beginning at the stage x
and driven over the intervd0, T] by the piecewise continuous contédlThen

dfyi

—dl,...Le.h
a0 |y g gy i(X0)

8.3 Local Decompositions

In linear system theory, th€alman decompositiontilizes a set of coordinates that
explicitly reveals the controllability/observabilityratture of a control system. Thus,
new state variables are identified such that the systemieqaatre in the form

bal Ain A Az Al Tz B1
22 - 0 Aoo 0 Aoy V) + B, u
7 0 0 Azz Aul |z 0
Z 0 0 0 Aullzy 0
717
y=[0 C 0 Ci|2|+Du
Z3
y28

The coordinateg;,z correspond to the controllable subspace and the coordinate
2,24 correspond to the observable subspace. A similar decotipois achievable
for affine nonlinear systems.
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Proposition 8.14 (Local Decomposition).Consider the system (7.1). Suppose that
the controllability distributionAc, and the observability codistributiof2o as well
asAc, + Q5 are all of constant dimension on a neigborhood U gfexR". Then
there exists a local diffeomorphist# on U such that the system equations in the
new coordinates are:

Q1 f1(41,02,43,44) G1({1,42,43,4a)

G _ f2(02,4a) | | Ga&da) |

€ f3({3,4a) 0

s fa({a) 0
y="h({2,44)

Moreover, the system restricted @ = 0, {4 = O is locally controllable and the sys-
tem restricted ta/; = 0, {3 = O is locally observable.

Proof: The theorem is proved in [2]. We outline a constructive praofimplemen-
tation of which is described later. It proceeds as follows.

Compute the controllability distributiofi,

Compute its complemen;

Compute the observability codistributié and its annihilato2d
Compute the intersectialyg of Ac, and Q3
Compute the complemefgo of A-g in Ac,
Compute the intersectiatgs of A, andQg
Compute the complemesg,, of Azg in Ag,

© N o o A~ 0w NP

Compute and apply the transformation basedeaA-5+ Aco+ Azg+ Aco
Of course there are technical arguments required at vastages in the proces®

Example 8.15Let us revisit Examples (7.6) and (8.5). In those instances@m-
puted the controllable and observable decompositions., MoswProPac function
LocalDecomposition is used to compute the complete local decomposition.

I n[183] :

f={x1 x3+x2 Expx2],x3,x4—x2 x3,x3"24+x2 x4—x2"2 x3};
G =Transpose [{{x1,1,0,x3}}];

h={x3};

var = {x1,x2,x3,x4};

In[184]: LocalDecomposition [f,G,h,var,{u}, o]
Qut [ 184] = {{z2,z1,23/z1 z3+z4},{x2,x1,x3,—Xx2 X3+x4},
{z3. € z1+22 23240}, {{1}.{22}.{0}.{0}},{z3}}

Notice that the equations turn to be exactly those of Exarf§.
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8.4 Observable Form

When (8.1) is locally observable, it is often convenientirelinear theory, to trans-
form the system to either observable or observer form as asrteagaining insight
into the observability structure or even as a first step t@okes design. In this and
the next section we describe these special forms and the wtatigns needed to
obtain them.

8.4.1 Autonomous Systems

We will consider systems of the form

x = f(x)
y=h(x)

wherex € R", y € RP. For systems of this type we can easily generalize some im-
portant concepts that are well known for linear systems. Agnithese are the no-
tion of ‘observability indices’ and the ‘observable cargatiform’ (see, for example,
Kailath [49]).

(8.9)

Recall the observability codistribution for the systeni 8.

Qo = (f,01,...,0m|span{dhy,...,dhy} )
System (8.1) is locally obervable if it satisifies the obsdility rank condition
rankQop = n. In the absence of inputs, i.e., system (8.14), we immelgliateain

QOZQL:span{Lﬁ(dhi),lgig P, 0< kgn—l}

Local observability requires that raék = n.

We can get even better results because in gen&als overspecified by tha-

p covectorsl.'?(dhi) indicated above. At mosh of these can be independent. By
identifying n independent covectors the calculations are simplified aswhaenient
set of new coordinates is identified. Consider, first, the cd®ne outputp = 1. Let
us apply the standard algorithm to comp(g:

Qo =span{dh; }
Q=Q 1+LiQx 1

Of course, there exists ki < n— 1, such thatQ-,; = Qy-. Thus, the algorithm
terminates with

Qo:span{L?(dhi),lgig D, nggk*}

If kK =n—1, then new coordinates defined by
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z7=h(x),z1=L(n),i=1..n-1

lead to equations in th@bservable form

Z s}
d : B :
dt Zn1 - . 4
Z f(z1,...,2n)
y=21

Now, let us turn to the multiple output case. Applying the sgrocedure as above,
foreachi =1,..., p we can generate a chain of independent covectors (one¥orms
dhi,Lf(dhi),...,Lf (dh;). The tableau shown below illustrates thgsehains ar-
ranged in columns.

dhy dh; dhy --- d

p

L, (dhy) L;(dhp) L(dhg) --- L (dh
L2(dhy) L2(dhy) L2(dhg) - L2(dhp)

i i #(dn

2
L3(dhy) L3(dhy) L3(dhg) --- L3(chy)
L%@dhy) L'® (dhy)
i(dhy) 0 : 0
0 L LS (dhg) :
0 0 0 - 0

Now, we seek to identify the maximum number= dimQ_ < n, of independent
covectors from this set. There are many ways to do this. Twtesyatic procedures
are based on a search by columns or a search by rows. Thediyrstam counterparts
are well known, e.g., Kailath. With the column search, weiegth the left-most
column and proceed down the column retaining independerttors and replacing
dependent covectors by zero. As we will see below, once andiegpé element is
found in a column the remainder of the column is also dependtethe row search
we begin with the first row and proceed from left to right asctbe row. In this
process also, once a dependent element is identified thén@enaf the column
consists of dependent elements. Let us illustrate theseeduwes with an example.

Example 8.16Suppose we consider a system with state space of dimensind 6 a
three outputs. Then we might generate three chains of rotosseof lengths 4, 6,
and 5 as illustrated below. From these we need to select Gr(@sg observability)
independent row vectors. We can do this by searching rowb@grson the left or
searching columns as shown on the right.
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dy  dh,  dhg
L (dhy) L (dhy) L (dhg)
L2(dhy ) L2(dhy) L2(chg)
L3(hy) Li(ha) Li(hs)
0 L4(dhy) L4(dhs)
0 LSdn) O

N\
[ dhy dh, dhz] r dh dh, 07
L¢(dhy) L¢(dh2) O L¢(dhy) L, (dhy) O
0 L¥(dhp) : L?(dhy) O
0 L7 (dhy)
; 0
L - - 0 -

Notice that in the row search we wind up with three chains ofths{ k1, k2, k3} =
{2,3,1}. In the column search we obtajr1, k2, K3} = {4,2,0}. In each case; +
K2+ K3=06

Remark 8.17 (Search for Observability indices).

1. In the column search, we retain the entire first colunij i k. Then we begin
the second column. Should we encounter a dependent eleneenthte remain-
der of the column is also dependent. Thus, we replace alliréngeelements in
the column by zero and proceed to the next column. Let us lestahis fact.
Clearly, the column lengthg;, i = 1,..., p will depend on the ordering of the
output maps;(x).

2. In the row search, we work across the first row, and thengbersl and so forth.
When we encounter a dependent element we replace it andlahd elements
below it by zero. We can also establish that the set of coliengths resulting
from a row search are invariant with respect to the orderfrth@output maps.

3. Now consider a row search that terminates with indikgd = 1,...,p and
K1+ -+ Kp=n, i.e., the system is observable. Consider the coordinatestr
formation

21 =hy(x),22 = Lt (h1(X)) ... 2, = L (hy(x))
Ze 1= N2(X), - Za i, = L2 (h2(X))
1

(hp(x))

4. The equations in the new variables are indbservable formvith observability
indicesky, K, ..., Kp:

Kp—
ZK]_+"'+Kp71+l B hp(X), .. zKl+"'+Kp = pr
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71 2
ZKlfl ,_,zKl
Z f1(2)
d . B )
dt B
Zky ot Kpo 1 Zky o HKpo1+2
Zy1 o
L Zy 1L @ ]
Y1=24

Y2 = Z 41
Yp = ZK1+"'+Kp,1+1

8.4.2 Control Sequences

We now turn to the general, nonautonomous case of Eq. 84 aksumed that the
system is locally observable, but not necessarily zerotinpservable. Lemma 8.8
motivates the following definitions. Define a sequence ofstadutions

& := spar{dh}

& = 5k,1+span{d|_fuk...|_ful(h) |ui €{0,11M j= 1,...,k} (8.10)

We assume that, ‘almost everywhere’ on a neighborhoag, gf) the codistributions
&y are of constant dimension, and (ii) there exists a smafiestich that

éaOC"'Céap*:éap*+1:dﬁ (8.11)
Let nk denote the codimension &k_; in &. Then there exist sets ofontrol se-
quence$37] -
1= {(un)[ur € {0, 13™},
I = {(u,u'2) |ut € {0,1}™ u'2 € {0,1}™}, (8.12)
that satisfy

(@) If (u,...,ul) €1j then(u,...,uli-1) € 1j_q, for j > 2.
(b) The one-forms
k . .
Ul {dL, - Loa ] () e fugny

spandi on a neighborhood of. In the single output case these one-forms actu-
ally constitute a basis fafy and the cardinal number &f is ny.
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We obtain the control sequencég, by direct, sequential construction of the codis-
tributionsék. See [37] for more details about the single output case aaiibBe3.5.1
for our algorithm in the multiple output case.

Example 8.18Consider the § order system

g — 14 ux
_gatx 114y (GX3—x2 e XX X%)
X= —ete 41 438 — uxd , Y= [Xl]
X5
X1

This system is locally observable, but it is not observabtafl inputs. In particular,
it is not observable withu = 0. We use thd’roPacfunction ControlSequences(see
Section 8.5.1) to compute

G0 = {d]xa), dia]}
&1 = {d[x], d[xe] d[xa], d[¥s]}
& = {d[xa],d[xz],d[x3],d
and
l1={0}, I2={0,1}
Now, direct computation leads to the four one-forms

a=d|L, ,(h)] =€972(d[x] +d[x])
B=d|Ls,,(h2)] =d[xg]

y=d L L1 (hl)]] = €978 (dxq] +d[xs])
o=d qu:lqu:o (hz) =d [Xl]

and

span{d[xi],d[xs],a,B} = span{d[xy],d[xz],d[X4],d[xs]} = &1
span{d[xy],d[x4],a,B,y,0} = span{d[xi],d[xz],d[xs],d[xa],d[xs]} = &

8.4.3 Observability Indices
Recall the construction of the control sequengesnd codistributionsgy, in the pre-
vious Section8.4.2. In the subsequent discusion we useotiagion

L, () =Lg, --Le, (h), (ut....u) el

Now, consider the collection of covectods, (h) fori =0,...,p*, which we can
arrange in the (block) tableau

dhy dn, - dhy
dLy, () dLy, (hp) - dLy, (hp)

dLy, (hy) dLg(hg) -+ dLy_(hy)
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From this set we seek to identify a maximal set of independewmtctors. We can
do this by searching down columns or across rows (recallitteat counterpart).
For a row search, begin with the first row and work from left ight, then move
to the next row. If the outputs are them selves independemtidentify p chains
of covectorsjh,dell(hi),---,de,K_il(hi) of lengthki, i = 1,..., p. The integers;
are theobservability indicesFor an observable systekq + Ko + - - 4+ Kp = n. For
autonomous systems this definition of observability ingliseequivalent to that in
[28] and [110].

8.4.4 Observable Form

If the system is observable, then we can define new statebl@siac R" via the
transformatiorx — z

o
L, 4 ()

z= : (8.13)
hp

Lo, (p)

If the inverse is continuous and the the transformed equafwoduce unique solu-
tions we call the transformed equationsabyservable formThis is consistent with
the usual terminology for linear systems and autonomouslmear systems. In the
latter case, the transformed equations are in the formabfains,

.Zl =2 e .ZK1+"'+Kp,1+l = ZK]_+"'+Kp,1+2
2 1=2Zg v Zigetkp-1 = Zkg otk
Ly = $1(2) --- Zky+tkp = ¢p(z)

iw=2z2 - Yp = Zky+-+Kp_1+1

Remark 8.19 (Xia and Zeitd)lote that if
dhy
dLy, (hy)

rank : (x0)=n
dhp

dLs,, (hp)
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the implicit function theorem guarantees the existencesshaoth (local) inverse of
the transformation (8.13) so that the transformation isfle@mnorphism. However,
an inverse may exist even if the rank condition fails. In daise, the inverse will only
be continuous. If the transformed differential equatioagehunique solutions on a
neighborhood okg, then this is still a useful transformation. This point iscieébed
more fully in Xia and Zeitz [109].

Example 8.20 (Continuation of Example 8.118%t us return to Example 8.18 and
compute the observable form. We find the observability ieglio be 32. The trans-
formation to observable form is

7=X1,22=—-14+€972, 3= -14+€978, =%, 5= X5

from which the observable form is obtained

z z+uz
Vi) uz
d z
a 23 = Z% 7y: |:Z4iL:|
2y Z5

In this example, we see the two-chain structure of the olddevform equations.
Also, the role of the control input is displayed. We see dletlrat the system is not
observable it = 0.

8.5 Observer Form

Observer design based on' linearization up to output igattwas introduced in
[54] and [10] for the single output case without inputs antéeged to the multiple
output case in [55]. In this approach the idea is to transfiersystem (8.1) into the
form

z=Az+¢(y),y=Cz (8.14)

whereA, C is an observable pair. When this is done, observer desiggryseasy. As
might be expected, systems that can be transformed int@the(B.14) are rare but
it is interesting to note that linear observability of (8id ot necessary if we do not
insist that the transformation be a diffeomorphism. An egien to the case where
(8.1) is not zero-input observable, is given by [34, 35].sThiethod begins with
reduction of (8.1) into the special form (time-varying laraup to output injection):

z=A(u(t))z+ ¢ (y,u(t))
y=[21"'2p]T:CZ &%)

In this form it is possible to use linear methods for obsedesign. Equation (8.15)
will be called anobserver formof which (8.14) is a special case. Not every locally
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observable nonlinear system (8.1) has an observer formfoFhemulation we follow
is that of [34, 37, 35]. First, let us introduce some defim&oConsider a set qi
vector fieldsX = {Xy,...,Xp}. Sequentially define sets pf+ 1-forms

Qf = sparh{deu (h)AP_ydhifi=1,....p; ue {0, 1}m}

X, = sparh{deu(ixa) AP dhla € Q) ue{o, 1}m}

QX =Fe1

Leti;(w) denote the usual contraction of the fooowith respect to the vector field
f. Then we use the notation

ix (W) =ix 0 oix,(w)
The following proposition, given in [35], generalizes thiegde output result in [34]

to multiple outputs.

Proposition 8.21.The system (8.1) is transformable into the observer fordb{(df
and only if:
(1) dhy A --- Adhp(Xo) # 0 (independent outputs)
(2) There exists a set of vector fields X., X, that satisfies
(@) Lxhj = g;
(b)dimQ*X =n—p
(c) Vw € QX dix(w) =0
(d) ix(wr) A--- Aix(h—p) Adhg A--- Adhp(Xo) # Owherew; j=1,...,n—p
is any basis folQ*.

If these conditions hold, then the transformation is given b

71 =hi(X),...,2p =hp(X)
. . 8.16
deer:IX(wj)? lea"'vn_p ( )

Proof: A sketch of the proof is given in [35]. However, it is usefukéo provide a
more complete discussion of the sufficiency part in ordetadfy the nature of later
computations. It is provided in Appendix 8.A. ]

Let us make a few comments about the stated conditions.
Remark 8.22 (Concerning item 2).

1. item (a) implies thg-tuple of vector fieldX = [Xy, ..., Xp] forms a right inverse
of the Jacobiad@h/dx. The vector field is aligned with the direction of, = h;,
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that is, it is orthogonal to the codimension-1 surfdeés) = constant. As in the
single-output case [36] evel satisfying the conditions of Proposition 8.21 is
a constant vector field in the linearized coordinates, sakit$ the form:

x=2 vdd vl =1
=22 p“ﬁsz ke N o]
Furthermore, a linear change of coordinates Tzwith z =z, i=1,...,p

leaves the equations in TVLOI form and such a transformatambe found so

that )

X = ¥
SuchX; satisfy the conditions of Proposition 8.21 for a system i dbserver
form (8.15), [34, 35].

.in item (b) QX is considered a vector space over the reals. SoQitm=
dimspag Q*, which is not the same as dimsp@f. See item 5 below.

. item (c) is an integrability condition for each of the Ifftsix (w). Recall that
any 1-form has the representation

W= Zai(x)dx

Thus, we have the differential

dw = Zda./\dx| Z dx,/\dx| 0

i, a
Since &;j Adx; = —dx; A dx;, this implies that the Jacobiaﬁa/dx is symmetric
so that the 1-form @ is an exact differential.

. item (d) implies that tha coordinate functions

z1(X) = h1(X)....,zp(X) = hp(X),Zp(X), ..., Za(X)
are independent thereby defining a valid coordinate tramsfton.

. item (b) and (d) together imply dimsp@rt = n— p. This follows from the fact
item (d) requiredx(wy) A--- Aix(wn—p) # O for every basis{w,...,wnp}
of Q%, i.e., the 1-formsix(w),...,ix(wh_p) are independent in the usual
sense (field of admissible functions). But this can be trulg drthe p-forms
w are independent. To see this, supp¥sés a vector field onR" and sup-
posew;, w, are p-forms. Define a thirdp-form that is dependent o, and
w2, w3 = Y1(X) w1 + Yo(X)ap. Thenix (ws) = y1(X)ix () + ya(X)ix (). Conse-
quently,

ix (o) Nix (@z) Nix (ws)
= y1(X)ix (@r) Aix (wp) Aix (@r) + ya(X)ix (@r) Aix (@z) Ax ()

This calculation extends to the general case in which ther@ dependence
among any humber gd-forms.
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Now, we need to provide a construction for the set of vectda$iX. First, obtain a
set of vector field¥s, ..., Y, that satisfy

- dhj_ e [O--- 0]

de|l(h1) 10
: Vi Yp]=]0 : (8.17)
dhp 0O--.

LdL, (hp) | [0 1]

For any control sequencg, u?, ... we can define the set of vector fields

Zill...uKi*1 = [qui*L [ o [fulaYi] o ]] s i= 17 P
Now, identify the subset of control sequenc€sC |+ that satisfy
det[LZl (h) -~ Lyp (h)] #0 (8.18)
ulgk1—1 ul..ykp—1
and use any one of these sequences to obtain
-1
e 1 p
[xl o Xp} = [szl___uxl—l (h) szl___uxp—l (h) } {Zul...uKlfl o Zul...qufl }
(8.19)

The following theorem summarizes the key result. It genszalthe single output
case proved in [37].

Proposition 8.23.The system (8.1) is transformable into the observer fordb{df
and only if:

1. .7 # 0, where.# C |- satsifies Eq. 8.18

2.Y(U,...,Up) € 7, szul__uKif1 (h)=0,i=1,....p

3. The set of vector fields; X. ., X is given by Equation (8.19), and the following
conditions hold:

(@) dimQX=n—p
(b) Vo € Q% dix(w) =0

(©) ix(wn) A--- Aix(wn—p) Adg A--- Adhp(X) # Owherew; j =1,...,n—p
is any basis folQ*.

Proof: Sufficiencyfollows from Proposition 8.23Necessityis proved in Appendix
8.B. [ |
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8.5.1 Computational Tools

The computations described above and their implementatiaMathematicgack-
age were originally reported in [62]. In this section, we lwis summarize the key
elements of our implementation.

The package has three primary high level functions:

1. Observabilitylndices , computes the observability indices.
2. ObservableTransform , computes the transformation to observable form.

3. LinearizeToOutputinjection , computes the transformation to observer
form.

These are supported by several utility functions that camthe control sequences,
solve the first order partial differential equations of Rysition (8.21), and others.
The most important of these are

1. ControlSequences
2. OmegaForms

3. SpanR

Underlying these calculations are basic tools for workinthwdifferential forms.
We have slightly extended the Exterior Differential Cal@ipackage of [13]. These
three new tools have been incorporated intoRmePacpackage described in [61].

A key construction i<ontrolSequences  which performs the computations out-
lined in Section 8.4.2. The algorithm proceeds as follows.

Algorithm : ControlSequences
Input : f,hx,u (x= fy(x),y =h(x))
Output : listofindices, ng, list of sets of control sequencdg
begin
& ={dh}; r=dimép; k=0;
while (dimé& < n)&& (k < n) do
k++
Set upéi = {d [quk Lty (h)] U dh} with generic control sequence
ng:= dimé&y — dimé&_1;
Enumerate all controlgk € {0,1}™ that do not reduce didfi =: %
Pick outny control sequences of the form
sc= {1, U}, U e %S € e =k
end

Once the control sequences are obtained, it is a simple matset up and solve
Equations (8.17) and (8.19). Once the vector fidds. . , X, are obtained, we com-
pute Q* using the functioromegaForms.
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Algorithm : OmegaForms
Input : f,h,x,u,Xq,...,Xp
Output : a basis folQX
begin

QX = sparh{deu (hi) AP_y dhy
X =k
k=1,
while dimQX <n—pdo
K+
ol spar,x;{deu (ix (a)) /\?zldhi

Q%= 0%+ Of
end

i:17---7p .
ue{o,1}m [

aeQf,
ue {0,1}"

The central calculations in the above procedure are the simmin the last step
and the construction spanThe summation is based on item (4) of Remark 8.22. We
successively check ea¢h+ 1)-forma € Qlf. If a € spam2* we drop it, otherwise
we join it to the set of p+ 1)-forms that define2*.

Now, consider the procedure for computing span

Algorithm : SpanR
Input : alist of nforms of dimensiorp, A= {a1,...,an}
Output : a set of basis forms for spgA
begin
Basis= {a1} (assumingy is not trivial)
k=2
while k< ndo
k++
Check ifay can be expressed as a linear combinatmrer the realsof the
forms irBasis If not adday to Basis
end

The test in the above algorithm is implemented using Mahematicafunction
Reduce . Suppose, at th" step, we have

Basis= {Bi,...,Bq}

We want to determine if there exists real numbars. ., kg such that

a = ki1 +--- +Kgfq

Reduce allows us to seek solutions of this equation with the unkrebyn. .. kg
restricted to real numbers.

Remark 8.24Remarks on Computation. The observability properties aflinear
systems have nuances that have no counterpart in lineatytf@ne consequence
of this is that there are opportunities for state estimaitiononlinear systems even
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when its linearization is not observable or there is someroffathology associ-
ated with observability (see Section 8.2). There are ingganpractical implications
because problems like this occur when operating arounddaifion points and in
fault detection and identification. However, to take adagetof these possibilities
it is necessary to build observers using new design parajigome of which have
emerged in recent years. To do so requires development ofaeputational tools.

Above, we have described symbolic computations for redpoionlinear smooth

affine systems to observable and observer forms, when pesatbthe first step in

observer design. These tools can be applied to systemsréhli@arly observable,

locally observable with zero input or merely locally obsdrle. Our approach in-

volves computations with differential forms, which exgerce shows to be extremely
efficient.

Our characterization has at its root the computation ofseges of constant controls
as formulated in [37]. This idea appears to have its originthe pioneering work
of [40]. Using this construction, we introduce a local olvsdéae form for nonau-
tonomous systems that is consistent with prior work and dements the observer
form of [35]. Our approach to computing the observer formasdad on a muliple-
output generalization (Proposition 8.23) of the methogppsed in [37].

8.5.2 Examples

Several examples follow that illustrate the computatiahgge and other exam-
ples can be found worked out in tihdathematicanotebook Examples.nb that can
be downloaded from http://www.pages.drexel.édihigk22/notebook.htm). In each
case we compute both the observable and observer forms. Example (8.25) is
linearly observable (and therefore zero-input obseryalbigample (8.26) is zero-
input observable but not linearly observable. ExampledBi2 locally observable
but is not zero input observable and is, therefore, not thealily observability. Ex-
ample (8.28) is linearly observable. Example (8.29) is mobznput observable but
satisfies the observablity rank condition.

Example 8.25 (Krener & Respondek example TC®nsider the three state, nonau-
tonomous system from [55]

d X1 X2
gl = X3+ (1+€1u . Yy=Xg
X3 3x2x3 + x3x3 + (L + X1+ X2) U

This system is linearly observable. Notice that it is alsesdobservable form. Ap-
plying the tools described above, we find that the systenstoams to observer form
with the transformation

27=x1,2=(X—4%) /2, 23=—XX+Xs
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The observer form is

z 0-% 0 z %1)’4
&lz|=10 0 2| |z|+ —2(1+&)u
z 0-3u 0| |z (1+y—(1+€)y3+y*/4)u

Example 8.26 (Xia & Zeitz example XNow, consider the simple two state, single
output, autonomous example from [109]. Although the trarmsftion is smooth, its
inverse is only continuous.

d X1| | X1 2
Gl =[] v

The system is observable with index 2, but it is not lineabgervable. The transfor-
mation to observable form is smooth

V4l :XE—HC;’, 7 = 3X%—|—5Xg
But its inverse ia not ya
X1 =— (—%)1/5 (52— 2)°
X2:—(—%) (—321+22)1/5

The observable form equations are

g 4| 2 —z
dt || | —-1521+82 |’ y=2a
The transformation to observer form is
z=X+X, 2=5C+33
and its inverse is s
= (3P g
xo=—(—3)" (5 — 2,)Y
The observer form equations are
d VA 821—22 |2 8
a|:22:|_[ 152 |~ | o |T|15]Y
Example 8.27 (Xia & Zeitz example ow consider a nonautonomous example,
from [109]. It is not zero-input observable. However, it isservable with observ-
ability index 2. As we will see, the observable and obserganfare the same. The
transformation is smooth, but its inverse is merely cordirsi
Xl = Xg
Xz = XoU
y=X1
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The transformation to observable/observer form is

3
) =X, =—X

and its inverse is \3
X1=2, X=—-24

The transformed equations are

'Zl = -2
22 =3nu
y=2

Example 8.28 (Hou and Pugh)his example is from [44]. They propose a method
for linearization to output injection for multiple output@mnomous systems different
from that implemented here. To obtain the observer form wedrte reorder the

outputs.
d il XX)Z( , {01} [xl}
e 2| — 2R3 | » Y —
dt Y % 10] [x

The system is observable with indiced 2The transformation to observable form is
simply a reordering of states

1 =X3, =X, Z3=X1

leading to
— |2 =|az2
dt
Z3 v}

The transformation to observer form is
1 2
7= 3,2 =1, %= 5 (- 20+ )

This transformation produces the observer form

1 (2 - 2z) 00-17 [z 1

d |4 (1 Z3 1 2

T2 = g(zg—zzg,) =[00-11 |z | +3]1
z3 0 000 |z 0

_|a
-]
Example 8.29 (Continuation of Example 8.18J return to Example 8.18 and com-

pute the observer form. The transformation to observer ferfound to be

Z1=X1, 2=X4, 3=—€172 7, = —x5, 75 =118
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From this we find the observer form

z —z3—1+uZ 00-100] [z —1+y2u
v4) —Z 00 00O v4) V2
$lz|=| ul-z) |[=|0000-ul|z|+ u
Z4 -7 000O0O Z4 -Y1
Z z 00000 |z y;

Remark 8.30Remarks on Examples.

The above examples are chosento illustrate a variety afitistances. The following
cases are covered:

1. autonomous and nonautonomous,
2. linearly observable,
3. not linearly observable, but zero-input observable,

4. not zero-input observable, but satisfies the obsertypabdink condition

There are further enhancements that need to be considdreduf3e, not all locally
observable systems have an observer form. However, treaflagstems that do can
be expanded if one allows for a transformation of the outpihgs was pointed out
in [54]. In the single-output case, necessary condition#ife output transformation
where obtained by [9] in the framework employed herein. brttultiple-output case
even output reordering helps (see Example 8.28 and [44]).

8.6 Approaches to Nonlinear Observer Design

An observer for the system (8.1) is a dynamical system wiguisy(7),u(7), 0 <

T <t and outputx(t) € R" such thatx(t) is an estimate ok(t) in the sense that
Ix(t) — X(t)|| — O ast — ». When (8.1) is linearly observable there are many ap-
proaches to observer design. On the other hand, if (8.1)tifimearly observable,
options are limited.

8.6.1 Design Based on the Observer Form

If the system 8.1 can be transformed into the observer for®eation 8.5 then ob-
sever design is very straightforward. Unfortunately, fiisperty applies to a limited
class of systems. The idea is to transform the system inttithe varying’ version
of (8.14), specifically the ‘observer form’ given in (8.18peated here.

z=A(u(t))z+ ¢ (yu(t))
y=l[z 7]  =cz
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A constructive approach to computing the transformatiarsfogle-output systems
is given in [37]. Recently, [100] present a different counstion that applies to a
somewhat larger class of single-output systems in whichrthgix A is allowed to
depend on both andy. Thatis in (8.15A(u(t)) — A(u(t),y(t)).

For a system in the form of (8.15) a Kalman observer can be used

A(u(t))z+ ¢ (u(t),y(t))+P(t)CT (y(t) —C2)
P PAT(u()) A(u(t))P—PC'CP+Q

This observer converges exponentially providgt) is such that the linear time-
varying system
z=A(u(t))z y=Cz

is completely observable [50]. This ‘passive approactiesebn the natural occur-
rence of a suitably rich input.

8.6.2 Local Exponential Observers

Local exponential observers have been studied since tH&sl @7g., [53, 111, 101],
in an attempt to extend linear methods to nonlinear dyndreystems. For the most
part, existing methods are limited to linear-like systemghe sense that they are
smooth and zero input observable

Consider the nonlinear system
x=f(x,u), y=h(x) (8.20)

and suppose the system has an equilibrium poip¢tat*), i.e. f (x*,u*) =0. Alocal
observeifor (8.20) is another dynamical system, driven by inpit$ andu(t), that
produces an estimaté€t] of x(t) such that the errog(t) = x(t) — X(t) converges to
zero as time tends to infinity:

Ix(t) — X(t)|| = 0, ast— oo (8.21)

providedx(t) remains sufficiently close .

One approach to observer design mimics the structure ofstate observers for
linear systems. Namely, the measurement error (or regicuaded to drive a replica
of the system so that the observer equations are

%= f(%,U)+K(RYy—h(x)) (8.22)
The error dynamics can be computed
e=X(t) —X(t) = f(x,u) — f(x—eu) + k(x—eh(x) —h(x—e)) (8.23)

LActually, the system is only required to be detectable amdéfbelow.



262 8 Observability and Observer Design

Let us consider this as a differential equation that defeyéise error response to an
exogenous input(t) (of course, it must be a solution of (8.20)). Notice tkat 0
does indeed correspond to an equilibrium poa=(0) of (8.23) for arbitraryx(t)
providedk (x,0) = 0. Hence, the system (8.22) is an observaen(if -) can be chosen
so that this equilibrium point is asymptotically stable.

Definition 8.31. Exponential Detectability

A system is said to be exponentially detectabléxatu) if there exists a function
y(&,y) defined on a neighborhood @, y* = h(x*)) € R*9 that satisfies

(i) y(x",y") =0,

(i) y(&,h(&)) = f(&,u),
(iif) the equilibrium pointé = x* ofé = y(&,y*) is exponentially stable.

Exponential detectability implies that the system
X=f(,u)— f(R,U") + y(RY) (8.24)
is a local observer. To see this, compute the error dynamics
é=f(x,u)— f(x—eu)+ f(x—eu") — y(x—eh(x)) (8.25)

and notice that in view of (ii)e = 0 is an equilibrium point for all exogenous inputs
X(t),u(t). Moreover, exponential stability is assured by (iii))— as te verified by
linearizing (8.25) with respect ®@at the equilibrium poiné = 0.

Conditions (ii) and (iii) generalize the linear case in aumatway. It is easy to see
thaty(&,y) .= Aé —L(y—C&) satisfies (i), and (jii) is satisfied as well provideds
chosen such that+ LC is asymptotically stable. Moreover, the nonlinear observe
(8.22) corresponds to the choig€,y) := f(&,u*) +k(&,y—h(&)) providedk (-, -)
can be chosen to provide exponential stability, i.e., tsBaiii).

The functionExponentialObserver implements the above construction. Its
calling syntax is

{fhat,xhat,eigs}=
ExponentialObserver][f,h,x,u,y,x0,u0,delta]

Thus, given: the system as defined by equations (8.20), atibeum point (Xo, Ug)
and a specified decay radethe function returns an observer of the form

x=f(Ruy)

The eigenvalues of the linearized observer at the equilibpoint(xp, up) are also
returned.
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Example 8.32 (An exponential observétgre is a simple example of an exponential
observer.

I n[ 185] :

f={x1"2 + Cogx2]xx3—x2,x2Cogx1],Sinx3] + Cogx1] +ul};
h={x1+x1*x2+x3,x2+ x3"3};
I n[ 186] : = ExponentialObserver [f,h, {x1,x2,x3},{ul},{y1,y2},{0,0,0},{0},4]
Qut [ 186] = {{xlhaf —x2hat+ 27 (—xlhat—xlhat x2hat-x3hat+yl)+
5 (—x2hat—x3haf +y2) +x3hat Co$x2hal,
—10 (—x2hat—x3haf 4 y2) + x2hat Cofx1hai,
ul—45 (—xlhat—x1lhat x2hat- x3hat+yl)—
5 (—x2hat—x3hat +y2) + Cogxlhai + Sinx3hai},
{x1hatx2hatx3hat},{—5,—5,—4}}

Notice that the observer states are assigned names théeapeiginal state names
extended with ‘hat.’” Alternatively, the designer can sfea symbol upon which
state names will be based.

Construction of Exponential Observers

There is considerable literature concerning the designxpbrential observers, in-
cluding Kazantis and Kravaris [3] consider the single ottmbservable system
(7.1). Since the system (8.20) is (zero-input) observatsiéinearization

Ox = Fox

oy = Hox (8.26)
is also observable. They use Lyapunov’s auxiliary theoreshbw that an observ-
able linearization implies the existence of an observe(#dr) with linear dynamics
provided the convex hull of the set of eigenvaluef afoes not contain the origin of
the complex plargi.e. 0¢ CH{Ay,...,An}, where;, i = 1,...,n denote the eigen-
values of~. When this condition is satisfied, the set of eigenvaluegitte belong to
the ‘Poincaré domain’ [8]. Under these conditions, [3]\pdes a direct construction
of such an observer. Itis claimed in [3] that this construttbypassing as it does the
requirement of the intermediate forr@9), is less restrictive than the requirements
in [1]. But still, the eigenvalue constraint dnis itself undesirably restrictive. As a
matter of fact, there are many systems that satisfy the sapesonditions of [1] but
do not satisfy the conditions of [3]. The following is one buexample.

2Notice that this is equivalent to having all eigenvalueshia open left half plane or all
eigenvalues in the open right half plane, i.e. the originssarce or a sink.






Appendix

8.A Proof of the Sufficiency Part of Proposition 8.21

SufficiencyAssume that the hypotheses of the proposition hold, andéhecoor-
dinates are defined by Equations (8.16). The vector figichn be expressed in the

new coordinates . 5
fu=Y Lt (&) 5
i; 0z

We wish to determine the components of the vector figle- L, (z). Notice that,
fori > p, we can write

dFLiJ/\dZ]_/\“'/\de: L, (dz)/\dzl/\.../\dzp
In view of (8.16) this becomes
ARy Adz A AdZy =Ly, (ix (@ p)) Adz A~ AdZ

But, Ly, (ix (w_p)) € Q. So, we can express, (ix (w_p)) as alinear combination
of then— p basis elements a2 where the real coefficients depend on the parameter

u. Thus,
. n-p
dR)Adz A Adzy = z aj (U wj Adz A -+ AdZ,
=1

One can easily verify the identity (wj) Adz A--- AdZz, = wj, which, again in view
of (8.16), implies thatv; = dzj pAdz A--- AdZy, fOr j=1,...,n— p. Consequently,

. np
dRiAdZA - AdZ = 5 @] (U)dZipAdzA---Adz
=

Then, it must be true that
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. n-p p
dRy= Y aj(Wdzp+ Y @(z,....2p,u)dz
=1 =1

Note, that it is the integrability requirement that insutiest ¢ depends only on the
coordinategy, .. .,zp. Integrating, leads to

oo n-p
Fi= Y aj(W)zjp+o(z,....2p,u), i=p+1,....n
=1

Forj=1,....p,
dFLiJ/\dZ]_/\“'/\de:deu(Zi)/\dzl/\.../\dzp

But, in view of Q, dL¢, (z) € Q%, fori = 1,..., p. So, the remainder of the argu-
ment proceeds as before.

8.B Proof of the Necessity Part of Proposition 8.23

Here, we provide a sketch of the proof. The overall logicdat the arguments of
[37] for the single-output case.

The conditions of the theorem are coordinate free. So if flstesn (8.1) is trans-
formable to (8.15) we can verify conditions (1), (2), (3) letz-coordinates. We
begin by introducing the ‘unobservable’ distributiong(eees the unobservable sub-
space of linear systems)

Fo={X[Lx(h)=0,i=1,....,p}

LxLt Lty (h))=0
Fy1= FkN {X u,...,ukt e [0, }
i=1...,p

Our observability assumption @, . .. .6 implies that

FoD D Fy = {0}

In zcoordinates, we can compute (following tedious compaoitetias in [37])
Fo={X|CX=0}

ym:ym{x\(CA) x:o}

Ik+1

Accordingly, introduce the sets of constant vector fields
Fo={XeR'CX=0} =kerC
Fe1= ka{x eR|(CA), X :o}

Comparing these, [37] point out that the real vector sp&gapan the distributions
Z. Their Lemma 5 and Claim 7 are easily extended to the muliiaicase:

lkr1
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Lemma 8.33.(i) Yu € {0,1}™, [fy, Pky1] C F for k=10,...,p* — 1. (i) VX €
Fi\Fkr1, u€ {0,121 such that fy,X] € F_1\FH fork=1,..., p*.

Proof: (i) Let X € %.1. From the definition of the%'s we have for every
(uf,...,u") € ({0,1}™" and 1<r <k+1,LxLy, ---L¢, (hi) =0,i=1,...,p. Thus,

Lty bty o-Lig (i) =L gy Ly () —LxLgy ---Le, (i) =0

so that[fy, X] € Z.

(i) Assume the contrary, i.e., there exitse %\ . %1 such that for every €
{0,1}™, [fu, X] € Z, then using the formulain (i) above, we obtaielr, L, Ly, ()=
0,i=1,...,p, for everyu,ul,...,uk € {0,1}™. But then X € %, 1, which contra-
dicts the assumption. ]

On this basis [37] establish the following correspondirsutefor theF,.

Lemma 8.34.(i) Yu € {0,1}™, [fy,F1] C F, for k=1,...,p" =1, (i) VX €
F\Fci1, Ju € {0,1}M such thaf fy,X] € R\ fork=1,...,p* — 1.

Proof: For everyX € F.1, [fu,X] € %, 0< k < p*—1 by Lemma 8.33. Now
compute
[fu, X] = —ZeX = —A(u) X — X = —A(u) X

Thus, [fy,X] is a constant vector field. Hencly, X] € K. This proves (i). Now,
supposeX € R\Fk_1. Again from Lemma 8.33, we havdy, X] € %#_1\%. But
the calculation above showW$,, X] is a constant vector field, §d,, X] € F_1\Fx,
thus establishing (ii). ]

Proof of main result:

Condition (1): By rewriting Equation (8.17) mcoordinates and in view of the defi-
nition of the set$, we can establisl € F,_»\F_1, foreachi=1,...,p.

Lemma 8.34 implies there exist8 € [0,1]™ such that f 1, Y] € Fy,_2\Fx 1. Suc-
cessive application of Lemma 8.34 leads to the conclusion. .., u,_1 € [0, m
such that

[qui*L['“[fulaYi]'”]] € FO\Fl (827)

Now we can show that there existg such that

[fUKi , [---[ful,Y]~~~]] ¢ Fo (8.28)

To see this, assume the contrary, i.e.,

VU € R L o [gr,x-]) () € Fo
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so that

LiqL h)=0

s L0 ] 7t ] s
Now, since
g acb Y]] € Fo

it follows thatL[ (h) = 0 and, hence,

quiil’[...[ful’Yi]...]]
[t [ [fa, Y] ]] € R
which contradicts Equation (8.27). Consequently, (8.28)
By construction
Zig 1= [fugas [ g Y0+
is a constant vector field in the z-coordinates, i.e.,

i C i 4
Z o =SdZ
ul..uki—1 ij_ dek

for some constants,. Now compute,

ciz Cjidii—dii

utui Tt 2 Kz oy
so that :
L (€9=CZ a=] ¢
ulu d,

It is not difficult to verify that the (constant) vector fieIEI'§l_‘_uKi,1 are linearly inde-
pendent. Now, from (8.28), we have foredch 1,...,p

[di---d,0---0]" ¢kerC

Since rank = p, we have dimke€ = n— p and there are preciselyindependent
vectors not contained in k€ It follows that thep—vectors[d'1 d'p], i=1...,p
are independent. Consequently,

d% df
[szl...uKrl (€7) - LZSl...qu—l (CZ)} = ) . :p
di - df

is invertible. This implies? # 0.

Condition (2): Since the‘iijl_'_u,(i,1 are constant vector fields in theecoordinates,
Condition (2) holds.
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Condition (3): In thez-coordinates, compute

><i — Lzl

ulogk1—1 ul..ykp—1 ul..uki-1

€ lp (C] 77, -2

which satisfies the conditions of Proposition 8.21 for aaysin the form observer
form (8.15), see item (1) in Remark 8.22 and [34, 35]. ]
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Robust and Adaptive Control Systems

9.1 Introduction

Developments in nonlinear geometric control theory hawkshsubstantial impact on
the theory and design of robust and adaptive controls folimeer systems. We will

describe some of the more established approaches and duéa#sd computations.
Our primary interest, in this chapter and the next, is theliegjion of feedback

linearization methods to uncertain systems.

Any model-based control design method is vulnerable to meders. This is ob-
viously a concern with feedback linearization techniguiesesexact cancelation is
a basic ingredient of the method. On the other hand, modeld ies control sys-
tem design are never infinitely precise. Thus, it is necgdsdnvestigate the impact
of model uncertainty on closed loop system performance awui@vise methods for
insuring adequate performance when a controller is appliexystems that deviate
from the design model.

Model uncertainty is generally of two typddnmodeled dynamiagfers to dynam-
ics that are neglected because they act on a time scaledliypimuch faster than
the time scale of interesdtunctional uncertaintyneans uncertainty in the functions
f,G, h that define the affine differential equation model. The efffcunmodeled
dynamics is often analyzed using singular perturbatiorveraging methods. While
unmodeled dynamics are extremely important, our focuslvélbn functional un-
certainty. Normally, functional uncertainty is characed by perturbing a nominal
(certain) part by an appropriately bounded, but otherwisgpacified function. In
some cases the uncertainty is characterized in terms of@artam parameter.

Feedback linearization methods typically begin with tl@$formation of the design
model to a normal form. Thus, we begin, in Section 2, with aregtigation of the

consequences of applying a state transformation derivatiebasis of a nominal
model to a perturbation of it. When the uncertainties satisttain structural condi-
tions, the transformed system assumes a triangular forhcémafacilitate analysis.
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The design of robust stabilizers, i.e., controllers thatrgatee closed loop stability
for all admissible perturbations of a nominal plant, forteyss with matched uncer-
tainties is considered in Section 3 using the methdd/apunov redesigrn Section
4 we consider the design of robust stabilizing controllerssfystems with a class of
nonmatched uncertainties. The design we describe emplogskasteppingnethod.
Backstepping will reappear with some variation in our désion of adaptive control
and variable structure control.

We then turn to the case where the uncertainty can be cheeacté terms of uncer-

tain parameters. Thus, we describe the design of pararaéégtive controls. Section
5 introduces a basic adaptive regulator. In general, thisrabber requires measure-
ment of the system states and some of the transformed st&tesieed to measure
transformed states can be avoided by using the backsteppprgach discussed in
Section 6. Section 7 describes an adaptive tracking céerttmhsed on dynamic in-
version. Computational tools are described and illustr&de each method.

9.2 Perturbations of Feedback Linearizable
Systems

We will examine perturbations of systems of known relatiggree. There are several
important applications of such an analysis. For exampleraation may arise as
an uncertainty applied to a nominal system. Or it may sim@ycbnvenient, for a
variety of reasons, to divide a system into a nominal systkrms @ perturbation in
order to isolate certain terms. The main point is that un@etain constraints on
the perturbation, the perturbed system can be transforntediitriangular or near
triangular form that can be exploited for purposes of cdraystem design.

9.2.1 SISO Case

We will consider the ‘perturbed’ SISO system

X = £ + ¢ (%) +[9(x) + y(x)]u
y = h(x) (9.1)

wherex e R", ue R y € Rand¢(x), y(x) represent a perturbation applied to the
nominal systen{f,g,h). Previously, we discussed the reduction of the nominal sys-
tem to normal form via a transformation of coordinates. Unzktain conditions,
the nominal transformation when applied to the perturbedesy still produces a
useful form of the system equations. The following defimti@pply constraints on
the structure of the perturbatigr(x), along the lines of [81]. Recall

% =span{g,...,adg}, 0<i<n-1
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Definition 9.1. Suppose the system (9.1) is of relative degree r. We sayhibaetr-
turbation, ¢ (x) satisfies:

1. thetriangularity conditiorif ady%; € 4,1, 0<i <r—3

2. thestrict triangularity conditiorif ady% € %,0<i<r—-2
3. theextended matching conditioh¢ € ¢

4. thematching conditionf ¢ € %

Notice that these conditions are listed from weakest togest, i.e.,

matching=- extended matching- strict triangularity = triangularity
Consider the following result which perturbs only the digfitm.

Proposition 9.2.Assume

1. the nominal systeiff, g, h) has relative degree r at thgyx R".

2. the perturbed systefif + ¢, g, h) satisfies thestrict triangularityassumption on
a neighborhood ofx ady% C 4,0<i<r—2.

There exists a local transformation on a neighborhoodpfhat reduces the per-
turbed system to

E=F(,2, EcR"T
un=2+n(&,n)
=23+ W(,2,2)

7 = a(x€,2)+ @&, z,....z)+p(X(&,2)u

Proof: The nominal system has relative degre@&hen there exists a transformation
x> (€,2), E € R, z € Rwith z(x) = L' *h(x), 1 <i <, that takes the nominal
system to _

§=F(.2

L =2

2 = LYh(X(,2)) + Ll *h(x(€,2))u
Now, we apply this transformation to the system (9.1). Fishpute

&= %x L&) +LpE(0) +LgE (U, ¢
F (Eaz) + L¢E(X) ’XH(E,Z)
F(

¢,2)

x—(&,2)
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Now compute

21 =y=L¢h(X) +Lgh(X) + Lgh(X)u= 2+ Lyh(x)
= L%h(X) + L¢th(X) + Lgth(x)u =2z3+Ly Lih(x)

Z - Lth(x) + LeL i th(x) + LgL th(x)u
Define the functiorp(&, 2)
Loh(x(¢,2)
LoLih(x(§,2)
: = (&2
LsL5th(x(€,2))
so that we can write
z=2+@(¢,2)
Z=2+®(¢.2)
5 = Lth(x) + @ (£,2) + Lol *hix)u

So, we see that under transformatipfx) — ¢@(¢,2).

It is necessary to establish the triangular dependengeaf z;,...,z. We do the
required calculations in the transformei& z) — coordinates. Under transformation
f andg become

F(¢,2) 0
Vi) .
f(x)— f({) = : , 9x) = 4(0) =
Z
Lh(x(€,2)) LgLYth(x(€,2))
Thus, we see that
0 0 0
o8] » [0f]. : : :
adfg=[a—?}f—{ﬁ}g= 0o |- 0 =- 0
0 Lol th Lol th
LgL'h LgL'h 0

Similarly, we compute
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_ 0 -
. 0
adig= | (~1)ILgL7 *h| « (n—i), 1<i<r-1
0
L 0 |
Thus, we have
i 0 — 0 - -
% — spar ; : (~1)LgL’ th
; 0
0 —LgLh
Lty th] L0 l
i terms
Now, consider
0 0
g9 ~dg, 0¢ : :
agg=—->9— ¢ = 5—LgLy "h— :
S0 Ll th
This implies
9091 _ Opn-1 0
3z S =
Next consider
a
adsadig = J¢acig— f‘;éfgd;
0 0
_ _9¢ r—1p i :
=9 by h—| 0, |€spa 0
gaé ¢ Lol *h
0 Ll th 0
This implies
d¢1 _ Opn 2 -0
97 1 T )

275
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Continuing in this way, we find

01 _o O¢ni1 _

dz_i 7 0z

providing the desired result. [ ]

The above result can be easily generalized to allow pertiorsin the control gain
of the formy € 4. Although restrictive, this class of perturbations is rmiess
useful in applications. Notice that for any scalar functmmvector fieldw(x), if
Lgw(x) = 0 then if thematching conditiony € ¢, is true we havé,w(x) = 0. Thus,
in the calculations in the above proof, the only change ibérlast of the transformed
state equations. In fact, we have for the transformed system

E=F(,2, EcR"T
n=+@(,zn)
L=n+®¢,n,2)

f = a(X(E,2)+ A2, %) + [P (X(E,X) + P (X(E X)) u

wherep (x(&,%)) = L LY h(x(&,x)).

Similar results obtain for the other conditions of Definiti(®.1). The following is a
summary:

Suppose the nominal part of the control system (9.1) had letative degree .
Then the perturbation conditions of Definition (9.1) asdoral transformation to
triangular forms as follows:

1. the triangularity condition implies

E=F(§2), EcRT
Z:Z+l+m(f7zla"-7zi+l)71§i§r_1 (92)
z = a(x(E,z))+(p((E,zl,...,zr)—i-p(x(f,z))u

2. the strict triangularity condition implies

E=F(£,2,EcR
4=2%41+@&,7n,...,2),1<i<r-1 (9.3)
z=a(x(&,2)+ @&, z1,....z) +p(X(&,2)u

3. the extended matching condition implies

E=F(£,2), EcR

4 =121, 1<i<r-2

z1=z+@ 12, ...%) ©-4)
Z’ = a(x(E,z))+(p((E,zl,...,zr)—i-p(x(f,z))u
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4. the matching condition implies

E=F(&,2), EcRT
Z=z,, 1<i<r—1 (9.5)
z=a(x(&,2)+@a& z,....z)+p(x(&,2)u

Example 9.3 (Strict TriangularityConsider the following system:

In[187]:= f={x2,x3—x1— x2,x4,x1—x3—(1/2)x4};
9={0,0,0,1};
h=x1;

In[188]: = DF = {0,—DF1[x1,x2],0, —~DF2[x3,x4]};

First, let us show that the uncertainty satisfies the stiemgularity condition. To do
this, we compute the relative degree,

In[189]: = VectorRelativeOrder [f,g,{h}, {x1,x2,x3,x4}]
Qut[189] = {4}

and the required distributiori, ¢ and%,:

In[190]: = GO=Span[{g}]
G1=Span[{g,Ad[f,g,{x1,x2,x3,x4},1]}]
G2=Span[Join [G1,{Ad[f,g,{x1,x2,x3,x4},2]}]]

Qut[190] = {{0,0,0,1}}

Qut[190] = {{0,0,1,0},{0,0,0,1}}

Qut [ 190] = {{0,1,0,0},{0,0,1,0},{0,0,0,1}}

Now, test the uncertainty

In[191]: = Map/Ad[DF,#, {x1,x2,x3,x4},1]&,G0]
Qut [ 191] = {{0,0,0,DF2(%V[x3 x4]}}

In[192]: Map/Ad[DF, #, {x1,x2,x3,x4},1]&,G]]
out [ 192] = {{0,0,0,DF219[x3 x4]},{0,0,0,DF2%V [x3,x4]}}

I n[ 193] :
Qut [ 193]

Map/Ad[DF, #, {x1,x2,x3,x4},1]&, G2
{{0,DF1®[x1,x2],0,0},
{0,0,0,DF219)[x3,x4]},{0,0,0,DF2%Y [x3 x4] } }

and notice that the conditions are indeed satisifed. Timstoamation that places the
nominal system is obtained:

I n[194] :
Qut [ 194]

{T1,T2} = SISONormalFormTrans [f,g,x1,{x1,x2,x3,x4}]
{{x1,x2,—x1—x2+4x3,x1—x3+x4},{}}

Then, its inverse.

I n[195] : = InvTrans= InverseTransformation [{x1,x2,x3,x4},{z1,22 23,24}, T1];
"InverseTransformation :{X1,x2,x3,x4}" ="{z1,z2,z1+ 22+ 23,22+ 23+ z4}
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Application of the transformation to the nominal systemfaoms the reduction to

normal form.

In[196]: = {fnew,gnew hnew} = TransformSystem |[f,g,h, {x1,x2,x3,x4},
{z1,z2,z3,z4},T1,InvTrang

Qut[196] = {{22,23,247—23—2 (z2+23+24)},{0,0,0,1},z1}

Now, apply the transformation to the perturbed system, tainob

In[197]: = {ff,gg,hh} = TransformSystem [f+DF,g,h,{x1,x2,x3,x4},
{z1,22,23z4},T1,InvTrans;

In[198]:= ff //MatrixForm
z2
z3—DF1(z1,z2]
Qut[198] = z4+DF1(z1 22|
:—2L (=3 z2—5 z3—-3 z4-2 DF2[z1+ 22+ 23,22+ 23+ z4))

The system is indeed in the strict triangular form antiapldty Proposition (9.2).
The perturbation is readily modified so that the strict tgialarity assumption fails.
In[199] : = DF={0,—DF1[x1,x2 x3],0,—DF2[x4]};

I n[ 200] : = Map/Ad|DF,#,{x1,x2,x3,x4},1]&, G0

Qut [ 200] = {{0,0,0,DF2[x4]}}

In[201]: = Map/Ad[DF,#, {x1,x2,x3,x4},1]&,G1]]

out [ 201] = {{0,DF1(®%Y[x1,x2,x3],0,0},{0,0,0,DF2 [x4] }}

In[202]: = {ff,gg,hh} = TransformSystem [f+DF,g,h,{x1,x2,x3,x4},
{z1,22,23,z4},T1, InvTrang;

In[203]:= ff //MatrixForm
z2
z3—DF1[z1,z2,z1+ z2+ z3]
Qut[203] = 74+ DF1[z1,22,z1+ 22+ 23
% (=3 z2—5 z3—3 z4-2 DF2[z2+23+z4))

In this case we do not achieve strict triangular reductiothef perturbed system
because agl41 ¢ 4. However, we do have a (non-strict) triangular form since
ady9 € 4% (as well as agdp € ¢4).

9.2.2 MIMO Case

We now turn to the multi-input multi-output system with unieénty in the drift term

x=f(X)+ ¢ (x)+ G(x)u

y=hix) ©o
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wherex € R", ue R™, y € R™. Define the distributions
4 :span{adjfgk|0§ j<i,1<k< m}, 0<i<n-2
Then Definition (9.1) can be adapted to the MIMO case.

Definition 9.4. Suppose the system (9.1) is of (vector) relative dagreérs, ..., rm},
with r =rq +--- 4+ ro. We say that the perturbation satisfies:

1. thetriangularity conditiorif ady%; € 4,1, 0<i <r—3

2. thestrict triangularity conditiorif ady% € 4,0<i<r—-2

3. theextended matching conditioh¢ € ¢

4. thematching conditionf ¢ € %

The following result generalizes Proposition (9.2).

Proposition 9.5.Suppose the nominal part of the control system (9.6) ha®owect
relative degre€ry,...,rm}atxwithry >rp > ... >rpandr=ri+...+rm. More-
over assume that the strict triangularity condition appli&hen there exists a local
transformation of coordinates such that the perturbed ¢igua take the form:

E=F(f,zu), fecR!
2] = Z'j+1+(01!(5,2r11,ri+17---,Z}rriﬂ'a---72;21,ri+1,---,2;?n,ri+j),

o 1<j<n-1 |
Z = ai(X(§,2)+pi.(X(E,2)u+@(&,2,...,2")
1<i<m

on a neighborhood ofgx

Proof: The proof proceeds precisely as in Proposition (9.2), afghdhe calculations
are considerably more tedious. First, as in Propositia?) (dve compute

. 08 )
&= SX= F(é,zu)+ L¢E(x)]XH(E,Z) =F(&,zu)
Now, compute

4= 3+ Leh()

S
% = L0 +LoLi 00 + 5 Loli~ iu

and define the functions
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L¢ hi (X

(§,2)

LoL¢hi(x(¢,2))

qoi(fvz):

Lol hi(x(€,2)

fori=1,...,m.In (&,2) coordinates

and

adjfgk =

Notice that

Lo L7 thy

Lo L™ thm
0

0

0

Ok =

%, = span

9> = span

and so on.

[EnY

[En

0

Lo L thy

0

1
0f{,{0],---,]0
1 :
0 0
1 L] 1]
1 o1 [
1
%l 1o
707 717
: 0
ol |. :
L1 L4 [ ]

— rowr;

< rowry—j

1 '
Lg L™ “hm] « rown=r1+---+rm

1<j<nn-1

)

— TOWN—j=T14 - +Fn— ]

— rowr;

4 TOWry+ro

— FOWr]+ - +rIm=r

[EnY

+~— rowrp—1

—rowrp+rp—1

—rowrp+---+rm—1

Now, as in Proposition (9.2), we apply the triangularityuamption to obtain:
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i og.
aj(pl =0,..., (p”j K 1_0, 0<k<ri—2, 1<i,j<m
5er7k 0er7k
These relations establish the conclusion of the theorem. [ |

As in the SISO case uncertainty in the control input matrixtef matched type
is easily accommodated. Consider a perturbation of the B(r) — G(x) + I (x),

I (x) =[ya(x)--- ym(x)] andy; € ¢, for eachi = 1,...m. Then the transformed equa-
tions are unchanged other than

9.3 Lyapunov Redesign for Matched Uncertainty

Very often a control system is designed on the basis of a namindel. If the uncer-

tainty is confined to a suitably characterized admissitdsglit may be possible to
augment the nominal control with a robustifying componbat insures asymptotic
stability for all admissible uncertainties. When this isamplished using Lyapunov
methods the technique is referred tolgmpunov redesigisee, for example, [52],

Chapter 5).

Suppose that the multi-input system (9.6) has well definkdive degree withr =
n (i.e., the exact state linearizable case) and the uncertsatisfies the matching
condition. Then, it is reducible, by state transformatiorthe form

z=Az+E[a(2)+A(zu,t) + p(2)u] 9.7)

A nominal feedback control designed on the basis of the faeldbnearization ap-
proach is
U@ =p '@ {-a@+Kz (9.8)

whereK is chosen such thgiA + EK) is Hurwitz. Thus, the nominal closed loop
system is described by the equation

7= (A+EK)z (9.9)

Moreover, it may be associated with a Lyapunov functbfz) = z' Pz whereP
satisfies the Lyapunov equation

P(A+EK)+ (A+EK)"P=-Q—1, Q=Q">0 (9.10)

andV = —2' Qz— ||Z|* < 0 along trajectories of the closed loop nominal system. In
the sequal it will become apparent why it is convenient taiegthe right hand side
of (9.10) to be more negative tha# .
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The nominal control* does provide some protection against plant unertainty. In-
deed, along trajectories of (9.7) with= u*, we have

V =—-7'Qz— ||7|?+ 27 PEA (9.11)
If the uncertainty has a bourjd\|| < y||Z||, with constanty > 0, then
V < = (Amin(Q) +1) 121>+ 2v|IPE] [12)*
Thus, stability is assured providgd< (Amin(Q) + 1) /2||PE]|.

Now, consider the system with uncertainty and apply a contee u* + p~1p, that
includes a ‘robustifying’ component; intended to compensate for the uncertainty.
Assume that the uncertainty satisfies the condifi¢d, t) = O, vt, and the bounding
condition

AU +p )| < o@ |zl +klul, 0<k<1 (9.12)

for some known, smooth bounding functioriz) > 0. We wish to choosg so that
the closed loop is asymptotically stable for any admissiliieertainty. The actual
system closed loop equation is

z=(A+EK)Z+E (L +A(zu (2) +ptu,t)) (9.13)
The derivative oV (x) along trajectories of (9.13) is
V =-72'Qz—||Z|?+ 22 PE(u+A4) (9.14)

Notice that the first two terms arise from the nominal systewh the next is due to
the uncertaintyA, and the controly, that is intended to compensate for it. For the
time being, writew” = z' PE and observe that the design objective is achieved if
can be chosen such that|z||? +w' (u+A4) < 0.

In view of (9.12)

W +wWTA <w!u+[[w |4

<w i+ [wl| [0(2) 2] + K] (9.19)

For now, let us proceed in a fashion that leads to a smooth@o®etu = —wk,
wherek (z) > 0 is a scalar valued function not yet defined. Then

— [z +wTp+w'a < - HZIIZZ— Wik + Wil [a(2) 12| + K [l
< — Wk (1 =Kk)+ [lwl| a(2) [|Z]| - [||

Now choose

so that

2 2 2
— A+ Wi+ WA < —|[w|*30%(2) + || o(2)[|Z]| 1]|2]

=~ (31wl 0@ ~II2l)°
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Consequently, a robust control is achieved witly 4(1—14()02. In particular, suppose
Op > 0 is a constant and take
0’(2) 0’ \ v
- =— E'P 9.16
u= (e g g v (o0t g )ETP2 019

These calculations establish the following proposition.

Proposition 9.6.Consider the uncertain system (9.7) and assume it has aatésbl
equilibrium point at the origin. Suppose that a nominal eoht*, given by (9.8), is
associated with the Lyapunov functiori2y = z' Pz, where P satisfies (9.10). Then
the control u= u* 4+ p~1u, where

2
y=— <oo+ 4?1(_2)@) ETPz gy >0 (9.17)

globally stabilizes the origin of (9.7) for all uncertaiat that satisfy (9.12).

Proof: TakingV = z" Pz direct calculation as above leads to
V=-7'Qz— 0 |[ETPZ* - (X|[ETPZ| 0(2) - |12] )

Thus,V < 0 everywhere except at the origir= 0. ]

Remark 9.7As an alternative to the smooth control given above, we cpuddeed,
as in [2], to design a discontinuous control. For examplepsk

_ h@ w
i y— n(z =o(z)|7| (9.18)

A simple computation verifies that this control achieVes 0,

ki
Wp+w'A <29 \w+a(2) |2 wi + 512 |jw|

< n@+o@|d (5.19)

However, there are subtleties with discontinuous conantswe will consider them
fully in the next chapter.

Remark 9.8The second term in the uncertainty bounding condition (9ckh be
interpreted in the following way. Suppose that both the nm@hsystem

x= f(x)+G(x)u
and the actual (perturbed) system

x=(f()+ () + (G(¥) + u(x))u
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are both exactly feedback linearizable. Then, they areetiyely reducible to the
normal forms .

2=AZ2+E[G(2)+p(2)y
and

z=Az+E[a(z) + p(2)u]

The feedback linearizing control for the nominal system s p~1[—a +V]. Using
this control, the perturbed system can be expressed

z=Az+Efa+p(pt[-a+V])]
=Az+E v+ (a—pp~ta+ppv—v)]

In the nominal casg) = p, & = a, the equation reduces to
z=Az+Ev

As a result, we identify

Alzv)=a—ppta+[ppt-1]v
Now choosey = v* + 1, v = Kz so that
AV +p)=a—-ppta+[ppt—1]Kz+ [ppt-1]u
Thus,
18z v + )| < ||a—pp~ta+ [pp~* 1] K| +[[[pA~ —1]|| |
The requirement & k < 1 implies
0<||[op~-1]]| <1

Consequently, there is a specific limit on the tolerableatann of the control gain
matrix.

Example 9.9 (Linearization with Matched Uncertainty)his simple example illus-
trates the effectiveness of robust feedback linearizaGamsider the system:

[iﬂ - [—0-1X)2(2+x§/2} * m {ut s +au)

uncertainty

The parameters < [0,1] anda € [—0.1,0.1] are uncertain. We will design a stabi-
lizing feedback control for the nominal system using feat#tdinearization. Then
we will make it robust via Lyapunov redesign and evaluatégeerance of both con-
trollers when the system is subject to a perturbation.

First, enter the system definition, and design the nomirsksy.
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I n[ 204] :

fo={x2,-0.1 x2 +x1+x1°3/2};
g0= {07 1};

fl1={0, kap x1'3 ;

gl= {07 a};

x = {x1,x2};

I n[ 205] :

alphaO=—-0.1 x2 +x1 +x1°3/2;
alphal= alphaO+kap x1°3;
rho0= 1,

rhol=rhoO+ a;

K={-1-2};

ustar= (1/rho0) (—alphaO+K.x);

Now, turn to the redesign process.

In[206]:= A={{0,1},{-1,-2}};Q =2 IdentityMatrix [2];
P = LyapunovEquation [A,Q];

A bound for the uncertainty needs to be established in ooddefine the robustifying
control componenty, and assemble the contral,

I n[ 207] :

Dell= Chop[Simplify  [alphal- (rhol/rho0) alphal+ (rhol/rho0—1) K.X]]
Del2= (rhol/rho0—1);

3
Qut[207] = kap xB+a (—2 xl—%—l.Q xz)

I n[ 208] :

AA = Chop[Coefficient  [Dell, {x1,x2,x1°3}]];
sig2=

Simplify  [(AA[1]] +AA[3]] x1°2)"2+AA[2]]"2]/.{a— —0.1,kap— 1};
u=—(1+(sig2/4)(1/(1-0.1)) ){0,1}.P.x;
u=Simplify [ustart+ p];
Qut [ 208] = —3.02114 x1-0.616667 x?—0.30625 xP—-2.92114 x2-0.116667 x? x2—
0.30625 xf x2

Now, the equations can be assembled and computations pedofFirst, the re-
designed control is applied to the nominal system.

I n[209] : = ReplacementRules Inner [Rule {x1,x2},{x1[t],x2[t]},List];
Eqns= Chop[MakeODE${x1,x2},f0+f1+ (g0+9g1) u,t]]/.{a— O,kap— O};
InitialConds= {x1[0] == 1.5,x2[0] == 0};
VSsols = NDSolvgJoin [EgnsInitialConds, {x1 [t],x2t]},{t, 0,10},
AccuracyGoal- 2, PrecisionGoat > 1, MaxStepSize- > 10/6000Q
MaxSteps— 60000;
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In[210]: = Plot [Evaluate [{x1[t]} /. VSsolg,
{t,0,10}, PlotRange- > All,AxesLabel— {t,x1}];
Plot [Evaluate [{x2]t]} /. VSsols,
{t,0, 10},PlotRange- > All,AxesLabel— {t,x2}];

X1

14
1.2

0.8
0.6
0.4
0.2

X2

Now apply the control to a perturbed system.

In[211] : = Eqns=
Chop[MakeODE${x1,x2},f0+f1+ (g0+9g1) u,t)]/.{a— —0.1,kap— 1};
InitialConds= {x1[0] == 1.5,x2[0] == 0};
VSsols = NDSolvgJoin [EgnsInitialConds, {x1 [t],x2[t]},{t, 0,10},
AccuracyGoal- 2, PrecisionGoat > 1, MaxStepSize- > 10/6000Q
MaxSteps— 60000;
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In[212]:= Plot [Evaluate [{x1[t]} /. VSsolg,
{t,0,10}, PlotRange- > All,AxesLabel— {t,x1}];
Plot [Evaluate [{x2]t]} /. VSsols,
{t,0, 10},PlotRange- > All,AxesLabel— {t,x2}];

x1

1.4
1.2

0.8
0.6
0.4
0.2

X2

-0.05
-0.1
-0.15
-0.2
-0.25
-0.3

Notice that there is performance degradation but the systemains stable. For com-
parison, let us apply the nominal control to the perturbestiesy.
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In[213]:= Eqgns=
Chop[MakeODE${x1,x2},f0+f1+ (g0+g1) ustart]]/.{a— —0.1, kap— 1};
InitialConds= {x1 [0] == 1.5,x2 [0] == 0};
VSsols = NDSolvdJoin [EgnslnitialConds, {x1 [t],x2t]},{t,0,1.55},
AccuracyGoal- 2, PrecisionGoat > 1, MaxStepSize- > 1.55/6000Q

MaxSteps— 60000;
In[214]:= Plot [Evaluate [{x1[t]} /. VSsolg,
{t,0,1.5},PlotRange- > All,AxesLabel— {t,x1}];
Plot [Evaluate [{x2][t]} /. VSsols,
{t,0, 1.5}, PlotRange- > All,AxesLabel— {t,x2}];
x1
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Clearly, the system is unstable — the feedback linearizorgrol without redesign
can not cope with the perturbation.

9.4 Robust Stabilization via Backstepping

When a system involves nonmatched uncertainty, a backsgeppcedure might be
appropriate. We will describe such an approach to the dedfigrrobust stabilizing
controller for SISO systems that satisfy the triangulacibyditions. Backstepping
will be revisited below for the design of adaptive and valeatiructure controllers.

Suppose that nominal paff,g,h) of the system (9.1) has relative degiree- n
(alternatively,(f,q) is exactly feedback linearizable) around the origin, aret th
the strict triangularity condition applies. Moreover, pope that$ (0,t) = 0 and

[ (x,t)] < I(x)||x|] Vt. It follows from Proposition (9.2) that we may as well be-
gin with the triangular form

X =Xi11+40i(X,...,%,t), 1<i<n-1
Xn = 0(X) + p(X)u+An(X,1)

with detp(x) # 0 at least around the origig(0,t) = 0 and|4;(x,t)| < Gi(X) |||,
for some smooth bounding functiam(x) > 0. An uncertainty vectoA(x,t) that
satisifies these two conditions along with the triangularctire exhibited in (9.20)
will be calledadmissible Therobust stabilization problens to design a state feed-
back control such that the origin= 0 is asymptotically stable for every admissible
uncertainty.

(9.20)

Now, we design the control sequentially. At eachnafteps we design a ‘psuedo-
control’ vi.. At the k! step we consider the system (wi= 0)

ki:Xi+1+Ai(Xl7"'aXiat)7 1§|§k_1
X = Vi + DX, - -, X, 1) (9.21)
Vi = Xk — Vk-1(X, - -+, Xk-1)

and choose a contrej to stabilize the input-output behavior (driyg — 0 for all
initial conditions and all admissible uncertainties). &y, the actual control is
defined byu = p~%(—a +v,). The process proceeds as follows.

1. k=1 At the first step we have

X1 = V1 + A1(xq,t)

" (9.22)

Notice that we can write Equation (9.22)

y1=Vv1+y1d1(ys,t) = fa(y1) (9.23)
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Now, consider the function
Vi =35

and compute it's derivative along trajectories of Equaf®23).
Lt,V1=y1 (va+A41(y1,t))
Chooser; = —kiy1 — y1k1(y1) which yields
Le,Vi = —kay2 — Ke(Y1)Y3 + V141

Now takeki(y1) > %af(xl) for x; # 0. This insures that

L Vi < — (ki — 1)¥] — (V{307 +7)
< —(ka-1)yi- (vig0f - oni + i)
< —(ki—1)yi— (301ly1] — Ial)
<—(ka—1)y2
is negative definite (providdd > 1) so that the origix; = 0 is asymptotically

stable.
2. k=2 Now consider the system
X1 = X2 4 A1(Xg,t)

Xo = Vo + Az(X1,X2,t) (9.24)
Y2 =X — Va(X1)

Consider the coordinate change,x2) — (y1,Y2) and compute

o

3 (et B1(x0,1)) = Vo + Doy, ya.t)
X1

Y2 = Vo + Do(X1, %2, t) —
The differential equations (9.24) in the new coordinates ar

y1 = V1(y1L+ YZ+A1(Y1,'[) .
4 =f 9.25
Yo =V2+ Az(YLYZJ) 2()/1#2) ( )

Notice that the derivative of; along trajectories of Equation (9.25) is
Li,Vi = yi(Vi+Y2+4A1) = Le, Vi +yaye
Define the function
Vo=V + %y%

and compute _
Lt,V2 =Ly, Vi+y1y2+VY2(V2 +4r)
=Ly Vit+ya (y1+v2+4y)

Now, setvy = —y1 — kay2 — y2K2(Y1,Y2) SO that



9.4 Robust Stabilization via Backstepping 291

Lt,Vo = L, Vi — koy3 — YKo (Y1, Y2) + Yadio
< — (ke — 1) y% — koy3 — Y2K2(Y1,Y2) + |Ya| Y2l O2(Y1.Y2)
< — (ki —2)y? — (ko — 1) Y2 — Y3K2(Y1,Y2)
+1Iy2] Y2l G2y, y2) — [Y21?
<~ (k1= 2)y3 (ke —1)Y3 — (3 Iyl Ga(Yo) — | Val])®
<—(ki—2)yi—(k2—1)y5

(9.26)

3. k= 3...nWe continue in the same fashion. Suppose we have complsteds
(i=1,...,n—1). So, we have already defined the new stgfes.,y; and psuedo
controlsvy,...,Vv; and the functions

Vi=Vji1+3y;, 1<j<i

Now, we wish to compute; ;. Definey;, 1 = X1 — Vi, and organize the equa-
tions _
Yi =Vi(Y) +Ypa+A(Y ), 1< <i
Yirr = Vi +A(Yii1,t)

As above, we have

= fi1 (9.27)

Li_,Vi =LgVi+ViVita
so that _
Lfi+1\/i+1 =LyVi —VYin (yi +Vi+1+Ai+l(Yi+lat))

Chooseri;1 = —Yi — kit 1¥i+1— Yi+1Kir1 andkiy1(Yip1) > 362 1(Yii1) to obtain

i+1 . .
Lt Viga <— Z (kj—(i+2— J))yjz—inHKiJrl

Vil [Yigall Grea(irn) = ¥ ?
. . — 2
(kj—(i+2- J))yjz_ (3 1¥ic1l Gira(Yipr) — [Yisall)

i
< —

IN

+1
> (ki

=1

i+1

-3 k=420

(9.28)
These calculations establish the following proposition.

Proposition 9.10 (Smooth Robust Stabilization) Consider the system (9.1) and
suppose

1. the nominal systeiff,g) is exactly feedback linearizable,

2. the strict trangularity condition is true,

3. the uncertainty satisfies the conditiogg0,t) = 0 and|¢ (x,t)| < &(X) ||x|| Wt.

Then there exists a smooth state feedback controller swaththk origin, x= 0, is
asymptotically stable for all admissible uncertaintis t).
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Proof: Apply the nominal system normal form transformation to tbeial uncertain
system and follow the construction of Equations (9.20)ulgin(9.28) to obtain

n
Lfnvngz j—n—1+j)y}

Notice that we need to chookg>n+1—j,j=1,...,n. ]

9.5 Adaptive Control of Linearizable Systems

The essential idea is easy to develop. Consider a paramegtendent system re-
duced to local regular form:

E=F(§,29) (9.29)
z=Az+E[a(x,3)+ p(x,9)y| (9.30)
y=Cz (9.31)

HereA E,C are of the special Brunovsky form as indicated in Sectiora@dinde-
pendent of all system parameters. Now, suppose that theotons different from
the ideal decoupling contrali = p~{—a + v}, because it is based on current esti-
mates of the uncertain parameters:

=p(x8) H—a(x3)+v} (9.32)

equivalently, . A
a(x,3)+p(x,Fu=v

Then we can compute

z=Az+E[a(x,3)+ p(x,3)u] (9.33)
z=Az+E[v+A4] (9.34)

where A .
A=[a(x,3)+p(x3)u —[a(x,3)+p(x,I)y| (9.35)

Assumption 1:

A(&,2,9,38,u) is linear in the parameter estimation error, i.e.,

AE,29,9,u)=¥(E29,u)(8—-9) (9.36)

Thus, we have the _
§=F(&,29) (9.37)
7=AzZ+EY(9 -9) (9.38)

We are in a position to employ the standard Lyapunov argutoethtrive an update
law for the parameter estimate.
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Proposition 9.11.Asymptotic output stabilization, 0, is achieved with the pa-
rameter estimator .
3 =QwWT(£,20,u)E"Pz

where P is a symmetric, positive definite solution of
(A+EK)TP+P(A+EK)=—I

and Q is any symmetric positive definite matrix.

Proof: Choose a candidate Lyapunov function

V=2Pz+(8-9)TQ 8 -9
Differentiate with respect to time to obtain

V=2Pz-20TQ 9 -9)

= 2Z'P(AZ+EW(I —9)) - 25TQ 1(9 - I)

= 2Z'PAz+2(Z’PEY - 3TQ 1)(8 — I)

=T (PA+AIP)z+2(Z PEY - 3TQ 1) (9 - I)
The assumptions reduce thisto

V=-71z
[ |

There are many variants of this basic construction. One imefierence adaptive
control configuration is illustrated in Figure (9.1). Theykgoint is that the input—

output linearizing and decoupling control absorbs all &f plarameter dependencies
so that only this part of the control law has to be adjusted.

Remark 9.12The regresso¥ (&, z, é,u) is particularly easy to compute & (x,3)
andp(x, 3 )u are linear in the uncertain parameters:

a(x,3)=ap(x)+ a(x)d

p(X,S)U = pO(Xa U) +ﬁ(X, U)S
Then

A={G(X)+pxu}@d-9),
and
W= {&(x) —|—[3(X, U)}

In the implementation of the controller illustrated in Figy9.1), it is necessary to
measure or estimate botlandz Notice thatz can not be computed from the normal
coordinate relationg(x, 3 ) because they now depend on the unknown pararfieter
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reference Zn
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Update
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a(x,z§)
A

parameter
free
compensator

Fig. 9.1: A model reference, adaptive tracking control auntation based on decoupling con-
trol.

Example 9.13 (Adaptive RegulatoiVe will illustrate adaptive regulation using the
following example adapted from Isidori [46]:

X1 0 ex

Xo| = | xa+x5 | +|e2|u

X3 9X1 — X2 0
y=2x3

We need to specify the desired closed loop pole locations.nécessary to do this
in groups according to the vector relative degree. So wedinstpute the vector rel-
ative degree and then use the functixstaptiveRegulator . Here are the com-
putations.

In[215]: = var32 = {x1,x2,x3};
f32:={0, x1 + x2°2, Oxx1 — x2};
932 = {Exp[x2], Exp[x2],0};
h32 = {x3};
ro = VectorRelativeOrder [f32,932 h32 var3]
Qut[215] = {2}
In[216]: = Poles={{-2,-2}};
{Parameter$arameterEstimatddpdateLawControl} =
AdaptiveRegulator [f32,932 h32 var32t,{6},{},Pole$

Computing Decoupling Matrix
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Computing linearizing/decoupling control

Finished Linearizing Control
NewParameters: {6}

Finished Stabilizing Control
Finished Stabilizing Control
Finished regressor computation
Finished Lyapunov Equation

Finished parameter update law 2 5
_ 125 AdaptGainl z1 (x1+x2°—4 z1-4 z2
Qut[216] = {{6},{thetahat},{ ~ % o7 thetahall +
15625 AdaptGainl ¥ (x1+x22—4 z1-4 z2) z2
—eX24+ <2 thetahatl b
x1+x22 -4 z1-4 72
{ —eX2 4 ex2 thetahatl}}

While this approach to adaptive control has limitationsjoes have its place in
applications. See, for example, [8, 7].

We can provide a modest but useful generalization of the @besult. Once again,
consider a parameter dependent system reduced to locérégun:

E=F(&29)
z =Az+Ela(x,3)+p(X,9)p(u,3)] (9.39)
y =Cz

Here matriceg\, E,C are of the special Brunovsky form and independent of all sys-
tem parametergy : R"™P — R™, p: R™P — R™Mandg: R™P — RMare piecewise
smooth inx and continuous in the parametgy for each admissiblé, and the map

@ has a piecewise smooth inverge! (-,3). The inclusion of the map allows us

to treat systems with certain types of control saturati@tktash and similar input
nonlinearities (see [6]). If the parameiiis known, it is possible to implement the
ideal decoupling control law

=9 t(p t(x9)(—ax9)+v),9)

to obtainz = Az+ Ev. If the zero dynamicsf =F(&,0,39) are stable the control
renders the loop stable. On the other hand, if the paranfeiguncertain, then we
can implement a control based on estimates of the parameter:

u=9 (p 1% 39) (~a(&9)+v),9) (9.40)

equivalentlyu satisfies

a (%) +p(R9)pud)=v
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In the present case we have
z=Az+E[V+A]

where

A=[a(x9)+px9)eud)] - [a% ) +p(%I)pu,d)] (9.41)

with x=x(&,z,3) andX= x (E,z, 5). The following basic assumption replaces As-
sumption 1.

Assumption 2: The control erroA (E,Z,B,é,u) has the form
A (E,Z,S,SA,U) = W(E,Z,SA,U) (19 _'9) +¢0(E,Z,19,1§,U)

wheregg is a bounded, piecewise smooth function.

Assume, further, that upper and lower bounds,, , ... respectively, are known
for each uncertain parametdy. In conjunction with the control (9.40), we imple-
ment a parameter update rule:

§=QuT (£.2z9,u)ETPz— Q0 (§) (9.42)
whereQ > 0 is a (matrix) design parametér satisfies the Lyapunov equation
(A+EK)P+P(A+EK)=-Q, Q>0 (9.43)

and the functioro (&) is defined by

- - aqT

o(9)= [01(19),...,0p(19)] (9.44)
. Ki 7§i >A19imax

G (19) = 0 ’SiminAS H <Tipax Ki>0, i=1---,p (9.45)
—Ki 9 < B,

Remark 9.14 (Implementationih order to implement the control (9.40) and (9.42),
we require direct measurement or estimates of the systeeistaither the original
coordinates< or the normal form coordinatgg, z). In many practical case€ ,z)

are the natural coordinates for measurement. In fact, ibisincommon with elec-
tromechanical systems for the components of z to be a sub#at original states

x. In general if the measurements dég z), then when computing the regressor it
is necessary to use the state transformati@nx”(é,z,ﬁ) in p anda. On the other
hand, ifx is the natural measurement andeeds to be computed from the parameter
dependent state transformation, then it is necessary tepdbquite differently, i.e.
via backstepping as described below.

The closed loop system that obtains when the control (9.4®) wpdate law (9.42)
is applied to the system (9.39) enjoys three basic propertie



9.5 Adaptive Control of Linearizable Systems 297

1. the parameter trajecto@/(t) ,t > 0is bounded,

2. the partial state trajectom(t),t > 0, is bounded and enters a neighborhood of
the origin whose size is proportional to the boundfgn

3. under mild additional conditiort) ,y(t) — 0 ast — .

Proposition 9.15 (Bounded states and parameter estimategjonsider the closed
loop system composed of the plant (9.39) and control ((9@5). Suppose that As-
sumption 2 is satisfied. Then the partial state trajectqty z > 0 and the parameter
estimated (t),t > 0 are bounded. Furthermore, the state trajectoft) 2ventually

enters the disk )
’Ql/zz_rH < |r||2}

D:{ze R

wherer = (Q Y2PEgy) .

Proof: : Choose a candidate Lyapunov function

V=2Pz+(8-9)Q19-9) (9.46)

and compute

v =—||Q2- Q*1/2PE¢0H2+ HQ*l/ZPE¢0H2+2 <zTPEw _5 01 (-9
(9.47)
V=— HQl/Zz_Qfl/ZPE¢OHZ+ HQ*/ZPE%HZ_ o(8)9—-F)  (9.48)

which is clearly negative provided
Q22— Q*1/2PE¢0H2 > HQ*/ZPE%HZ (9.49)

For each fixedpy this condition defines a circular disk R (in the coordinates

QY27) of radiusHQ*l/ZPEdJOH2 and centered &) 1/2PE¢,. Since¢0 is bounded
there exists a largest disk (of maximum radius) that costalhothers. This is the
disk D. D lifts to a cylinder in the state spacB(P). V < 0 outside of this cylinder.
The minimum value of (V = 0) occurs on its boundary. Hence all trajectories must
reach a neighborhood of the cylinder in finite time. Siagéis continuous fot > 0,

it is bounded. In view of (9.48) we have

’ —o(8)(9 -9 (9.50)

max

V <||Q ¥2PEgo)

Thus,V < 0 outside of the rectangular domain

Qfl/ZPE(p 2 Qfl/ZPE(p 2
|:19imin_ ” e 0||max’19imax+ ” — OHmax

], i=1...,p
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Sothatd (t), t > 0 is bounded. [ |

Notice that we would like to insure tha#k(t) begins and remains in the parameter
cube A
Cparam: {19 € Rp' 19imin <9< 19imax’i =1..., p}

Since the estimate can always be initialized within the cithis desired to insure
that trajectories beginning in the cube can not leave its Thbften done by simple
projection. However, by choosing eaghsufficiently large we can guarantee that the
parameter will remain withiparam S0 long as the state trajectory remains within any
prespecified bound.

Define the sets

sext:{<z,z9>eRf+p

|0z~ o een

S — {(2,19) CcRHP HQl/zz_Qfl/sz%HZ - HQl/ZPE%Hz}

Notice thatSy; and S; share a common boundary that we dend$ = 0S.y :=
0Snt- dSincludes points that satisfy

¥ e o e

as well as points at whiclyg is undefined. Observe that all points witk- 0 belong
to 0S. With this notation we can state the second key result:

Proposition 9.16 (Output convergence)Suppose Assumption 2 is satisfied and, in
addition: (i) the only invariant set of the closed loop systeontained irdS corre-
sponds to z= 0, (i) all trajectories beginning in & with initial estimates in Garam
remain in GaramWhile they are in &. Then all trajectories of the closed loop system
beginning in Garam Satisfy £t) — 0 (hence yt) — 0) ast— co.

Proof: Once again consider the Lyapunov function
V=2Pz+(8-9)Q19-9)

Along closed loop trajectories we have
V= |- Q’l/ZPE¢oH2+ HQ*/ZPE%HZ— o($)(9 - 9)

Thus,V < 0 onSx andV > 0 along all trajectories iy that begin inCparam Fur-

thermore,( S)in; V(z,9) occurs ordSso that trajectories beginning &y eventu-
Z,U ) Eext

ally reachdS. Similarly, for each fixedd, sayé =9, sup V(z,é*) occurs on
(Zaé*)ESm

0S. Consequently, trajectories beginningSa with initial estimates irCparam also

reachdS. By assumption, the only invariant set &8 corresponds ta = 0, so all

trajectories beginning i@paramtend toz = 0. ]
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Example 9.17 (Example (9.9) Revisiteldgt us reconsider the uncertain system of
example (9.9). Previously we designed a controller usirgLliyapunov redesign
approach. For comparison, we now design an adaptive ctertrirst, the data:

In[217] : = f0={x2,-0.1 x2 +x1+x1°3/2};90={0,1};
fl={0, kap x1"3 ;(x 0< kap< 1x)
gl={0,a};(x —0.1<a<0.1x)

x = {x1,x2};
f=f0+f1;9=9g0+gl;h={x1};

Now, design the adaptive regulator.
In[218]: = Poles={{-1,-2}};

{Parameter®arameterEstimatddpdateLawControl} =
AdaptiveRegulator [f,g,h,x,t,{a kap}, {0.000020.0005}, Poles;

Computing Decoupling Matrix
Computing linearizing/decoupling control

Finished Linearizing Control
NewParameters: {a kap}

Finished Stabilizing Control
Finished regressor computation
Finished Lyapunov Equation

Finished parameter update law

We replace occurrences of transfornzadariables with the measuredrariables (in
this example, the transformation is independent of the taiceparameters) and add
the parameter range limit switch to the update law.

In[219]: = u=Control/.{z1— x1,z2— x2}

ULaw = (UpdateLaw.{z1— x1,z2 — x2})—
Sig [{thetahatlthetahat2,{10,1},{-0.1,0},{0.1,1}};

For a baseline, simulate with perfectly known parameters.

I n[ 220] : = Egns= Chop[MakeODE${x1,x2,thetahat]lthetahat2,
Join [f+g u[[1]],ULaw],t]]/.{a— O,kap— 0};
InitialConds=
{x1[0] == 1.5,x2[0] == 0,thetahatl [0] == 0,thetahat2 [0] == 0};
VSsols = NDSolvgJoin [EgnsInitialConds, {x1 [t],x2[t],
thetahatl [t],thetahat2 []},{t,0,10}, AccuracyGoal 2,
PrecisionGoal > 1, MaxStepSize- > 10/60000 MaxSteps— 60000;
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In[221]:= Plot [Evaluate [{x1[t]} /. VSsolg,
{t,0,10}, PlotRange- > All,AxesLabel— {t,x1}];
Plot [Evaluate [{x2]t]} /. VSsols,
{t,0, 10},PlotRange- > All,AxesLabel— {t,x2}];

X1

14
1.2

0.8
0.6
0.4
0.2

X2

-0.2

-0.4

Now, suppose that the parameters are unknown.
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I n[222] : = Eqgns= Chop[MakeODES${x1,x2, thetahat]thetahat2,
Join [f+g u[[1]],ULaw],t]]/.{a— —0.1,kap— 1};
InitialConds=
{x1]0] == 1.5,x2[0] == 0,thetahatl [0] == 0,thetahat2 [0] == 0};
VSsols = NDSolvgJoin [EgnsInitialConds, {x1 [t],x2t],
thetahatl [t],thetahat2 [t]},{t,0,10}, AccuracyGoahl 2,
PrecisionGoal > 1, MaxStepSize- > 10/6000Q MaxSteps— 60000;
In[223]:= Plot [Evaluate [{x1[t]} /. VSsols,
{t,0,10}, PlotRange- > All,AxesLabel— {t,x1}];
Plot [Evaluate [{x2]t]} /. VSsols,
{t,0, 10},PlotRange- > All,AxesLabel— {t,x2}];
x1
15
1.25
1
0.75
0.5
0.25
t
2 4 6 8 10
X2
t
2 4 8 10
-0.2
-0.4
-0.6
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These results should be compared with trajectories in ela(@®).

The following figures illustrate the parameter estimatestelthat there is no guaran-
tee that the estimates will converge to the true parameheesalt is only assured that

ol

-0.02

-0.04

-0.06

-0.08

10

the loop is stable and that the statés converge to zero.
02

0.8

0.6

0.4

0.2

9.6 Adaptive Control via Backstepping

The adaptive control controllers discussed above reqaitess to the full statex,
and the transformed partial stare Also, there is a constraint imposed on the uncer-
tainty structure imposed by equation (9.36) - Assumptiothhat cannot be validated

a priori. Another approach to adaptive control design has beeniteddn [51] by
Kanellakopolis, Kokotovic and Morse that requires acceadyg to the system state,
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X, and characterizes the uncertainty constraint directtgims of the way in which
the parameters appear in the differential equations.

It is assumed that the single-input, feedback linearizaytem is of the form

{=1(,0)+9(¢,6)u (9.51)

where{ € R"is the statey € Ris the control, and € RP is the uncertain parameter
vector. Moreoverf, andg are linear in the parameters:

p p
f(¢,0) = fo(()+_;9| fi({), 9(,8) = 90(()+_;69i(5) (9.52)

andf;({),ai({),0 <i < p are smooth vector fields in a neighborhood of the origin
¢ =0 with f;(0) = 0,0 <i < p andgp(0) # 0. A fundamental assumption is that
there exists a parameter-independent diffeomorphkismp({) that transforms the
system intgparametric-pure-feedback form

% =%11+ 0" V(X .., %1), 1<i<n-1
X0 = Yo(X) + 67 ya(X) + [Bo(X) + 67 B(X)]u (9.53)

with
%(0)=0, 1<i<n and (0)#0 (9.54)

Necessary and sufficient conditions for such a transfoonare given in the fol-
lowing proposition from [51, 56].

Proposition 9.18.A diffeomorphism x= ¢({) with ¢(0) = 0, transforming (9.51)
and (9.52) into (9.53) and (9.54) exists in a neighborhogd=BJ of the origin if
and only if the following conditions are satisfied in U.

i) Feedback Linearization Condition: The Distributions

% = spar{go,ads,go, ... ,ad }
are involutive and of constant rank-i1.

if) Parametric-Pure-Feedback Condition:
g €%
X, fi] €441,¥X €94,0<j<n-31<i<p
Conditions i) and ii) can be restated in more compact form:

i) %, isinvolutive, and4, 1 has constant rank

i) [ad) go, fi] € 441,0< j<n-3,1<i<p
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A special case of the parametric-pure-feedback form is theafled parametric-
strict-feedbackorm. The system (9.51) and (9.52) is of the parametrictstaedback
type if it is diffeomorphically equivalent to:

X =%s1+ 0T y(xe,...,%), 1<i<n-1

% = ¥o(X) + 67 ya(X) + Bo(X)u (9.55)

Necessary and sufficient conditions for the existence ofdhaired diffeomorphism
are given by the following proposition [51].

Proposition 9.19.Suppose there exists a global diffeomorphisms »({) with
@(0) = 0, that transforms the (nominal) system

¢ ="fo({)+9({)u
into
Xi=X41, 1<i<n-1
Xn = Y(X) + Bo(X)u

with yp(0) = 0 and fy(X) # 0,¥x € R". Then the system (9.51) and (9.52) is globally
diffeomorphically equivalent to (9.55) if and only if théléeving conditions hold:

(Hgi=0
(i) X, fi] €941,¥X€¥%;,0< ) <n-21<i<p

The backstepping procedure for adaptive control desigivengd51, 56]. We wiill
summarize the constructions for the simpler case of paraysitict-feedback form
in order to explain the basic ideas. More details can be oétairom [51, 56] and
their references. Suppose the system has been reduce@ingiec-strict-feedback
form, (9.55). Then the backstepping procedure sequengetherates:

(i) a (parameter-dependent) state transformation to nerdotates, z= z(x, é),

(i) afeedback control law = u(x, 8),

(iii) a parameter update la@ — 1(x,6)

When the state transformation and feedback control ardeshphe closed loop
equations in the-coordinates have the form

z= [diag(—cC1,...,—Cn) + @(2,0)] 2+ W(2,6)6

where®(z ) is an antisymmetric matrix, i.e®T(z2,6) = —®(z6), andd is the
parameter estimation errdt,= 6 — 6. Stability can be established via standard Lya-
punov arguments. Choose a candidate Lyapunov functioreifotim
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V(z0)+ %sz: 67Q6, Q"=Q>0
Differentiate and use the closed loop equations to obtain
V =2 [diag—c1,...,~Cn) + P(z,8)] 2+ (ZTW+ éTQ) 6
Because of asymmetrg| @(z, é)z: 0, so we can choose the update law
b=-QlyTz
to obtain

V = Z'diag—c,...,—Cn)z
Providedc > 0,i = 1,...,n, this establishes the uniform stability of the equilibrium
pointz= 0,08 = 6, which, corresponds to= 0. Moreover, from the LaSalle invari-
ance theorem we can obtain

lim z(t) = 0, lim 2(t) = 0, lim 6 = 0
t—oo t—oo t—o0

The update law is implemented in the form

0=1(x,0)=-Q W (zx 6),6)z(x,0)

Remark 9.20. 1. Computations for the parametric-pure-form of the equnestiare
somewhat more complicated but lead to similar results.

2. The controller consists of a feedback law

U= 1 [—¥(X) + an(z, ..., Zn, é)}

and parameter estimator equations

0= Tn(zla"'vznaé)

whereap, T, are the last of recursively computed sequences as definda in t
above references. In actual computation, they are obtasnedessively, directly
as functions ok (rather tharg) which is the way in which the controller is to be
implemented. This is easier, and avoids the need to investtte transformation
equationg = z(X).

ProPacimplements three functions that assist in the design of&taplping adaptive
controllers: AdaptiveBackstepRegulator , PSFFCond, and PSFFSolve .
The following example provides an illustration of their use
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Example 9.21 (Backstepping Adaptive Regulator).

Consider the following single input example. First we pud gystem in parametric
strict feedback form usinBSFFSolve . Then, we design an adaptive regulator. We
only display the control and update law.

In[224]: = var30= {x1,x2};
f30= {0 x13+ Sin[x2],x2};
g30={0,1};

I n[225]: = PSFFSolve [f30,930 var3Q{6}]

LinearizingOutputSolutions{x1}
PSFFTransformationz T({x1,x2})

z1=x1
z2=Sin[x2]
Qut [ 225] = {{x1,Sinx2]},{6 z13+2z2,x2 Codx2]},{0,Cogx2]}}
I n[226] : = {control updatezcoord$ = AdaptiveBackstepRegulator [f30,930,
var3Q {6}, {{AdGain}},{c1,c2 c3}|;
In[227]: = control
Qut[227] = —xl—cl c2 x1-cl thetahatl xd—c2 thetahatl xd—
3 thetahati x1° — AdGain x1’ — AdGain c® x1’—
4 AdGain cl thetahatl X1
3 AdGain thetahafl x1'*—x2—cl x2—c2 x2—3 thetahatl x4 x2—
AdGain c1 xf x2—3 AdGain thetahatl L x2
In[228] : = update

Qut[228] = {AdGain xB (x1+(c1+3 thetahatl x4) (c1 xl+thetahatl x3+x2))}

9.7 Adaptive Tracking via Dynamic Inversion

ProPaccontains the functioAdaptiveTracking that produces an adaptive ver-
sion of the tracking controller defined by (7.86), (7.87) §A®0) [9]. In this case,
the system is assumed to depend on an uncertain parameti@r&ed hen the con-
trol (7.86) and (7.87) also depends explicitly®nThis control is implemented with
an estimate of the parameter and a parameter update lawfiorthe

u=D}(x.9) {—cﬁ(x,a) +M(%,9)50 +N(x, 9)y™ +v(t)} (9.56)

§ = —0 WRe (9.57)
where

e:=ler,..€ 0,6 T (9.58)
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Computing the Regressor

Recall that application of the exact control (7.86) redubesnput-output dynamics
to (7.89). When the ‘inexact’ control is applied the inputtdynamics can always
be expressed in the form

yW = v+ A(x9) (9.59)

Our goal is to computa (x, 3 ). Notice that combining (7.69) and (7.87) and making
the parameter dependence explicit, we have

N(x, 8)y™W +M(x,9)fo = Cg(x, ) +Dg(x,9)u (9.60)
In view of (9.58), the control satisfies
N(X, 3 )V+M(x,8)Jo = Ca(x,§) +Dg(x,§)u (9.61)

Now we make the following assumption:
Assumption 3:

The matrice€(x,9),Dg(x, &) andCg(x,d) are linear in the uncertain parameters.

This allows us to write

Cp(x,9) = Cpgy(x) +C5(x)®
Dg(x,9)u = Dg,(x,u) +Dg(x,u)d (9.62)
M(X7 19))70 = Mo(X, )70) + M(X7 )70)19 '

N(X,ﬂ)y(n) = NO(Xay(n)) + N(va(n))g

Subtracting (9.60) from (9.61) and using (9.62) yields

(9.63)

The functionAdaptiveTracking performs two key operations in assembling the
regressoWV. First it sorts through the matric€y, Dg, M andN to identify groups

of physical parameters that can be combined to form new peteamthat fit the
linearity assumption. One of the outputsAdaptiveTracking is a list of these
parameter transformation rules. Then the matrices arengbgubas in (9.62) in terms
of the new parameters so th&tcan be assembled as in (9.63).
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Example 9.22 (Adaptive Tracking Controllefhe following example is the same as
Example 9.13 (see also [9]). After defining the system equative define a refer-
ence signal, then specify the desired closed loop poleitwtaand, finally, compute
the control. Because of the length of the output, we give tmdycontrol and update
law.

In[229]: = RefSig=
Table [ToExpression [yd <> ToString [i1] <> [t]],{i1,1,Length [h32}];
Poles= {{-2,-2}};
{Parameter$arameterEstimatddpdateLaw
Control DecoupMatrix DerivativeOrder$ = AdaptiveTracking
f32, Transpose [{g32}],h32 var32t,{60},RefSig{},Poles;
Control
(XL x22 44 (—x3+ydl[t])+4 (—yL/'[t] +yd1/[t]) +yd1”[]
Qut[229]= { —e2 1 2 thetahatl }
I n[230]: = UpdateLaw
Qut[230] = {— —e><2+e><21 (125 AdaptGainl & (-x3+yd1[d) (x1+

x22 +4 (—x3+ydi[t)+4 (—y1'[]+yd1'[t]))+yd1"[t])) —

—e><2+e><21 thetahat£15625 AdaptGainl ¥ (—y1'[f]+yd1/[t]) (xX1+x2%+4 (—x3+
yd1[t]) +

4 (~y1'[+yd1'[t) +yd1"[)) }

9.8 Problems

Problem 9.23 (DC drive motor). A separately excited dc motor is decscribed by
the differential equations

dw .
J— = —Bw+Kifia—T,
dt W+ |f|a L
dia . .
Laa = —Ra|a— K|fw+ea

dis .
Li— =—Rsit +e
T flf +€f
where the variables and parameters are defined in Table@®ri3ider the control
inputs to be the two applied voltages, es. The goal is to regulate speed to a desired
value wp and to minimize electrical losseR4i2 + R¢i?). Thus, we formulate two
outputs

Yi=W— 0y
Y2 = Raia — Ryi¢
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Symbol| Definition Parameter Value

w |motor speed

ia armature current

it [field current
e, |armature applied voltage
e; |[field applied voltage

J  |motor inertia 0.1kg—n?

B |motor damping 0.01Kg—nm? —sec?
K |electromechanical transducti@30nm/a®

T. [|load torque 0to 15nm

La |armature inductance 1.0H

L¢ |field inductance 10.0H

Ry |armature resistance 10.0Q

R; [field resistance 50.0Q

Table 9.1:.DC motor nomenclature

(a) Design a feedback linearizing adaptive controllerrtgkihe load torque as an
uncertain parameter. Assume thatis a specified constant.

(b) Assume that the load torqu@, can be measured or accurately estimated, but
that the motor friction coefficient is uncertain withe (0,0.05). Design a feed-
back linearizing adaptive controller. Via simulation caang the adaptive and
nonadaptivel = 0.01) performance.

Problem 9.24 (Load with backlash and friction). An inertial load with backlash
and friction is illustrated in Figure (9.2). The drive motamgle 6y, is cosidered as
the control input to a drive shaft/gear with backlash modelsing the dead zone
function:

6—-¢ 0O>¢
D(6) = 0 |0 <€
0+e 6<-—¢

The shaft has stiffneds and the load has inertihand friction f (w) = bsincw. d(t)
is an external disturbance. Thus, the equations of motien ar

6=w

Joo=—f(w)+KD(u—6)+d(t)

(a) Assumee € [0,0.5] andb € [0,1] are uncertain parameters within the given
bounds andi(t) = 0. Design an adaptive feedback linearizing control. Hiakél
the feedback linearizing and stabilizing control to be & thrm

(=D (—(ki—1)6 — kow+ f(w))
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Inertial Load

d(t)

Shaft/Gear

Fig. 9.2: A simplified inertial load with backlash and frimti.

(b) TakeJ = 1 andK = 1 and compute the closed loop system response.
(c) Can Lyapunov redesign as described in this chapter lkfas¢his problem?

(d) Suppose the disturbandé) = kw(t), wherek € [0, 1] is an uncertain parameter
with known bounds and(t) = 1+ 4sin27t). Repeat (a) and (b).
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Variable Structure Control

10.1 Introduction

Variable structure control systems are switching corgrslthat exhibit certain de-
sirable robustness properties. Consider a nonlinear digadeystem of the form

x = f(xu) (10.1)

wherex € R",u € R™andf is a smooth function af andu. We will focus on switch-
ing control systems in which the control functiapgre discontinuous across smooth
surfaces(x) =0, i.e

ui(x):{ﬂrggz :Eﬁgzg i=1,..m (10.2)

and the control functions", u;” are smooth functions of.

The design of switching control systems of the type (1019,%) often focuses on
the deliberate introduction of sliding modes [104][1].HE&te exists an open subman-
ifold, Ms, of any intersection of discontinuity surfacegx) =0fori=1,...,p<m,
such thats§ < 0 in the neighborhood of almost every pointhf, then it must be
true that a trajectory once enterilfy remains in it until a boundary &fls is reached.
Ms is called asliding manifoldand the motion irMs is called asliding mode Since
the control is not defined on the discontinuity surfacesstiting dynamics are not
characterized by equations (10.1) and (10.2). Howevelingimode dynamics may
often be determined by imposing the constrax) = 0 on the motion defined by
the differential equation (10.1). Under appropriate ainstances this is sufficient to
define an ‘effective’ contralieq, called theequivalent contrglwhich obtains for mo-
tion constrained to lie iMs. If this control is smooth and unique, then the sliding
behavior is well defined.

Variable structure control system design entails spetificaf the switching func-
tionss (x) and the control functions;" (x) andu;” (x). As we will see, the basis for
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design follows from the observations that the sliding mogeaginics depend on the
geometry ofMs, that is, on the switching functiorss(x), and that sliding can be
induced on a desired manifoMs by designing the control function$t(x) to guar-
antee thalVig is attracting. Thus, control system design is a two step gesicl)
design of the ‘sliding mode’ dynamics by the choice of swiitchsurfaces, and 2)
design of the ‘reaching’ dynamics by the specification ofdbetrol functions.

10.2 Basic Properties of Discontinuous Systems

Equation (10.1) when combined with control (10.2) is a splezase of the general
class of discontinuous dynamical systems

x=F(x1t) (10.3)

where for each fixet] F (x,t) is smooth C¥, k > 0) onR" except orm codimension-

one surfaces (codimension-one regular submanifold?"pfdefined bys (x) = 0,
i=1,...,m onwhichF(xt) is not defined. Ordinarily, a solution to (10.3) is a curve
X(t) C R" that has the property thaix/dt = F(x(t),t) for eacht € R. Such a test,
however, would be impossible to apply if the prospectivaisoh contains points

on the discontinuity surfaces. Since the set of points faclvk (x,t) is not defined

has measure zero R, one might simply require that the integral curve propery b
satisfied only wher& (x,t) is defined. This is clearly inadequate because segments
of trajectories that lie in a discontinuity surface woulddgirely arbitrary. Filippov

[26] proposed a satisfactory definition of solutions to 80.

Definition 10.1. A curve Xt) C R", t € [to,t1],t1 > 1o, is said to be a solution of (10.3)
on [to,t1] if it is absolutely continuous ofty, ;] and for each te [tg, ;]

dxv) F(X(t),t) := () conVF (S(8,x(t)) — A(8,X(t)),t) (10.4)

t 5>0

where $9,X) is the open sphere centered at x and of radug\ (,x) is the subset
of measure zero in($,x) for which F is not defined, andonv~(U) denotes the
convex closure of the set of vectd¢is(U)}.

Remark 10.2 (Remark on notatioff)xis a pointinR" thenS(d,x) :={y € R"||ly—X|| < 6} }.
If U is a set contained iR" then

S(6,U) = ) S(3,%)

xeU

We call§(4,U) a d-vicinity of U.
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If x does not lie on a discontinuity surface, then theFsg¢t) = {F(x,t)}, so that
the original differential equation must be satisfied at tegpoints. However, this
definition does help characterize solutions that lie in@igimuity surfaces. Suppose
a solutionx(t) C R, t € [to,t1], t1 > to, lies entirely in the intersection of some set of
p discontinuity surfaces that is a regular embedded subwldrof R" of dimension
n— p, which we designat®/s. For eacht* € [to,t1], X(t*) must belong to the set
F (x(t*),t*). In addition x(t*) must lie in the tangent spacelt atx(t*), i.e.,X(t*) €
Tx¢+)Ms. In many important cases, these two conditions uniquelydablutions that
contain segments that lie Ms.

When we of speak of solutions or, equivalently, trajectoakdiscontinuous systems
we shall mean solutions in the sense of Filippov. One impbdtansequence of the
definition is an extension of Lyapunov’s direct stabilityadysis to discontinuous
systems [59].

Lemma 10.3.Suppose that VR" — R is a C function. Then:

1. the time derivative of {&) along trajectories of (10.3) satisfies the set inclusion

V(X(t)) € {‘2—\;5\ e F”(x(t),t)} (10.5)

2.ifV < —p <0 (> p > 0) atall points in an open set P R" except on a set
A C P3 of measure zero wherg¥t) is not defined, thew < —p <0 (> p > 0),
p < p, at all points of P.

3.ifV < —p|s(x)||, p > 0, at all points in an open R~ R" exceptona set C P
of measure zero where(k t) is not defined, thed < —p||s(x)|| at all points of
P.

Proof: The first conclusion (10.5) follows directly from the Filipp definition of a
trajectory.

To prove the second, first note that at regular points theusiach reduces to the
usualV (x) = [dV/dx] F (x,t). Consider the negative definite case. The assumption of
definiteness implies thadV/dx| F (x,t) < —p at all regular pointx € P. Now take

any x* € A. We need only show thgdV (x*)/dx] & < —p for each& € F(x",t).
Consider a spher§(e,x*) wheree > 0 is chosen arbitrarily small and so that
the sphere is contained iR. By assumption[dV/dX]F(x,t) < —p at all regu-

lar points inS(e,x*). SinceV is C!, we can choose sufficiently small so that
[0V (x*)/0x] & < —p < 0 for any specifiep < p and all regulax in S(g,x*). By

its definition,F (x*,t) C F(S(g,x*) — A,t). The conclusion follows.

To prove the third conclusion, consider a poihtn P. By assumption, the condition
V < —p||s(x)|| holds at all regular points. Suppose théatis not regular, then the
condition holds at almost all points in a sufficiently smadlighborhoodS(g,x*)
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of x*. Now, the smoothness & 9ands implies the approximationgV (x)/dx =
OV (x*)[0x+O(g) and||s(x)|| = ||s(x*)|| + O(e) for all x € S(g,x*). Thus we have at
regularx € S(g,x")

oV (x*)
Jx

F(xt) < —plls(x")[[+O(e)

Once again, Sincé (x*,t) C F(S(g,x*) — A, t), it follows that

oV (x*)
ox

The conclusion follows in the limig — 0. [ |

&< —p|ls(x*)||+O(g),VE € F(x*,1)

In applicationsy is often relatively easy to determine at all points in a gidemain
other than those on the surfaces of discontinuity. The Bggmce of the lemma is
that it makes it unnecessary to actually comp%(ué*,t) in order to determine value
of V at those points.

Definition 10.4. Suppose M= {x € R"| s(x) = 0} is a regular embedded manifold
in R" and let Dy be an open, connected subset qf Bk is a sliding domain if

1. for anye > 0, there is ad > 0 such that trajectories of (10.3) which begin in a
d-vicinity of Ds remain in ane-vicinity of Ds until reaching ane-vicinity of the
boundary of R, dDs.

2. Ds must not contain any entire trajectories of tH continuous systems defined
in the open regions adjacent tosnd partitioned by the set ;M= J;_;

This definition is due to Utkin [104]. By including (2), it issaured that it is the
switching mechanism that produces the sliding mode anddksilpility of the exis-
tence of certain "pathological” sliding domains is excldde

The definition implies thabs is invariant with respect to trajectories in the sense of
the following rather obvious proposition.

Proposition 10.5.1f Dsis a sliding domain then trajectories of (10.3) which begin i
Ds remain in D; until reaching its boundangDs.

Proof: SinceDs belongs to any-vicinity of itself, the definition of a sliding domain
implies that trajectories which begin s must remain in every arbitrarily smadt
vicinity of Ds. Hence trajectories beginning by must remain therein until reaching
its boundary. ]

Sufficient conditions for the existence of a sliding domaim elatively easy to for-
mulate. One approach is as follows. Defir@lacalar functiorV : D ¢ R" — Rwith
the following properties
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. J=0 ifs(x)=0
VX = {> 0 otherwise (10.6)

Recall that is uniquely defined everywhere but th:= Uiz1,..mMs and onM it
is still constrained by the set inclusion of Lemma (10.3)wNbe following result
can be stated.

Proposition 10.6.Let V be given by (10.6). Suppose that

1. Dsis an open, connected subset of M
2. D is an open connected subset 8fvihich contains @

3.V<—p|s(x)| <OonD—M

Then I3 is a sliding domain.

Proof: Under the stated assumptions, a trajectory cannot IBga any pointxg €
Ds. This is easily proved by contradiction. Suppose a trajgctt) does deparDs
from a pointxg € Ds at timety. Such a departure implies that there is a timne tg
and sufficiently smalk > 0, such that the absolutely continuous trajectory segment
X(t), t € (to,t1) is entirely contained in the s&¢,xy) — Ms and along whiclv > 0.
But in view of Lemma (10.3), the assumptions of the propositmply thatV < 0
along trajectories at all points B(&,Xy) — Ms. This is a contradiction. ]

One distinguishing feature of many variable structure maslystems is that trajec-
tories beginning in a vicinity of the sliding surface reable surface in finite time.
This clearly is the case ¥ is bounded below by a negative number. However, such
a bound is not necessary as the following proposition iaies.

Proposition 10.7. Supgose that the conditions of proposition (10.6) hold anald-
dition V(x) = o ||s(x)||, o > 0 on ad-vicinity of Ds. Then trajectories which reach
Ds from ad-vicinity of DS do so in finite time.

Proof: Suppose a trajectory beginning at statén a d-vicinity of Dg reaches a point
x1 € Ds. Now, ||s(xo)|| < 8. SinceV (x) = o |s(x)||* we have

V=20 500 L2 < _p s

which in view of Lemma (10.3) holds throughout thevicinity of Ds. Thus,

dis) __p
dt — 20

which implies that the trajectory reachBsin time not greater thad(2c/p). ®
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10.3 Sliding

In this section we consider the design of sliding surfacesaffine systems of the
form
x= f(x)+G(x)u (10.7)

y=h(x) (10.8)
The procedure begins with the reduction of the given affirsdesy to theregular

form of
z=Az+E[a(&,2)+p(&,2)y (10.9)

y=Cz (10.10)
as described earlier. Now, we do not feedback linearize asdeae in Chapter 6.

Instead, we choose a variable structure control law withching surfaces(x). The
variable structure control law is of the form:

o JU(0 s >0
u.(x)_{:(i) s(§)<0

Notice that the control is not defined during sliding, i.er, frajectories completely
contained within the surfacgx) = 0. We can prove that during sliding the equivalent
or effective control is , such that feedback linearized bedrais achieved in the
sliding phase (see, [59, 63, 80, 58]).

Proposition 10.8.Let the switching surfaces) be such that&) = 0 if and only if
Kz(x) = 0 for some specified k R™" and suppose that

1. p(x) has continuous first derivatives wittet{ p(x) } # 0 on My = {x|z(x) = 0}.

2. 0s(x)/0dx is of maximum rank on the setM {x|s(x) = 0}.

Then M is a regular n— m dimensional submanifold of'R/hich contains M. More-
over, if K is structured so that the m columns numbetgdr+ro, ..., r compose an
identity Iy, then for any trajectory segmenttxt € T, T an open interval of R, that
lies entirely in M, the control which obtainson T is

Ueg= —Pp *(X)KAZ— p~L(x)a (x) (10.11)
and every such trajectory with boundary conditidibX = %o € Ms, to € T satisfies
x=f(x) = G(x)p 1(x) [a(x) + KAZX)], Kz(x(tp)) =0 (10.12)

Proof: The maximum rank condition insures thdt is a regular manifold of di-
mensionn —m. Mg is a submanifold oMs in view of the definition ofs(x). Motion
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constrained bys(x(t)) = 0 must satisfy the sliding conditiosm= 0, equivalently,
KZ(x) = 0. Direct computation leads to (10.11) and (10.12). ]

In this case observe that the manifdi is invariant with respect to the dynamics
(10.12). The flow defined by (10.12) dws is called thesliding dynamicsand the
control defined by (10.11) is thequivalent contralNote that the equivalent control
behaves as a linearizing feedback control. The partia¢ stghamics in sliding is
obtained from (10.9) and (10.11):

z=[I—EKJAz Kzto) =0 (10.13)

Proposition 10.9.Suppose the conditions of proposition (10.8) apply. ThgisNn
invariant manifold of the sliding dynamics (10.12). Moren\f K is specified as

K =diagks,....km), k =[a,...,ar-1,1] (10.14)

where the m ordered sets of coefficiefds, ..., ar,—1}, i =1,...,m each constitute
a set of coefficients of a Hurwitz polynomial. Then everyettgry of (10.12) not
beginning in M approaches Mexponentially.

Proof: Notice that (10.13) implies that the only trajectory of (1®). with boundary
conditionz(tp) = 0 isz(t) = 0 for allt and hencéV is an invariant set.

Note that IME] @ kerlK] = R" so that the motion of (10.13) can be conveniently
divided into a motion in IfE] and a motion in kéK] and the latter has eigenvalues
which coincide with the transmission zeros of the trigde A, E), Young et al [7]. To
prove that trajectories of (10.12) approddh exponentially we need only show that
all trajectories of (10.13) in kfiK] approach the origin asymptotically. Let the matrix
N be chosen so that its columns form a basis fofHdeand introduce the coordinate
vectorsw € R~™andv € R™, and write

z=Nw+Ev (10.15)

The inverse of (10.15) may be written

m - ['\é' z (10.16)

Direct calculation verifies that (10.13) is replaced by

dfw MAN MAE]| [w

S[ - [ €M wo -0 o
The result obtains if Re{MAN} < 0. If the matrixK is chosen in accordance with
(10.14), then the eigenvalues BfAN are precisely the — m eigenvalues of the
matrices



320 10 Variable Structure Control

0 1 0 . 0
0 0O 10 .
0 1 0 , 1=1,....m (10.18)
. . . 1
—ai1 —a2 . . —-1
which are lie in the open left half plane by assumption. ]

10.4 Reaching

The second step in VS control system design is the speatficafithe control func-
tionsu™ such that the manifolgx) = 0 contains a stable submanifold which insures
that sliding occurs. Thus we seek to choose a control thaeslitirajectories into
s(x) = 0, or equivalentlyKz(x) = 0. There are many ways of approaching the reach-
ing design problem, [104]. We consider only one. Define atpesilefinite quadratic
forminn =Kz

VX)=n"Qn, Q>0 (10.19)

Consider the set of states that satigfix) = 0. A subset of this set is attractive if it
lies in aregion of the state space on which the time rate ofgé\ along trajectories
is negative. Upon differentiation we obtain

%v =27TQn = 2[KAz+ a]" QKz+2u" pT QKz (10.20)

10.4.1 Bounded Controls

If the controls are bounded Upini < Ui <Umaxi > 0, then, obviously, to minimize
the time rate of change &f, we should choose

~ fUnmini s(x>0 .
UI_{Umaxi s(x)<0 I=1...,m (10.21)
s(x) = pT(X)QKZ(X) (10.22)
Clearly,s(x) = 0 < Kz(x) = 0. Notice that ifUnminj = —Umaxi, the control reduces

to
U = —Umaxngr(S)
In this case it follows tha¥ is negative (fois = 0) provided

U 0T QKZ > ] [KAz+a]T QKZ‘ (10.23)

A useful sufficient condition is that
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| (P(X)Umax); | > |(KAZX) + a(x));| (10.24)

Conditions (10.23) or (10.24) may be used to insure that ¢imérol bounds are of
sufficient magnitude to guarantee sliding and to providejade= reaching dynamics.
This rather simple approach to reaching design is sat@faethen a “bang-bang”
control is acceptable.

10.4.2 Unconstrained Controls

Suppose the controls are not constrained to fixed boundshanel ¢xists a continu-
ous bound on the functiom(x), i.e.,

la(X)|| < oa(x) (10.25)
for some continuous functiody (x). In this case choosg ando(x) such that

b= —0(sgrs(x), o) [P > G(KA) [z)] +0a(x)  (10.26)

Now, we compute

V§<5(KA)|IZ( )|+ 0a(X) Zl{lsgr(a |}> IQKZX)|  (10.27)

ThusV is negative whes # 0 and the sliding manifold is attractive.

10.4.3 A Variation for Unconstrained Controls

Supposex (x) andp(x) are smooth and known with reasonable certainty. A some-
times useful variation of the controller (10.26) is

u(x) = uo(x) + v(x) (10.28)
composed of the smooth part
uo(x) = —p (x)a(x) (10.29)
and discontinuous part
v = —o(sgns (), o()llp() > KA 2] (10.30)

Notice that the required magnitude of the discontinuousigaeduced. We easily
compute from (10.20)

v§<5<KA>||z ) -o Z{Isgr(s |}> |QKzx)| (10.31)
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10.4.4 Closed Loop Stability

&/ C Mg is astable attractorof the zero dynamics if it is a closed invariant set and
if for every neighborhootll of <7 in Mg there is a neighborhodd of 7 in Mg such
that every trajectory of (10.13) beginning¥iremains inJ and tends te ast — .
The following proposition establishes conditions underohtihe variable structure
controller applied to (10.7) stabilizeg in R".

Proposition 10.10.Suppose that the conditions of propositions (10.8) an®)1dp-

ply; 2 is an open region in Rin which (10.23) (or (10.25)) is satisfied)s = 2 N Mg

is nonempty; and? C Mg is a bounded, stable attractor of the zero dynamics which
is contained in%s N Mp. Then« is a stable attractor of the feedback system com-
posed of (10.7) with feedback control law (10.21) (or (10,26 (10.28)).

Proof: SinceZ is an open region iRR" in which (10.23) is satisfied, a sliding mode
exists in%s = 2 N Ms which is nonempty. In factZy = s My is also nonempty
and it contains a bounded, stable attractoof the zero dynamics. Proposition (10.9)
implies thate/ is also a stable attractor of the sliding dynamics (10.1BusT for
any neighborhoodl of < in Ms there is a neighborhood of .7 in Ms such that
trajectories of (10.12) beginning M remain inU and tend toe7 with increasing
time. We must show that a similar property applies for ne@hbods ofe” in R
with respect to the dynamics defined by (10.7) and (10.21). Le

Kmin = i%f{u,;aXpTQKz— [KAz+ a]"QKZ} > 0 (10.32)
which exists by virtue of (10.23), and
Kmax = sup{|| f0-3T,0 (x)Umaxisigr‘(s)Hz} <o (10.33)
9

which exists becausé and G are continuous an@ is bounded, and whergs||
denotes the Euclidean norm. L%T, xo) denote the open sphereR¥ of radiusr and
centered axg and define the set

S(r):= | Sr.a) (10.34)

acd

Note that any element &) is at most a distanaefrom Ms and hence any trajectory
starting inS(r) will reachMs in a finite time not greater thap=r//Kmin. Thus, any
trajectory segment of the of the closed loop system beg@inif(r) and terminating
upon reachingd/s is entirely contained in the s&R) where

R—r {1+ K”‘ax} (10.35)

Kmin

Now, letU be any neighborhood o/ in R". DefineU = U NMs, so thatU is a
neighborhood of in Ms. Then there exists a neighborhddaf <7 in Mg such that
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trajectories beginning i remain inU and tend taZ with increasing time. In view
of (10.35), we can always choosesufficiently small so thaS(R) "\Ms € V N Z.
Then we identify/ = S(r). It follows that trajectories of (10.7), (10.21) beginning
V remain inU and approachy ast — o. ]

DenoteM;, = {x| h(x) = 0} and we assume th#,, is a regular submanifold of
R" of dimensiom — m. Note thatVg is a submanifold of botM;, andMs so thatMg

lies in the intersection dfl, andMs. The relationships between these manifolds are
illustrated in Figure (10.1).

%

Fig. 10.1: The relationship between the output constraemifold, the sliding manifold and
the zero dynamics manifold is illustrated in a three dimemsi state space.

Our results imply that the closed loop system behaves asafsllIf the initial state

is sufficiently close taZs, the trajectory will eventually reac#s and will thereafter

approximate ideal sliding. Ideal sliding is characteribgd(10.12) and sliding tra-
jectories which remain s approach?, and eventuallyes. That.e/ is a stable

attractor of (10.12) is obvious. However, this only implikat trajectories of (10.12)
beginning sufficiently close ta7 approach.

10.5 Robustness With Respect to Matched
Uncertainties

Variable sructure control systems are especially intergstecause they exhibit cer-
tain robustness properties with respect to model uncéytefuppose we have an
uncertain system for which the nominal pé&ft G, h) has well defined vector rela-
tive degre€(rs,...,rm}. Then we can proceed as above to design a variable structure
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control system for the nominal system. The key questiondsy Hoes this controller
perform when applied to the actual system? When the unogrta matched and
has a known bound it is possible to design the control to ethat the desired slid-
ing manifold is attractive for any actual plant within thenaidsible class of systems.
Moreover, the sliding behavior is identical to that of themieal system. If the sys-
tem has matched uncertainty we can take as our starting theiist/stem:

éz F(&,zu)
z=Az+ E[G(X(E7Z)) +A(E,Z,t) +p(X(E,Z))U] (1036)

whereA is a function that represents uncertainties and/or diafures. We assume
thatA(&,zt) is bounded by a continuous function (§,2) > 0:

[A,zt)|| < 0a(é,2), Wt (10.37)

The following proposition establishes the basic robustmesult for variable struc-
ture controls applied to systems with matched uncertainty.

Proposition 10.11.Consider a class ohdmissiblesystems of the form (10.36) sat-
isfying the following conditions

1. There is a known and continuous uncertainty boapdé,z) > 0 such that
(10.37) is satisfied.

2. There is a continuous bounding functigg(x) > 0 such that

[a(¥)] < ga(x)

Then there exists a variable structure controller such foagll admissible systems
the switching surface(s) = Ois a sliding manifold and the sliding behavior is iden-
tical to the nominal system sliding behavior.

Furthermore, the control is given by:

U = —o(x)sgns(x)) (10.38)

with
a(x) o)l > a(KA)[|z(X)]| + Ta(x) + 0a (X) (10.39)

and
s(X) = pT (X)QKZx) (10.40)

where K chosen in accordance with Proposition (10.9).

Proof: First, assume that sliding does occur in the surfigg= 0= Kz(x) = 0=
Kz=0. Then we haveeq defined by

KAz+a(x(&,2)+A(&,zt) + p(X(&,2))Ugg= 0
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and the sliding dynamics reduce, once again, to (10.13)s,Tthe actual sliding
dynamics are indeed identical to the nominal system slidiymgamics.

Now, we need to show that it is possible to design control fions u*(x) such
that sliding occurs irs(x) = O for all admissible systems. The proposition assumes
that botha andA are bounded by a continuous functiamg andg,. Consider the
positive definite quadratic form in = Kz

V(X)=n'Qn

A sliding mode exists on a subset gfx) = 0, equivalentlys(x) = 0, that lies in
a region of the state space on which the time rate of chahgenegative. Upon
differentiation we obtain

%v =217Qn = 2[KAz+a+A]" QKz+2u"p T QKz

Now, choose the contralin accordance with Equations (10.38), (10.39) and (10.40)
so that

V< (E<KA> 209 + 0 (X) + 0a(x) ~ T4 __i{lsgr(s <x>>|}> |QKz(x)]

_ (10.41)
It follows thatV is negative wherever it is defined (everywhere but on thengjid
manifold), so the sliding manifold is indeed attractive eguired. [ ]

10.6 Chattering Reduction

The state trajectories of ideal sliding motions are corgiraifunctions of time con-
tained entirely within the sliding manifold. These trapi¢s correspond to the
equivalent contralieq(t). However, the actual control signalt) — definable only for
nonideal trajectories — is discontinuous as a consequéioe switching mechanism
which generates it. Persistent switching is undesirabfeast applications. Several
techniques have been proposed to reduce or eliminate iseTimelude: ‘regular-
ization’ of the switch by replacing it with a continuous appimation; ‘extension’
of the dynamics by using additional integrators to sepaatepplied discontinuous
pseudo-control from the actual plant inputs; and ‘moderatf the reaching control
magnitude as errors become small.

Switch regularization entails replacing the ideal swibghfunction, sgfs(x)) with a
continuous function such as

Sat(%S(X)) or % or tanh(%x))

This intuitive approach is employed by Young and Kwatny [[L48d Slotine and
Sastry [97, 98] and there are probably historical precedé&tggularization induces
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a boundary layer around the switching manifold whose siZe(&). The reaching
behavior is altered significantly because the approachaanthnifold is now ex-
ponential and the manifold is not reached in finite time athés ¢dase with ideal
switching. On the other hand within the boundary layer thgttories ar®©(¢) ap-
proximations to the sliding trajectories as establishedduyng et al [112] for linear
dynamics with linear switching surfaces. Some of thoselt®bave been extended to
single input—single output nonlinear systems by Marind.[8Witch regularization
for nonlinear systems has been extensively discussed tin&knd coworkers, e.g.,
[97, 98]. With nonlinear systems there are subtleties agdlagization can result in
an unstable system. However, we can state the followindtresu

Suppose that each ideal switch is replaced by a smooth wavgmswitch . Specifi-
cally, sgris) — tanh(s/¢), € > 0 so that

U = —a(0)sgris (x)) — —o(x)tant(s (x) /)

ThenV is not necessarily negative fijs|| small. However, for any givea > 0 there
exists a sufficiently smal > 0 such thaV < 0, for||s|| > é so that all trajectories
enter the strig|s(X)|| < 8. We wish to establish more than that. Namely, we will
show that the smoothed control steers the state into a neigbbd ofz= 0 the size
of which shrinks with the design (smoothing) parameter

Proposition 10.12.Consider the system
z=Az+E[a(x(&,2) +A(X(&,2),t) + p(X(&,2))u]
Suppose that
1. there exists a continuous bound@n||a (X)|| < 04 (X)
2. and a continuous bound @h [|[A(x,t)]| < ga(X), Vit

3. K is chosen in accordance with Proposition (10.9)
4.y = —o(x)tanhs(x)/€), where
a(x) > (0(KA) [|2(x)|| + ga (X) + 04 (X)) [| QKZX) |
and € (x) = pT (X)QKZX)
Then for anyd > 0 there exists a sufficiently small> 0 such that all trajectories

enter the ball|z|| < & in finite time.

Proof: SinceKE =1, we can divide the state space intcdm kerK. Thus, we define
a transformation (recall the proof of Proposition (10.9):

z=[E N] [gﬂ
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where the columns dfl span keK. Notice that we can choose a matkiksuch that

m][E N = |

which impliesK [| — EK] = 0, andM [I — EK] = M. In these new coordinates the
evolution equations are

Eﬂ = {QQE l\le':m [%] + LI)} (a(X)+A(xt) — p(x)o(x) tanh(s* (x)/€))
e tanh(si (x)/€)
tanh(s"(x)/e) = :
tanh(sy(x)/€)

In addition,s = Kz = {3. Furthermore, Re(MAN) < 0 by design IMAN ~ Ag).
Hence, there exist matrice®y > 0,R > 0 such that

1. 2" Qpz= 0 for ze ImE andz' Quz > 0 otherwise.
2. d(Z"Qoz)/dt = —z'Rz < —Amin[122||, where Amin is the smallest nonzero

eigenvalue oR.

Now, consider the Liapunov function
V(2) =2 Qoz+ (K2)TQKz>0, ||z] #0
and compute

v =2:Quz+28"Qs
= 2{Az+bla+A+pu]}" Qoz+2[KAZ+ a + A]" QKz+2uT pT QKz

%v =2{AZ}" Quz+2[KAz+ a +A]" QKz+2u"pTQKz

Now, we have

[KAZ+ o + A]T QKz+ uTpT QKX <
(G(KA) [[2() || + ga (x) + 0a (X)) [QKZX)[| — T(x) izlltfﬂlnr(&*(x)/«f)l

and
2{AZ" Qoz < —Amin %22

so that

d
av < —AminHZZHZ—i—Z

0— alihanlﬁ(s*/e)ﬂ

where
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G = (0(KA) [|Z(x)]| + 0a(X) + 0a (x)) [[QKZX)

Thus, sinces > & by assumption, for any specifigiithere is are such that/ <

—c < 0. Consequently, we have all trajectories entering thp 88lj < d(¢) in finite
time. In fact, for any giverd > 0 there exists a corresponding sufficiently small
€ > 0. Now, sinces = {3, it follows that||s|| < & = ||{1]] < 8. Consequently, from
the evolution equations and sinbBAN is asymptotically (exponentially) stable we
can conclude that all trajectories enter a ball with raditgpprtional tod in finite
time. [ |

Dynamic extension is another effective approach to contmolit smoothing, see
Emelyanov et al [25]. A sliding mode is said to bemth order relative to an output
y if the time derivativey,y, . ..,y(P~Y are continuous it butyP is not. The follow-
ing observation is a straightforward consequence of thalaedorm proposition:
Suppose the system (10.7) and (10.8) is input-output linglalle with vector relative
degre€(rs,...,rm). Then the sliding mode corresponding to the control lawZ2p.
is of orderp = min(ry,...,rm) relative to the outpuy. We may modify the relative
degree by augmenting the system with input dynamics asibesicHence, we can
directly control the smoothness of the output vegtor

When parasitic dynamics of sufficiently high order are pnéseform of persistent
switching can arise that is not removed by the above smap#tiategies. This form
of switching can be associated with a (series of) bifurcgtpin the fast dynam-
ics. It is commonly referred to as chattering. Control madien can be effective in
eliminating chattering. Control moderation involves d@sof the reaching control
functionsu;(x) such that the effective gain is reduced when errors are sivell
|ui(x)| — small asle(x)| — 0. For example,

ui(x) = [e(x)[sgn(s (x))

Control moderation was used by Young and Kwatny [113] andstbgificance of
this approach for chattering reduction in the presence @giigc dynamics was dis-
cussed by Kwatny and Siu [68].

10.7 Computing Tools

We need to be able to reduce the system to normal form, congpuéppropriate
switching surface, assemble the switching control andimsseoothing and/or mod-
erating functions as desired. Functions to do this are implged inProPac

10.7.1 Sliding Surface Computations

There are several methods for determining the sliding saréx) = Kz(x), once the
system has been reduced to normal form. We have includedtidalidingSurface
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that implements two alternatives depending on the argusyeovided. The function
may be called via

{rho,s}=SlidingSurface][f,g,h,x,lam]
or
s=SlidingSurface[rho,vro,z,lam]

In the first case the data provided is the nonlinear systemitlefi f, g, h,xand amm-
vectorlamwhich contains a list of desired exponential decay ratesfaneach input
channel. The function returns the decoupling mathi@ and the switching surfaces
s as functions of the state The matrixK is obtained by solving the appropriate
Ricatti equation.

The second use of the function assumes that the input-oliygatrization has al-
ready been performed so that the decoupling maho the vector relative degree
vro, and the normal coordinate (partial) transformati¢q) are known. In this case
the dimension of each of tha switching surfaces is known so that it is possible
to specify a complete set of eigenvalues for each surfaces,Téam is a list of m-
sublists containing the specified eigenvalues, groupeatdirt to the vector relative
degree. Only the switching surfaces are returned. In tiEel€as obtained via pole
placement.

10.7.2 Switching Control

The functionSwitchingControl[rho,s,bounds,Q,opts] whererho is
the decoupling matrixs is the vector of switching surfacdspundsis a list of con-
troller bounds each in the forfdower bound, upper bourdQ is anm x mpositive
definite matrix (a design parameter that can be used, for gbeaito weight switching
surfaces, see Utkin [1]), araptsare options which allow the inclusion of smoothing
and/or moderating functions in the control. The bounds neafhctions of the state.
The alternative syntax

SwitchingControl[alpha,rho,s,bounds,Q,opts]

returns the control in the form of (10.28), i.e., it conta@nsmooth feedback lineariz-
ing part plus the discontinuous stabilizing part.

Smoothing functions are specified by a rule of the form
SmoothingFunctions[x_]->{function1[x],...,functionm X1}

Wheremis the number of controls. Moderating functions are sinlapecified by
arule
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ModeratingFunctions->{functionl[z],...,functionm[z] }

The smoothing function option replaces the pure switch$doy a smooth switch
as specified. The moderating function option multiplies $hdtch by a specified
function. We give an example below.

Example 10.13 (Variable structure contro)le apply some of the above computa-
tions in the single input — single output, third order exaengliown below. First, we
display the moderatingx| /(.002+- |x)) and smoothing (+ e~*/%2) functions that
will be employed.

In[231]: = Plot [Abs[x]/(0.002+ Abs[x]),{x,—3,3}]
3 2 -] | 2 3

0.98\+

0.96

0.94

0.92

In[232] : = Plot [Sign [x] (1—Exp[—Abs[x/0.1]]),{x,—3,3},PlotRange- > All |
1 L

0.5 |
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Now we apply input-output linearization. Since the relatidegree is 2, there are
one-dimensional zero dynamics. They are checked for gtabéfore the control is
designed.

In[233]:= x={x1,x2,x3};
f={x2,x3,—x1—x2"2— Sin[x3]};
g=1{0,1+x1"3 1};

h={x1};
{p,a,vro,control} = IOLinearize  [f,g,h,{x1,x2,x3}]
1-x3
Qut[233] = {{{1+x1°)}.0}. {2 {1 3 )}

In[234]: = z=NormalCoordinates  [f,g,h,{x1,x2,x3},vro];
u0= control/.vl— > 0;
LocalZeroDynamics  [f,g,h,x,u0,2]

B w13
Qut[234] = {-2 wi+ =}

Since we have a stable equilibrium point we proceed to desgjiding surface. We
have already computed the normal coordinates, so we caifyspetes at -2,-3 and
compute the sliding surface.

I n[235]: = s=SlidingSurface [p,vro,z,{{—2,—-3}}];
SwitchingControl lo,s, {{—-1,1}},{{1}}]
Qut[235]= {-Sign[(1+x1%) (6 x1+5 x2)|}

Now, we compute the switching control using various comtimes of smoothing
and moderating functions. The particular functions cho®enthis example are
shown below in Figure 6. Results can change significantlynadtler functions are
used or when the parameters of the functions are varied. \&eifgphe control
bounds ast1 andQ = 1. The following computation yields the controls.

I n[ 236] : = SwitchingControl [p,s,{{—1,1}},{{1}},

SmoothingFunctions  [xx_]— > {(1— Exp[—Abs[xx/10]])}]
Qut[236] = {—Sign[(1+x1%) (6 x1+5 x2)]+

e Abs[(16x) (6 x1t5 2] g gni14x13) (6 x1+5 x2)])
I n[237] : = SwitchingControl [p,s,{{—1,1}},{{1}},

ModeratingFunctions > {Abs|z[[1]]]/(0.005+ Abs [z[[1]]]) }]

Abs[x1] Sign[(1+x1%) (6 x1+5 x2)]
a 0.005+ Abs [x1] }

Qut[237] = {

10.8 Backstepping Design of VS Controls

We will describe a backstepping procedure for SISO variatrigcture control sys-
tem design in the presence of uncertain, possibly nonsmpottiinearities as intro-
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duced in [69]. The method differs from the backstepping mégpes described in the
previous chapter in the following ways: (1) the states ao&iged in accordance with
the appearance of the uncertainty in the system, and (2ptiteat designed at each
step is a variable structure control. We do not assume tteagrtainty enters in every
state equation. Thus, the number of steps can be reduceslisTimportant when

nonsmooth uncertainties are present as will be evideneirxdamples below.

Consider a SISO nonlinear system in the (multi-state bapishg) form:

Xi(ni) =X, +Ai(xt), i=1..p-1
XE)np) = a(x) + p(X)u+ Ap(x,t) (10.42)
y==x1

We assume that the (possibly nonsmooth) uncertaiijést) are bounded by
smooth, non-negative functioms(x), i.e.,

0< A < Gi(x), W (10.43)

As noted before, such a model might arise by reduction of aoimaominal sys-
tem to regular from and applying the transformation to thes§ibly nonsmooth)
uncertain system.

The basic idea is very simple. At eachpf 1 stages we design a ‘pseudo-control’
Vi, at thek!" step (withvp = 0), using the system

X v+ A(xt), i=1,...,k<p
Nk_—
Yk = X — Vi 1(X1, -, X )

and at the last") stage we design the actual contuglusing the system

XY =vi+a(xt), i=1...,p-1
X(pnp) =a(x)+ p(X)u—l-ep(Xat)
Yp =Xp—Vp-1(X1,- X" )

To design the control we first reduce th&" system to normal form by successive

differentiation in the usual way. Thus, we identify the nevordinateyy, . . ., ﬁ”"fl)
that will replacex, . .. ,xﬁ”"fn. The transformed evolution equation is
W = L+ La LR e = Lihie+ v = ay+ v (10.44)

For analysis purposes it is convenient to carry the equafitong in the transformed
coordinates as the process proceeds. Doing so explitigkt control is obtained

by designing a stabilizing smoothed VS controller for a (hioal’) system in the

form:
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m) _
X1 =V, (10.45)
Yi=X1
2. k=2
y(ln ) =X
X(2n2) — v (10.46)
Y2 =Xo—V1
3.k=3,...,p—-1
Uyt =1 k2
(Nk—1)
ykfll = Ok 1+ %, (10.47)
Xi(<nk) — Vi
Y= X = Vi1
4. k=p
yiini) =)yi+1+0i+Via i=1...,p—2
Np_
ypfll = Op_1+Xp, (10.48)
xianp) =a+pvp

Yp=Xp—Vp-1
Notice that the zero dynamics of th® system (10.47) are

YW =viataitv, i=1.. k-2
Yt = oy g+ viy

(10.49)

Now, we design a VS stabilizing controlle/rk(yk,...,kt(("i)) such thatyk(t) — 0 as
t — o0, For eactk < p we smooth the controller so that the process can be continued
Working in this way through th@ stages, and redefining the states{ y) at each
stage we arrive at the final set of dynamical equations.
i i—1)y
Y = Vi oy i) =1...p-1 (10.50)
n Np— .
Yo = a+ap+pulyp,...yp" )

Notice the triangular structure of the transformed nomayatem (10.50). It is illus-
trated in Figure (10.2).
Now, let us define the procedure in detalil.

Algorithm 10.14 (Variable Structure Backstepping Algorithm) The
state transformation and control are constructed seqaédigtas follows:
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YWyt %

Fig. 10.2: The triangular structure of the closed loop (nmat)i dynamics achieved with the
multistate backstep control design.

1. k= 1 define the vector fieldf, 0: and the scalar functioﬁlz

X1 0
1= X(lnl,n v 1= 0
0 1

Now define the new state variables:
Z=y1=h
Z=y1=Lgm
7 = y(1n171) = L%flﬁl

which leads to the state space description

A=Y +gu=] 5 |+ v
1(Z7) +ova z%; 0 1
L™hy 1

yi=hZh =z

where 2 =[z,...,7 | T This is the state space equivalent to Equation (10.45).
Now, design the smoothed variable structure controlier v



10.8 Backstepping Design of VS Controls 335

2. k=2,...,p— 1 Definefy, g, andhy

fe 1 (Z 1) + lgk71Vk72(Zk72) 0

i :

fk = : s Ok= |
Xf(”kfl) 0

0 1

Vi = M(Z1 %) = X — Vi1 (27
where

7K1 _ [(ZKZ)T 725717 o ’Zﬁkll]T

Define the next group of new states

A ye—he
=y = L7 hi

% = WY =Ly

=L

Write the state space equivalent to (10.47).

fe1(Z0) + Ok 1Wk2(272) 0

2 :

Z* = fi(Z¥ = : :
= f(Z°) + gkw = : AR

Z 0

L'}kﬁk 1
Yo = M(Z) = & — w1 (Z7Y)

and design the smoothed variable structure contgol v

3. k= p fp, gp, andhy, are defined as above for general k. Now introduce the last
group of new states

y

Yp = Np
Yp

f”php

Il
|

'p ~ np=1) np-1r
Zn, =Yp© —Lfs hp

to obtain the state space equivalent to (10.48).
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fpfl(zpil) + gdnflvpr(Zpiz) 0
5 :
ZP = fp(ZP) +gp(a +pvp) = : + || (a+pvp)
e
szhp 1
zP-1
z

Yp=hp(ZP) =2 —vp1(2Y)
Finally, design the variable structure controllep.v
Now we apply this transformation to the actual system (10.42

Lemma 10.15.Consider the transformation defined recursively accordmélgo-
rithm (10.14). When applied to the actual system (10.42)rdresformed evolution
equations are

yimi) :yi+1+ai+Ai+vi(yi,...yi(”‘*1)) i=1...,p—1

(np*l>)

o) (10.51)
Yp' = a+ap+Ap+pu(Yp,---Yp

Proof: Notice that at each stage of Algorithm (10.14), ko 1,...,p— 1, ng new
state variables are defined angdfirst order equations are added to the system. The
first ny — 1 equations come from the state definitions, i.e. the defiafqations

-
Z =y = L he

% = WY = L?Eflﬁk
imply
W=4=2
o
y|((nk ) = Zﬁkfl = th

The final equation is obtained by differentiating the lastirdéon and using the

evolution equation(f(nk) = Vi in the nominal case anx;((nk) = A¢ + V in the actual
case, leading to

yl((nk) = Z‘ﬁk = erlt F]k + LgkerlEilFlka = L?Eﬁk + Vg

in the nominal case, and
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. ~ —1p ~
yl((nk) = Z,lf,k = erlthk + LQkerlt he (A + k) = erlthk + Ax+ v
in the actual case.

The case& = p is similar except thatr + pv, is replaced byxr + Ay + pvy. ]

The idea for establishing stability is roughly as followsVA controller is designed
for system p, (10.50), via methods described above. Themyist stable if and only
if the zero dynamics,

y$>?ywl+ar+WWun-V“?) i;1w~7p—2

Np_ Np_1—
Ypr1 = 0p1+Vp1(Yp-1,---Yp'a )

are stable. Buty,_1 is itself a (smoothed) VS control so that (10.52) is stabliesif
zero dynamics:

(10.52)

yi(ni) =Y 1+ ai+ViYi,. .. i(niil)) i=1...,p—3

(Np—2) (np—2*1))

(10.53)
Yp'2" =0p2+Vp2(Yp-2,---Yp s

are stable. The argument proceeds in this way.

Proposition 10.16.Consider the system (10.42) and suppose the uncertaiities
satisfy the inequality (10.43) with continuous boundimgctionsg;, anda also has

a continuous bounding functios,. Suppose that a controller is designed via the
backstepping procedure of Algorithm (10.14) and each abir, k=1,...,p is

a smoothed variable structure controller designed in adamce with the assump-
tions of Proposition (10.12). Then for any givén> 0 there is a sufficiently small
smoothing parameter > 0 such that all trajectories enter the baly|| < d.

Proof: The p-th system

Yo® = a+ap+Ap+pVp(Yp,-yp® ) (10.54)
satisfies the conditions of Proposition (10.12) with- yg’”, i=1,...,np. Hence,
we conclude thayy (and itsnp — 1 derivatives) will be driven, in finite time, into a
J-neighborhood of the origin with a suitably small smoothpagameter. Now, the
p— 1systemis

(Np—1

_1—1
Yoo~y (1) + dpo a4 Ap 14 Vpoa(Yp1 Yo ) (10.55)

and|yp(t)| < &, vt > t* < co. Thus, we can incorporatg(t) into Ap_1(x.t). It fol-

lows that (10.55) satisfies the conditions of Propositidh12) fort > t*, z = yS:?,
i=1,...,np_1, so thaty, ; (and itsny_1 — 1 derivatives) will be driven, in finite
time, into ad-neighborhood of the origin with a suitably small smoothirggameter.
We continue in this way for systenks= p—2,...,1 to establish the conclusion of
the theorem. ]
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Example 10.17 (Nonsmooth, Uncertain Frictiorgonsider a simple system with a
nonlinear, nonsmooth friction:

0=w
W= —@(w)+ U
p=u
with
@rr = sgnw)

Suppose the friction to be composed of a smooth nominal pattaanonsmooth
uncertain part, i.e.,

@ =tanh(w/0.02) + A(w), A(w)=sgnw)—tanhw/e), €>0

Thus, the nominal system is

6=w
w = —tanhw/0.02) + u
p=u

and the uncertainty is bounded by = const > 1.

Now, we complete step 1 and compute the smoothed variahletste (psuedo-)
control, vs1:

In[238]:= fl={w,—TanHw/0.02)};
gl = {01}
hi={6};
{rholsl} = SlidingSurface [f1,01,h1,{6, w}, {2}]

ctrlbnds = {{-5,5}};
Q = {{11h
vscl= SwitchingControl [rhol sl ctribndsQ,S
SmoothingFunctions  [x]— > {TanHx/0.01]}]
Qut[238] = {-5 TanH100 w+ 423607 6]}

In step 2 we compute the actual control vs2. It is designetowit smoothing or
moderation.
In[239]:= f={w,—TanHw/0.02]+uu ,0};

g = {0,0,1};

h = {uu—vscl [[1]]};

{rho2s2} = SlidingSurface [f,9,h, {6, w,uu},{20}]

ctribnds = {{-5,5}};

Q = {{1}}h
vsc2= SwitchingControl [rho2 s2 ctribnds Q]
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Qut[239] = {5 Sign[-uu—5 TanH100 w+423607 6]]}

Now, we set up the equations for numerical computation.dédtiat the actual plant
friction function is taken to be sgmw) which corresponds to taking= 0.02.

I n[ 240] : = ReplacementRules
Inner [Rule {6, w,uu},{6[t], wt],uu[t]},List];

In[241]: = {Surf} =s2/.ReplacementRules;

Surf
Qut[241] = 5 TanH100 wit]+ 423607 O[t]] + uult]

In[242]: {VSControl} = vsc2/.ReplacementRules;

VSControl
Qut [242] = 5 Si gn[-5 TanH100 w[t]+423607 6[t]] —uult]]
In[243]:= VSsols =
NDSolvd{dithetdt] == wlt],dw[t] == —Sign [w[t]] +uult],
diuu [t} == VSControl w[0] == 0.2, 8]0] == 0,uu [0] == 0},
{6[t], w[t],uult]},{t,0,10}, AccuracyGoal 2,
PrecisionGoal > 1, MaxStepSize- > 10/6000Q MaxSteps— 60000;

Here are some selected results.

In[244]:= Plot [Evaluate [{B]t]} /. VSsols,

{t,0,9}, PlotRange- > All, AxesLabel— {t,8}];

Plot [Evaluate [{w[t]} /. VSsolg,
{t,0, 9},PlotRange- > All,AxesLabel— {t, w}];

Plot [Evaluate [{VSControl}/.VSsols,
{t,0,9},PlotRange- > All, AxesLabel— {t,u}];

ParametricPlot  [Evaluate [{0]t],w[t]}/.VSsols,{t,0, 9},
PlotRange- > All,AxesLabel— {6, w}]

Here is the outpu@ as a function of time. Stability is clearly evident.
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The following plot of angular velocityw shows the ‘stiction’ effect of the discontin-
uous nonlinear friction.

w
0.2

0.15
0.1

0.05 A A 4 6 8 t
i

-0.05
-0.1

The switching control is shown in the following figure.
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AT T 1 [
2
p) 4 3 t
-2
“U L || 1|

Finally, a phase plot ofo versusf indicates thathetadoes not go to the origin. Of
course, the ultimate error is controlled by choice of smimgtiparameter in step 1.
w

0.2

2\

-0.01 -0)005
~0.05

These results clearly illustrate the anticipated propsrti

Example 10.18 (Motor-Load System with Nonsmooth fricti@onsider a motor-
load system illustrated in Figure (10.3) and described hyefiqn (10.56).

@ 1 1 0( /0.02)2 o
_1 L y (/0.
4o |~ O1-w/10] 10(1+10exp )ng’l +1920u (0.56)
w 0 0
61— 6 — wp/2 — Hsgnwy 1

We begin by reducing the nominal system to normal form.
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Drive Motor Shaft Inertial Load

Fig. 10.3: A typical drive system consisting of a motor andiraartial load. The nonlinear
friction functions,¢; and¢, contain uncertain discontinuous components.

In[245]:= f=
{omegaltheta2—thetal- omega}10,omega2thetal—-theta2— omegaZz2};
9=1{0,0,0,1};
h =thetal;
I n[ 246]: = Df={0,—(1+Exp[—(omega}0.02)"2]/10) Sign [omegal/10,0,
—Sign [omega}/10};
In[247]: = {T1T2}=
Chop[SISONormalFormTrans [f, g, h, {thetalomegaltheta2omega?]];
I n[ 248] : = InvTrans= InverseTransformation [{thetalomegaltheta2omega2,

{x1,x2,x3,x4},T1];
InverseTransformation{thetal omegaltheta2omega2 = {x1,x2, % (10 x1+x2410 x3),

1
0 (10 x2+x3+10 x4)}

The following calculation applies the transformation te tctual (perturbed) sys-
tem.

I n[249]: = {fnew,gnew hnew} = Chop[TransformSystem [f,g,h,
{thetalomegaltheta2omega, {x1,x2,x3,x4},T1, InvTrang];

I n[250]: = {ff,gg,hh} = Chop[TransformSystem [f+ Df,g,h,
{thetalomegaltheta2omega2, {x1,x2,x3,x4},T1, InvTrang];

In[251]: = N[ff]

Qut[251] = {x2,x3+0.01 (—10.—1. 271828250 X2} s gn[x2],

x4+0.001 (10.+2.71828 290 X2} i gn[x2],

0.0099 (10.42.71828 2500 *¥) gj gn[x2)+
0.05 (12 x2—41 x3—12 x4—2. Sign[x2+0.1 x3+x4])}
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Now, the backstepping procedure is applied. Observe thetste of the actual sys-
tem in normal form. Because uncertainties enter the rightlistdes of the second,
third and fourth equations, three steps will be required.

1st Step
In[252]:= f1={x2,0};

g1 = {01}

hl= {x1};

{rholsl} = SlidingSurface  [f1,g1h1, {x1,x2},{2}];
In[253]:= ctribnds = {{-1,1}};

Q = {1k

vscl= SwitchingControl [rhol sl ctrlbndsQ,

SmoothingFunctions  [x_]— > {Tanhx/0.1]}];

2nd Step
In[254]:= f2={x2,x3,0};

92={ 0,0,1};

h2 = {x3—vscl [[1]]};

{rho2s2} = SlidingSurface  [f2,g2 h2 {x1,x2,x3},{5}];
In[255]: = ctrlbnds = {{-5,5}};

Q = {1k

vsc2= SwitchingControl [rho2 s2 ctrlbnds Q,

SmoothingFunctions  [x_]— > {Tanhx/0.1]}];

In[256]: = {T1,T2} = Chop[SISONormalFormTrans [f2,g2,h2,{x1,x2,x3}]];
3rd Step
In[257]: = f3=fnew;

g3=gnew;

h3= Chop[SetAccuracy [{x4—vsc2 [[1]]},4],107—4)];

It is important to get an estimate of boundsmrin order to set appropriate control
bounds.

I n[ 258] :

{p,a,ro,controlt = IOLinearize  [f3,93 h3,{x1,x2,x3,x4}];

I n[ 259]: = Coefficient  [Truncate [a[[1]],{x1,x2,x3,x4},1],{x1,x2,x3,x4}]
Qut [ 259] = {0,2117,498,49.4}

I n[ 260] :

b=5 (1410 Abs[x4]+100 Abs[x3]+500 Abs[x2]);
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As it turns out, these bounds are fairly tight. Reducing trsggmificantly rsults in
very degraded performance — even of the nominal system.

In[261]:
I n[262]:

{rho3s3} = SlidingSurface  [f3,93h3 {x1,x2,z3 x4},{20}];

ctrlbnds = {{-—b,b}};

Q = {{11h

vsc3= SwitchingControl [rho3 s3 ctrlbnds Q,
SmoothingFunctions  [x_]— > {TanHx,/0.04]}];

Simulation of the Actual Plant

I n[263] :

I n[ 264] :

I n[ 265] :

0.035
0.03
0.025
0.02
0.015
0.01
0.005

ol

InitialConds= {x1(0) = 0,x2(0) = 0.2,x3(0) = 0,x4(0) = 0};
Eqgns= MakeODE${x1,x2,x3, x4}, ff + ggvsc3[1]],1];
VSsols= NDSolvgJoinEqgns InitialConds, {x1(t),x2(t),x3(t), x4(t)},{t, 0,4},

AccuracyGoal 2, PrecisionGoal 1, MaxStepSize— 50000 MaxSteps— 60000;

Plot [Evaluate [{x1]t]} /. VSsolg,

{t,0,2},PlotRange- > All,AxesLabel— {t,01}];
Plot [Evaluate [{x2]t]} /. VSsolg,

{t,0, 2},PlotRange- > All ,AxesLabel— {t, wl}];
Plot [Evaluate [{x3]t]} /. VSsolg,

{t,0, 2},PlotRange- > All, AxesLabel— {t,x3}];
Plot [Evaluate [{x4]t]} /. VSsolg,

{t,0, 2},PlotRange- > All, AxesLabel— {t,x4}];

0.5 1 15 2
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I n[266]: =

10
7.5

25

Control=vsc3 [[1]]/.ReplacementRules;
Plot [Evaluate [{Control}/.VSsold,{t,0,2},AxesLabel— {t,u}];

-2.5

-7.5

J o’ |

Notice that the position error does not reduce to zero. Basiexpected, because of
the smoothing of the controllers. By decreasing the smagtharameter, of course,
the error is reduce. On the other hand the (peak) controftdfforeases. As it is,
control effort is quite substantial.

Simulation with Different Initial Conditions

The following computations illustrate response from aatiit set of initial condi-

tions.
I n[267] :
I n[ 268] :

I n[269] :

InitialConds= {x1[0] == 0.2,x2[0] == 0,x3 [0] == 0,x4 [0] == 0};

VSsols = NDSolvdJoin [EgnslnitialConds,
{x1[t],x2[t],x3t],x4[t]},{t, 0,10}, AccuracyGoal- 2,
PrecisionGoal > 1, MaxStepSize- > 10/6000Q MaxSteps— 60000;

Plot [Evaluate [{x1]t]} /. VSsolg,

{t,0,4},PlotRange- > All ,AxesLabel— {t, 61}];
Plot [Evaluate [{x2]t]} /. VSsolg,

{t,0, 4} ,PlotRange- > All ,AxesLabel— {t, wl1}];
Plot [Evaluate [{x3]t]} /. VSsolg,

{t,0, 4},PlotRange- > All,AxesLabel— {t,x3}];
Plot [Evaluate [{x4]t]} /. VSsolg,

{t,0, 4},PlotRange- > All,AxesLabel- {t,x4}];
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x4
4
2
1 2 U3 !
-2
-4
In[270]: = Plot [Evaluate [{Control}/.VSsolg,{t,0,4}, AxesLabel— {t,u}];
u
20| U
10
WanN , t
= 2
-10
-20

It appears that from these initial conditions the ultimat®eis quite small, but it is

not zero. Notice also the stiction effects. The controlplgive a clear indication of
where sliding begins.

10.9 Problems

Problem 10.19.Consider the magnetic suspension system shown in Figuré)(10

Consider the voltage(t) to be the control input. The attracting force suspending the
mass is
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voltage, v(t)

+

T current, i(t)

1177,

e

[

Fig. 10.4: Magnetic suspension system.

B kii®
(x+ko)?
Suppose the circuit resistanceRsnd the combined inductance of the coil and sus-
pended mass is.
(a) Develop Lagrange’s equations for the system.

(b) Design a variable structure control system. Assumetales are available for
measurement. Assume that the massyind the constankg andk, are uncertain
and can varyt20% from their nominal values.

(c) Develop a simulation of the control system designed )n (b

(d) Assume that only the current and gap width can be measume:thcorporate an
observer in the control design. Compare the state feedbatblaserver based
designs via simulation.

(e) Design a state feedback adaptive controller and conitsaperformance with
the controller of (b) by simulation.

Problem 10.20.Repeat Problem (9.24) using a variable structure controlle
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Problem 10.21.Repeat Problem (9.23) using a variable structure controlle

Problem 10.22 (Synchronous motor, revisited)Consider the synchronous motor
described in Problem (6.23) Suppose that the load tofgaan be measured. Design
a variable structure control using the four control vamash, vq, Vo, Vs . Assume that
there is a power supply that provides a dc voltage-\d§ for the stator and-V; for
the field. The outputs to be regulated are defined as follows:

1. Speed regulation. Define
Y1 = @+ (@ — w) = (—/3Lsitiq—T0) /I+ (- wp), ¢ >0

whereawy is the desired speed.

2. Balanced motor operation. Normally, a 3-phase machidenvisn with line volt-
agesvi, Vo, v3 that are sinusoids of the same magnitude and frequency dhd 12
degrees out of phase. Thus, they sum to zero. Some deviatiortlfis balance
will be allowed, but to regulate it introduce the new state

't
X:/ Vo dt
JO

(recall,vo = (v1 + V2 +v3) /+/3), and define the output

Y2=X
3. Constant-axis current. Define
Y3 =1ld—ldo
whereiqg is assumed given.
4. Constant field current. Define
Ya =1t —lfo

whereig is also given.

Some motivation for choosing this set of regulated outpllibfes from the observa-

tion that the electrical torque & = \/gl_sifiq. Thus, we regulate to an equilibrium
point in whichiy andis assume specified constant values anthkes a value that

insuresTe = T;.. Since the stator current magnitudéds- ig +i2, itis not difficult

to show that, in steady-stafB; = \/gLsifolssinqo whereg is the usual power angle,
i.e., the angle between the stator current and voltage phase

Are the zero dynamics stable?
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Optimal Control

11.1 Introduction
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Hybrid Control Systems

12.1 Introduction

Many systems undergo reconfiguration or switching duringnad and abnormal
operations. Such systems can function in diffemaptesor discrete statetn each

of which the system may exhibit distinct dynamical behavioansitions between
modes are defined by logical conditions that can depend otincaus dynamical
states or external signals. Such systems are calguid system$93] or Mixed
Logical-Dynamical system{d1LD) [6, 29]. The relevance of such problems to power
systems was clearly noted by Dy Liacco in [76, 77, 78]. Thiamtbr is concerned
with power systems that operate in this way.

The class of control problems described herein derives Bpetific applications
in power systems, specifically systems that involve opamaith highly nonlinear
regimes where failure events cause abrupt changes in theted system behavior,
which, in turn, require a change in control strategy.

All of the applications of interest herein involve both comus and discrete dynam-
ics and are conveniently conceived ds/arid automatonSuch a model is composed
of a description of the discrete transition behavior frone omode to another along
with models of continuous dynamic behavior within each mddhe hybrid automa-
ton model has proved to be an important theoretical tool aral key conceptual
device for model building. However, other forms of modeilse the MLD, are far
more convenient for control system design. The ability tovest from one form of
model to another is important.

In the following approach, the transition behavior of a hglautomaton is modeled
by a logical statement (@pecificatio. The logical specification can be converted
into a set of mixed-integer formulas (IP formulashhus, the transition specification
for the automaton is converted into a set of inequalitieslving Boolean variables.

1a computational tool for this purpose has been constructdtathematica This work,
described in [66, 67, 65], extends earlier work in this asgsorted in [108, 75].
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Logical constraints other than the transition dynamicsaiaa be added to the speci-
fication making this a powerful approach to formulating atirapl control problem.
[102] describe a tool for building MLD models that allows thelusion of Boolean
equivalents to logical specifications. So one could use @eirtb create those ex-
pressions from an arbitrary logical specification.

The IP formulas are used in computing the optimal contratsgy. Our approach de-
rives a feedback policy based on finite horizmamic programmingp]. Dynamic
programming has been used extensively in control systeigrdesd has recently
been explored as a tool for designing hybrid system feedbawtcols. It's popular-
ity derives from the generality and broad applicability loé principle of optimality
on which it is based. A drawback of dynamic programming isahese of dimen-
sionality - a term coined by Bellman about 50 years ago, well before tivera of
powerful desktop computers.

Branicky et al [16] laid the groundwork for the use of dynamiogramming in hy-
brid systems. They focused on the existence of optimal aad o@imal controls,
and the establishment of a taxonomy for hybrid systems. 8h [Be authors intro-
duced a discrete version of Bellman’s inequality to computewer bound on the
optimal cost function using linear programming. In this veayapproximation of the
optimal feedback control law is derived. Another innovatwork, [79], considers
the problem of approximating the value function. They ahtleeir procedure value
iteration from which a suboptimal solution is found withiuser specified distance
from the optimal solution. They have applied thédaxed dynamic programming
approach to design a switched power controller for a DC-Diveder.

The hybrid systems study most closely related to our appréaihe one described
by Bemporad et al in their recent paper [15]. They consideraptimal control of
constrained discrete-time linear hybrid systems with gaticor linear performance
criteria. The associated Hamilton-Jacobi-Bellman equatare solved backwards in
time using a multiparametric quadratic (or linear) prognaing solver. Two cases
are considered, one without binary inputs and the other atfehinary inputs. In
the latter case all possible combinations of binary inptessaumerated.

In our case we consider nonlinear discrete-time hybrid dyoawith a general con-
vex cost function with primarily binary controls. A centfehture of our formulation
is that it applies to systems with complex logical constgidefined either by the
transition system or auxiliary considerations. We exgloé fact that the system is
highly constrained and most of the constraints are line8oiolean variables. Thus,
we use theMlathematicaunctionReduce to determine feasible points from which
we identify those of minimum cost by enumerati®educe is a powerful function
that finds feasible solutions by solving equations and ia&s and eliminating
quantifiers. The method used depends on the specific steuofuhe expressions
involved.

In Section 12.3 we provide a specific definition of the protderansidered herein.
Sections 12.4 and 12.5 describe the main concerns of thier pagmely the reduc-
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tion of a logical specification for the discrete subsystera 8et of inequalities and
the use of this model of a hybrid system to design optimallfaell controllers via
dynamic programming. An example is given in Section 12.8t® example shows
how additional logical constraints - other than the traosibehavior - can be incor-
porated into the control problem.

12.2 Foundations of Discrete Event Systems

12.2.1 Preliminaries

12.2.2 Logical Specification of Transition Dynamics
12.2.3 Observations and Masks

12.2.4 Supervisors

12.2.5 Controllability and Observability

12.2.6 Supervisor Synthesis

12.2.7 Power Network Restoration

12.3 Hybrid Systems

12.3.1 Modeling

The class of hybrid systems to be considered is defined asmM®llThe system
operates in one ofm modes denotedy,...,qn. We refer to the set of modes
Q={ai,...,qm} as the discrete state space. The discrete time differdgeéraic
equation (DAE) describing operation in mogas

Xer1 = fi (X, Yo Uk) -
=1,....m 12.1
0= gi (%, Yk Uk) P= e (12.1)

wherex € X C R" is the system continuous stayes Y C RP is the vector of algebraic
variables andi € U C R™is the continuous control. Transitions can occur only be-
tween certain modes. The set of admissible transitioBsdsQ x Q. It is convenient

to view the mode transition system as a graph with elemerniiseo$etQ being the
nodes and the elementsBfbeing the edges. We assume that transitions are instan-
taneous and take place at the beginning of a time intervaif 8system transitions



356 12 Hybrid Control Systems

from modeq; to g at timek we would writeq(k) = g1,q(k™) = gz. We do allow
resets. State trajectories are assumed continuous thewmegits, i.e.x(k) = x(k*),
unless a reset is specified.

Transitions are triggered by exterralentsandguards We denote the finite set of
eventsZ. It is convenient to partition the events into two types;siaohat are con-
trollable (they can be assigned a value by the controlled those that are not. The
latter are exogenous and occur spontaneously. Such an mngimt correspond to
a component failure, or a high level change of operationaden®e will use the
symbolss to represent controllable events apdo represent uncontrollable events.
Thus,> = Sx Pwherese Sandp € P. A guard is a subset of the continuous state
spaceX that enables a transition. A transition enabled by a guaghtmiepresent
a protection device. Not all transitions have guards andestansitions might re-
quire simultaneous satisfaction of a guard and the occoerehan event. The guard
assignment function i€ : E — 2%,

We consider each discrete state lalipk Q, and each eventy € 2, to be logi-
cal variables that take the values True or False. Guardsaaésepecified as logical
conditions. In this way the transition system, includinguis, can be defined by a
logical specification (formulay’.

In summary, a hybrid control system is composed of:

Q, discrete space,

X, continuous state space,

E, set of transitions,

2, event set,

G, guard assignment function,

£, logical specification,

N o o A~ DR

F, family of controlled vector fields.

Example 12.1 (Three mode syster@9nsider the simple three mode hybrid system
shownin Figure 12.1. Each moag, 0, 03, is characterized by continuous dynamics
Xk+l = fQi (Xk7 Uk) ) I = 17 273

Discrete transitions are associated with the events repted by logical variables
p,S1,%,Ss i-e, 2 = {p,s1,%,S3}. For example, if the system is in modg ands;
evaluates to True, then a mode transition occurs in whichrtbde changes from
0: to g2. In this example, we use two different symbeland p to denote transition
variables to underscore the fact that some transitionsartalable and others not
so.

In our formulation the transition system behavior is defibgdhe logical specifica-
tion:
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Fig. 12.1: Three mode hybrid system with controllable ancloutrollable events.

Z =exactly(1,{q (t),q2(t),q ()})/\exactly(l {oaa (t7), g2 (1), a3 (tT) }) A

MM)A&:>mOﬂ)Am1 Apéqﬂﬁd)(qa “(svp) = o (th))A
mx)A&:qMﬁDA( ﬁ®$QAﬁ»A
(oa(t A%éqAH)A( JA-s3 =03 (tT))

(12.2)
Let us dissect this specification. The first line expressedatt that the system can
only be in one discrete state before the transition (at tiveand after the transition
(at timet ™). The next line describes all possible transitions fronesta. Similarly,
the last line characterizes all possible transitions frtatesqg, andqs, respectively.

For computational purposes it is useful to associate witth éagical variable, say
a, a Boolean variable or indicator functiody, such thad, assumes the values 1 or
0 corresponding respectively tobeing True or False. It is convenient to define the
discrete state vecta = [y, .- ., Oy, the control event vectals = [J, ..., 35,
and the exogenous event vectyr= [Jp,, ..., Jp,, |. Precisely one of the elements
of &y will be unity and all others will be zero.

Notice that with the introduction of the Boolean variables @an replace the set of
dynamical equations (12.24) with the single relation

W+”—f(W)%w,wm)
+ m 'am X 7u
0=g(x (k),%(lg),u(k)) (12.3)

12.3.2 The Control problem

We assume that the system is observed in operation over soitgetiine horizon
T that is divided intoN discrete time intervals of equal length. A control policyis
sequence of functions
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1= { o (X0, 04,0 »-- - UN-1 (XN-1, 8 (N-1)) }

such that
U, Bs] = Hic (X, Ogk)

Thus, Lk generates the continuous contugland the discrete contrdk that are to
be applied at timé, based on the stafe, ) observed at timé.

Consider the set ofn-tuples {0,1}™. Let A, denote the subset of elemenisc
{0,1}™ that satisfyd; + --- + dm = 1. Denote byl the set of sequences of func-
tions i : X x Am — U x {0,1}"™ that are piecewise continuous ¥n

Now, given the initial statgxo,dq0) the problem is to find a policyr* € 11, that
minimizes the cost functional

It (X0, 8q,0) = N (XN, FgN) + g Gk (X Gges Hic (Xr Ok ) (12.4)

Specifically, theOptimal Feedback Control Problera defined as follows. For each
Xo € X, &q,0 € Am determine the control policy* € I1 that minimizes the cost (12.26)
subject to the constraints (12.24) and the logical spetifica.?, i.e.,

I (%0, 05,0) < Irr(%0,040) Vre (12.5)

wherelT C 1 is the subset of policies that steers (12.24) along trajisstthat satisfy
Z.

Notice that if a receding horizon optimal control is desjredce the optimal policy
is determined, we need only implement the state feedbadkaton

[u, 8] = Ho (X, &) (12.6)

12.4 Logical Specification to IP Formulas

The first step in solving the optimal control problem is toysBrm the logical speci-
fication.Z into a set of inequalities involving integer (in fact, Boalg variables and
possibly real variables, so-callé®-formulas The idea of formulating optimization
problems using logical constraints and then convertingtbe IP formulas has a
long history. This concept was recently used as a means togocate qualitative
information in process control and monitoring [103], andiglly introduced into
the study of hybrid systems in [6].

McKinnon, [84], proposed the inclusion of logical constitgiin optimization meth-
ods. They suggested a sequence of transformations thgstailogical specification
into a set of IP-formulas. Li, [75], presents a systematijoethm for transforming
logic formulas into IP formulas. Those methods have beenifieddand extended in
order to obtain simpler and more compact IP formulas wittepthodifications to
enhance their applicability to hybrid systems.
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12.4.1 Logical Modeling Language

We use a logical specification to describe the transitiorabiein of a hybrid au-
tomaton. The specification is simply a logical formula. Hexe describe the set of
formulas, i.e., the language, to be employedrApositional variables a variable
that can assume the values True or Fals@r@positional formulais composed of
propositional variabledogical connectivegspecificallyA, Vv, =, <, —), predicates
(Boolean-valued functions of propositional variables)l @onstraints. Specifically,
we will use the predicates: atleast S), atmosftm, S), exactlym,S), and non¢S),
wherem > 1 is an integer an&is a list of propositional variables or formulas. A
constraint is an arithmetic equality or inequality invelgiinteger or real numbers
and variables. Constraints evaluate to True (satisfiedatseR not satisfied).

Formulas are defined by the following statements:

1. a propositional variable or a constraint is an atomic fdem
2. an atomic formula is a formula,

3. F1 ~ Ry is a formula ifF, andF, are formulas and- is one of the logical con-
nectives,

4. —F is a formula ifF is a formula,

5. atleasfm,S), atmostm, S), exactlym, S), and nonéS) are formulas ifSis a list
of formulas andn > 1 is an integer.

12.4.2 Transformation to IP Formulas

Logical formulas are convenient for problem formulatiomwéver, in order to com-
pute efficiently it is often convenient to convert a logicalrhula into a set of
so-called IP-formula$, that is, a set of linear equalities or inequalities invotyi
Boolean variables. To do this, we use the transformationgatore defined in [74].
Following [84], the process involves first transforming théginal formula into an
intermediate form called A-form and then a series of transformations are applied
that reduce thé& -form to a set of IP formulas.

Thel -form is a logically equivalent normal form that leads to arenoompact set
of IP formulas than better known normal forms like the CNFnjooctive normal
form) or DNF (disjunctive normal form).

2While, generally, computing with IP-formulas is preferrgB] shows that there are in-
stances when it is an advantage to compute using the origigiahl constraint.
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12.4.3 Implementation

The basic function in ouMathematicamplementation isGenlP which takes as
two arguments, the specification and a list of variablebgeeipropositional variables
or bounded real or integer variables. The latter are spddffi¢he forma < x < b.
GenlP performs a series of transformations and simplificatiors r@turns the IP
formulas. A typical usage would look like:

GenIP[(ql®g2) A (qol @ ga2)A((9LA (X > 0)) = qa2)A
((@2As) = qal),{gl,02,q01,q02,5,—2 < x < 2}]

{1-81—0852>0,—-1+341 + g > 0,1— 841 — g > O,
d7—5q1+5qq2207—1+5qq1+5qq2207

1-8p+0gqr —0>0,—2+2d7+x<0,-2<x< 2,
0<d7<10<81<10<8p<10<&u<L,
0<&p<10<&<1}

Notice that propositional variables are replaced by Baoladicator functions, e.g.,
0, is replaced by, and new auxiliary variables may be introduced, in this cbse

If all of the guards are linear (set boundaries are compo$édihear segments),
then the IP formulas are system of linear constraints inmglthe Boolean variables
&y, Oq+» Os, Op, respectively, the discrete state before transition, therette state after
transition, the controllable events, the exogenous evé@hisy also involve a set of
auxiliary Boolean variablesl, introduced during the transformation process, and the
real state variables, The general form i$

E55q+ + Eed < Eg+ E1x+ E26q + E3ds+ E45p (22.7)

where the matrices have appropriate dimensions. As we &4éliis examples below,
with x, dq, &, 8p given, these inequalities typically provide a unique dolufor the
unknownsdy+ andd. The system evolution is described by the closed system of
equations (12.7) and (12.25).

12.5 Constructing the Optimal Solution

An optimal policyr* is one that satisfies (12.27). Now we are in a position to apply
Bellman’s principle of optimality: supposg = {ui‘, " .7;1,’371} is an optimal con-
trol policy. Then the sub-policy" = {i",..., 45;_1 }, 1<i < N-—1is optimal with
respect to the cost function (12.26).

Let us denote the optimal cost of the trajectory beginning.@,; asJ" (X, dq,). It
follows from the principle of optimality that

SLinearity only obtains if the conditions in the specificatimvolving real variables are
themselves linear.
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31 (Xi7175q,<i71>> = mj?{gi—l (Xi7175q<7i71)7ﬂi71> +J (Xa,5q,i)} (12.8)

Equation (12.8) provides a mechanism for backward receirsdlution of the op-
timization problem. To begin the backward recursion, wedntesolve the single
stage problem witth = N. The end poinky, o is free, so we begin at a general
terminal point

. ) g,x,,é_’,,u,
le(xwlﬁqw)—m'q{ ) 1<+Ng§<?N<N1,l§q+,(NNll>>)} 29

Once the paipg_4,J_; is obtained, we computgy_,, J§_»,. Continuing in this
way we obtain

o) on=i (XN—is O (N—i) s IN—i

N (XN7i75q7(N—i)> =min I ( I* HND) I) (12.10)
HN-i +Iit1 (fN*ivéqh(N—i))

for2<i<N.

We need to solve (12.10) recursively backwardjfer2, ... N after initializing with
(12.9). We begin by constructing a discrete grid on the comius state space. The
discrete space is denotéd At each iteration the optimal control and the optimal
cost are evaluated at discrete point€Qx X. To continue with the next stage we
need to set up an interpolation function to cover all point®ix X.

We exploit the fact that the system is highly constrained @ntbst all of the con-
straints are linear in Boolean variables. The basic apprizaas follows:
1. Before beginning the time iteration:

a) Separate the inequalities into binary and real setsyyfoamulas contain
only binary variables, real formulas can contain both hirerd real vari-
ables.

b) For eachq € Q, obtain all feasible solutions of the binary inequalitias;
list of possible solutions of pai|(95q+ , d). Our implementation employs the
MathematicdunctionReduce .

c) Define projectiorX — X whereX is the subspace of real states actually
appearing in the real equations.

d) Foreachy € X»

i. pre-screen the binary solutions to eliminate those thatat produce so-
lutions to the real inequalities - typically a very largediian is dropped

ii. forevery feasible combination of binary variables db&al above, solve
the real inequalities for the real variables

e) Lift real solutions to entir.

2. For each,
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a) For each paifg,x) € Q x X

i. enumerate the values of the cost to go using the feasibdeo$dinary
and real variables

ii. selectthe minimum

In step 1b above the number of solutions corresponding to @aan be very large
because there are numerous redundant solutions assowigttedonactive transi-
tions. Thus, we add additional logical constraints thatBp¢he inactive transitions.
Step 1c exploits the fact that some real states do not appeheireal formulas.
Because a large fraction of the binary solutions do not leackal solutions, the
pre-screening in step 1(d)i is very effective in reducingpaiting time. Finally, we
note that the inequalities are independent of the stagesadyhamic programming
recursion. Thus, step 1d, which is by far the most intensbraputational element
of the optimization is done only once before the recursiep 2a begins.

12.6 Example: Load Shedding

This section provides a simple illustration of the formidatand solution of a power
management optimal control problem. For simplicity of esifion load shedding is
used as a means for accommodating transmission line faults.

12.6.1 Network and Load Dynamics

A relatively simple system that is known to exhibit intemegtvoltage stability char-
acteristics is a single generator feeding an aggregatetldomposed of constant
impedance loads and induction motors. The system has bedrastudy the effect
of tap changing transformers and capacitor banks in voltagé&ol, e.g., [88, 90, 4].

Consider the system shown in Figure 12.2. The system censisi generator, a
transmission line, an on-load tap changing transformeM@Lland an aggregated
load. The generator is characterized by a ‘constant volleénd reactance’ model.
The generator internal bus voltagds used to maintain the voltage at bus 2; so long
asE remains within the limits imposed by the excitation curriémits. The OLTC
ordinarily moves in small discrete steps over a narrow rafige load is an aggregate
composed of parallel induction motors and constant impeeléads. An induction
motor can be characterized as an impedance with slowly mangsistance; conse-
quently, the aggregate load is represented by constantiamge - actually, a slowly
varying impedance, where the impedance depends on thegaggiaduction motor
slip.

The network equations are easily obtained. Supdgs® denote the voltage angles
at bus 1 and 2. Define the relative anf@le= &, — d1. The network equations are
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Fig. 12.2: System configuration.

l1 0o = Py — cV2
0= (a/n)EVzsin6, +cV2
0= (a/n)EVzcost, + dVZ

From the last two equations we obtain

a/n 4 C
Vo= —"—_E, @ =tan =
SRV % d

The power absorbed by the load is
A =-Vic, Qu=\Vid

Now, let us turn to the induction motors. An equivalent cit¢ar an induction mo-
tor is shown in Figure 12.3. Here, the parametysXs denote the resistance and
inductance of the stataX,, denotes the magnetizing inductance, &d; the rotor
resistance and inductance. The resistaidé — s) /srepresents the motor electrical
output power. We will neglect the small stator resistancg iaductance. We also
assume the approximation of large magnetizing inductanaedeptable.

Fig. 12.3: Induction motor equivalent circuit.

Under these conditions obtain the following. The real podalivered to the rotor,
Py, and the power delivered to the shd, are

Po=VériSe Pe=Pa(1-9
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The dynamical equation for the motor (Newton’s law) is

. 1
Wn = —Olb (Pa—Pm)

Im

Introducing the slips, s= (wp — wm)/wp, the motor dynamics take the form

e ml b (p yaRSES
g P g <P”‘ “ R?+sz><3>

12.6.2 System Operation

In the following, we allow for shedding a fractiom, of the load. In the present
example, we allow three different values pfincluding zero, saj € {0,n1,n2} .
Consequently, there is normal operation and two priowtizicks of load that can
be dropped in accordance with the transition behavior deéfind-igure 12.4. The
corresponding logical specification is

£ = exactly(1,{q(t), 02 (1), a3t )})AexaC“Y(l {on (t7) .02 (tF) 08 (t7) }) A
(art)A-sp=0p(t™)) At Aslr>q1(t+))A
() A-s2=03(tT)) A (% A81=>q1(t+))A( “(s1V-s) = g2 (1)) A
(A= tT))A(awt) A= a3 (th))

Load Shed Level 0 Load Shed Level 1 Load Shed Level 2

o) %

Fig. 12.4: Transition diagram for load shedding optimiaati

In the present case, assume the blocks are sized such that
@=n=0 0q=n=04 g=n=08

Assume also that the OLTC ratio is fixed, i.e., the OLTC is reshg used for control,
son = const. If the OLTC is to be employed, the dynamics of tap ckangst be
added.

Iy = Py — CV5 (12.11)

\/C+d3
E=(1-n)Y— "V, (12.12)

a/n 2
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_@-n SRs(1-9
=R (Pm_V2R1'2+52Xr2) (12.13)
- (L, Rs

X s

Equation (12.11) represents turbine-generator dynar@iodinarily, the power in-
put Py is adjusted to regulate the speedwhich is to be maintained at the value
wp. Assume that regulation is fast and accurate. It is possibievestigate the im-
pact of frequency variation on system behavior. If it wersuased that frequency
variations were small, then the effect on all impedance$ddoe approximated, and
this is often done. That has not been included here, so there apparent coupling
between (12.11) and the remaining equations, consequecdly be dropped. Equa-
tion (12.12) represents the network voltage characteriblie field voltagé is used

to control the load bus voltage. It will be assumed that it is desired to maintain
V, = 1. If the exciter dynamics are ignore, then (12.12) allovesdbtermination of
the field voltage that yields the desired load bus voltagevéder, the field voltage is
strictly limited, 0< E < 2. Assume that only the upper limit is a binding constraint.
There are two possibilities for satisfying (12.12):

_ _ V/4d? _ _ a/n
Vo, =1 E= am OrE_Z’VZ_Zm

Equation (12.21) represents the aggregated motor dynaamidshe load admittance
is given by the last two equations. The system datRis= 2, R, = 0.25, X; =
0.125 a=1 (nomina) , Imap = 4.

12.6.3 The Optimal Control Problem Without OLTC, n=1

The problem is formulated as an N step moving horizon optitoakrol problem,
in which the slip dynamics are written in discrete time foffhe control variables
areE (k),n (k). The goal is to keep the load voltage close to 1, specifically, it is
required that ®5<V, < 1.05. Our intent is to use the field voltade, to regulate the
terminal voltagey, to 1 p.u. Because 4 E < 2 is constrained, specify that solutions
must satisfy

M=1AN0<E<2)V(E=2)

If the field voltage saturates, the only remaining optiowishied some load. We seek
an optimal control policy, i.e., a sequence of conto(f),...,u(N—1) , u(k) =
n (k) , that minimizes the cost function

3= 3150 (V200 =1+ rain ()P)
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subject to the system constraints. Some rough assessnfi@pigropriate weighting
constants; can be made. Load shedding should be avoided with respegutating
V5 unless thé/, tolerance is violated. Hence it is desired that> 0.252/0.052 =
1/25.

In summary, the following equations are obtained
1. The slip dynamics in discrete time form (wih= s(tx),t = tx_1+h)
SkJrl = f (SKaVZa r’)

2. The transition specification in IP form

108,08, 0, >0, —1+38 +3d,+0,>0

1- 5 5q 5+>0 1+5q1r+5q;+5q§20

1- 5q1+5+—551>0 1—5q2+5qf—55120
1- 5q2+5;—65220 1—5q3+5q;—65220
—0, +0g; +0 20
—6q2+5q§+55220, —6q3+5q§+55220
0< 8, <1,0< &, <1,0< &, <1
0§5q+§1,0§5q+§1,0§5q+§1
1 2 3
0<6 <1,0<6 <1

3. The IP formulas for the logical constraint

3-di—E>0, 1-d1+E>0, —-2d+E>0
—2d1+Vo >0, —-2+4+d1+Vo<0
0<d;,dr <1, OL<EV, <2

4. And the IP formulas for the load shed parameater

—0.4d4+n >0, —-08ds+n >0,
d3—5q1r20, d4—5+>0 d5—5+>0
—14+d3+n <0, —1+06d4—|—rl<0

—-1+0.2d5s+n <0
0<d3<1l, 0<ds<1, 0<ds<1l, 0<n<1

One result is shown in Figure 12.5. It illustrates the optiload shedding strategy
following a line failure represented as a reductioaof he feedback control is given
as a function of the state - the latter composed of the contisglip and the three
discrete states. At each state, the values of the contiohsdi,, &, are given. The
controlled transitions are also indicated.

Suppose immediately post-failure, the system is in mmpdevith a reduced slip of
0.1, then the system will respond as follows. Given a medashpower level of 0.7,
the equilibrium slip is about 0.47. As slip increases towtg@quilibrium value, the
first block of load is dropped at abosi= 0.3 and the second at aba#= 0.4.
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0 01 02 03 04 05
S
J. =0 — _
4 7=0 ; o 65—0 65—0
‘ ‘ ‘ 220/ \a.=0/) \a=0)
‘l ‘l ‘l ) ) J
4 7=04 %0
3, =0
" " " [ \
‘\ ‘\ ‘\ , )
o n=o08 5=0Y [4=0
6=0) \ g,=0

Fig. 12.5: Depiction of the feedback law obtained vata 0.25,h = 0.5, andN = 20.

12.6.4 Incorporating Time Delays

Sometimes it is desirable to insure that there is a finite timetion between two
successive controlled transitions. It is easy to do thisnopliporating a time ‘resi-
dence’ requirement within a discrete state. For examplepase we wish to insure
that a load shedding action will not be followed by anothetilat least a timeA
has passed. This can be accomplished by requiring thateafter into statey, the
system must remain igp for at least timeA.

To accomplish this we introduce a resetting ‘clock’
T(k+1)=1(k")+h

wheret(k™) = 0 upon entry intay, from g, or gz or 7(k*) = 1(k); and replace the
specificationZ by

& =exactly(1, {01 (t),03(t), 03 (t)}) A
exactly(L, {q. (t7) .03 (t*) wth)})A
(mOA-s=qt")AT(t!)=0
(Q1()/\51:>Q1(t+)/\T(t+) T()
(ROASIAT()>A =g (t )/\
() A-SAT(E)>A=0o3(t )/\r(t*):r(t) A

ROA((SLATE)>A)V(=AT({H) >4))) |
=qQtT)ATEY) =1(t)
(A= {tT)AT(T)=0)A
(BOA-s=agth) () =101)

The control law now becomes a function of the discrete stléstwo components of
the continuous state: the skpand the clock variable. With time delayA = 1 the
control law is virtually identical to that shown in Figure.b2xpect that the clock
dependence inhibits transitions fragas required.

_
+
~
I
~
—
—
~—
~
>
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We will not display the resulting IP formulas, but it is inésting to note that the
binary equations involve 24 binary variables 3 of which & durrent state. Conse-
quently, there are2 = 2,097,152 possible solutions, but actually only 1000 - 2000
prove to be feasible (depending on the current discrete)statom these emerge
about 40-80 feasible real solutions. Finally, the assediabst for these few solu-
tions are enumerated and a minimum cost control is chosen.

12.7 Induction Motor Load with UPS

A relatively simple system that is known to exhibit intefegtvoltage stability char-

acteristics is a single generator feeding an aggregatelldomposed of constant
impedance loads and induction motors [90]. By expandingshistem to include a
vital load with a UPS, as shown in Figure 12.6, we obtain onatefest to us.

Vital load

Fig. 12.6: System with vital load and UPS.

The primary means for voltage control is the field voltagewieeer, in the event of
a transmission line fault it may be necessary to shed loadderdo avoid a system
collapse. This can be accomplished by dropping non-vitadi Im discrete blocks
and, if necessary switching the vital load to battery supply

Assume that two blocks of non-vital load can be dropped irddpntly by open-
ing circuit breakers. Correspondingly, a load shed paramist introducedn €
{0,n1,n2} that denotes the fraction of load dropped.

The battery is connected to the DC load bus through a DC-D@ester. There are
three possible UPS operating modes:

1. Battery unconnected.
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2. Battery discharging; The battery and vital load are detdcfrom the rest of
the network. The battery supplies the load through a voltagerolled DC-DC
converter set up to keep the load voltage constant.

3. Battery charging; In this mode the battery is chargeditfha DC-DC converter
operated in current controlled mode — the current is coletldio a specified
value.

The overall system transition system is shown in Figure .12 .iépresents opera-
tional constraints that are imposed on the system.

Charge

Line Failure
Load Shed Level 2

Line Failure
Load Shed Level 1

%

Line Failure
Load Shed Level 0

G

Load Shed Level 0

Load Shed Level 2

Load Shed Level 1

%

% %

Fig. 12.7: Transition behavior for system with UPS.

12.7.1 Dynamics
Battery disconnected, modesj;, 02,3

The voltage regulated rectifier controls the voltage on \d@ad bus.We assume that
the rectifier is power factor corrected so that from the AG %l the rectifier, the
vital load looks like a constant power load with unity powacfP = R, Q= 0.
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Let &1, 8, denote the voltage angles at bus 1 and 2. Define the relatole 8n=
&, — 01. The network equations are

R =aEWsing, — cVZ

0=aE\scosh, +dVZ (12.16)

WhereR, is the power consumed by the vital load and jd is the admittance of the
non-vital aggregate load.

The field voltageE is used to control the load bus voltageto its desired nominal
value of 1. If we ignore the exciter dynamics, then (12.18)ves the determination
of the field voltage that yields the desired load bus voltageided the resultar

is within its strict limits, 0< E < 2. It is always the upper limit that is the binding
constraint. This implies two possibilities for satisfyi(.16): eithei, =1 orE =

2. These are:

Vp=1, E= YeRE g p (12.17)
E=2,
2_ ,\/m
V2: \/Za cR, (§12a+d24a cR,—d P\,7 (12.18)

0< P\,<2a2(\/m—c)

Once the excitation system saturates there is an uppettdirRjt as seen in (12.18).
This is the voltage collapse bifurcation point. Also, thesations are only good for
R, > 0. WhenR, = 0 we have

a
Vo = ———E 12.19
SRV ( )

Equation (12.17) (non-saturated field) does approach thyggpiimit ask, — 0 , but
the Equation (12.18) (saturated field) does not. This is stsauld be.

Remark 12.2 (Network Solutiords discussed in Remark 12.5 we can express the
network constraints in terms of the logical constraint

foz(V2=1:>E221)/\(E=2:>V2=ZZ) (1220)

wherez;, z, are defined via (12.17), (12.18), and (12.19).

Battery Charging, modeq,

The battery model is composed of a differential equatiocdeisg the battery 'state
of charge’o and an output map that gives the battery terminal voltg@e a function
of the state of charge.
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d 1.

dta CI, w="F(0),0<0<1
wherei is the battery charging current a@ds the battery effective capacitance. The
DC-DC converter operates in current control mode so theehais charged with
constant current,= ic. While charging we have:

do ic

dt C
Because the AC-DC rectifier maintains constdgtfrom the AC side of the recti-
fier, charging looks like an additional constant power Idads- Viic. The network

supplies both the vital load and the power to charge the tyaff&us, the network
relation is given by Equations (12.17) and (12.18) visthreplace byR, + P..

Battery Discharging, modesgs, gs

The vital loads and battery are separated from the rest ofythem and draw no
power from the network. Consequently the the relationsk&pvbenE andV; is
given by Equation (12.19). The DC-DC converter now mairgaionstant voltage
on bus 3, so that the battery current is —R,/V3 and

do _ R
dt C\;
In the following study we tak€ = 0.5 andR, = 10.

Induction Motors

If we neglect the small stator resistance and inductanceaasgime a large magne-
tizing inductance, the equivalent circuit for an inductimotor consists of a series
rotor resistance and inductan®e X;. Define the slips = (wy — wm)/wp and letPy
denote the mechanical load power. Then the motor dynankeshe form

.1 Rs(1—s)
= oy (Pm—V_fm) (12.21)

Load Shedding

We assume discrete load shedding blocks and defiteerepresent the fraction of
load shed. Thug can assume a finite number of values @ < 1. The non-vital
load admittances, taking into account the load sheddinarpeter, are:

c=(1-n)cy, o= (%-‘r%) (12.22)
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X &

Equation (12.21) represents the aggregated motor dynaamdshe load admittance
is given by the last two equations, (12.22), (12.23). Théssygata iR, =2, R =
0.25, X = 0.125 a=1 (nomina) , Imw? = 4.

12.7.2 IP Formulas for UPS System

Four logical constraints need to be converted to IP formulas

1. the network specificatiotzy, Equation (12.20)

2. the transition specificatiodss, of Figure 12.7

(3) the excitation shedding specification

S =MVo=1A0<E<2)V(E=2)

(4) the load shedding specification

L= (qf == n=0)A(gg =n=04)A
(g3 = n=0.98)

The corresponding IP formulas are generated automati®@éydon’t display them
here because of space limitations. All of the inequalitiesveéd from.#; involve
only binary variables while some of those derived frafg, %> and .#3 involve
both binary and real variables. The latter also containlguyibinary variabled;
introduced during the conversion process. All of the inditjea are linear in all
variables.

12.7.3 Optimal Control

An optimal control policy is sought that minimizes the castdtion

I= ZN1<||V2(k)—1|2+f02||0—1|2>
k=0 +ra]ine (k) ||

subject to the system constraints. In the following we take 1,r; = 1/25.

Consider the optimal controller for a line fault that resuh a line admittance of
a=0.375. This is a severe fault, but one that is manageable. @tespace includes
the 7 discrete states (modes) and two continuous statestiadumotor slip,s, in-
dicative of power, and battery state, that represents the fractional battery charge.
For computational purposes, the continuous state is dizeds € {.1,.2,.3,.4,.5}
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ando € {.25,.5,.75.1.0}, and the feedback control is computed in terms of these
140 states. In implementation an interpolation functiomsed for the continuous
states.

Figures 12.8, 12.9 and 12.10 illustrate a particular feekbajectory in which the
initial battery state of charge is 0.1 and the initial slipis

I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
Time - sec

Fig. 12.8: Because of the low battery charge an initial dwitto charging mode 4 occurs
before load is dropped, modes 2 and 3.

0.25 T

Battery Charge
— — —Slip

0.2 —n 4

0.1 / -

0.05 b

0 2 4 6 8 10 12 14 16 18 20
Time - sec

Fig. 12.9: The battery initially charges, but increasing,shnd hence electrical power, even-
tually requires load shedding.

12.8 Ship Integrated Electric Power System

The number of power supply sources available on a ship poyséem is determined
by the need to supply the maximum anticipated electricalmogulsion load. On a
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Fig. 12.10: After about 1 second the excitation saturateslaad bus voltage drops. Load
voltage regulation is re-established following load stiegd

naval ship, operational modes that require high level ofhenlesources persist only
for a small fraction of the total time a ship is in service. €equently, a plan for fuel
reduction should focus on the low load, normal operatioas dominate the ship’s
lifetime. A significant reduction of fuel consumption casué from running a small
number of turbine-generators during these periods. Horvévere is a real risk of
contingencies that could lead to the need to curtail loadhJore an acceptable level
of reliability of power supply it is necessary to maintairifiient on-line generation
and to distribute it appropriately around the network.

In [23], the authors draw an important distinction betwservivability and qual-
ity of service(QOS). Survivability addresses prevention of fault pradam and
restoration of service under severe damage conditionsesk&pOS concerns insur-
ing a reliable supply of power to loads during normal operzj see also [24] and
[45]. QOS is an important consideration during normal op)ens because equip-
ment malfunction is a relativity common occurrence. Notladlds have the same
requirements for continuity of power supply. As used in [Z3DS is quantified as
themean time between service interruptiomsere a service interruption is defined
as a degraded network condition that lasts longer than adaadolerate before los-
ing functionality. In [45] loads are divided into four categes that depend on two
time parameters associated with the power netwdrks the reconfiguration time:
the maximum time to reconfigure the network without bringimgadditional gener-
ators.T, is the generator start time: the time to bring on-line thevskst generator.
Accordingly, four categories of loads are defined:

1. Uninterruptible loads: cannot tolerate a power loss oatlonT; .

2. Short term interruptible loads: can tolerate a power tdsturationT;, but not
To.
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3. Long term interruptible loads: can tolerate a power IdstuoationTs,.

4. Exempt loads: loads not considered in evaluating QOS.

Because this QOS metric is intended primarily for DC disttibn systems it does
not consider power quality measures such as harmonic dpievoltage fluctua-
tions. In fact, it does not consider dynamics at all. In ACteyss, however, dynamics
are important.

In [70], the authors formulate the fuel optimization prohlaith QOS constraints,
where QOS has a meaning appropriate for AC system poweltguitie problem is
formulated as follows. Given a time interv§0, T|, over which the ship is to perform
a specified mission with corresponding maximum logdyaving a corresponding
distribution over the network, determine a commitmejy,of generation resources
that minimizes fuel costs, supplies the load, and alsof@iQOS constraints. In
this case the QOS constraints are defined as follows.

Definition 12.3. Given:

1. a set of contingency event®,= {ri,i=1,---,m},

2. a set of performance variables (e.g., bus voltages, limeats, frequencyy? =
{yi,i=1,---,p}, each variable with a corresponding admissible range sa tha
Yimin < Vi (t) < Yimaxand a time duration, {T for which an out of range value
can be tolerated.

The QOS constraints are satisfied if for every#, occurring at any timerte [0, T,
at which time the network is in equilibrium, none of the perfance variablesyt)
experience a constraint violation for a duration longer thitgs corresponding;T

The fuel optimization problem as formulated above is ndlyiea static optimiza-
tion problem as meaningful fuel cost savings are obtainednwheasured over a
long period of operation. QOS constraints, on the other hamnlve short term
dynamics. They are incorporated by eliminating from coesition any otherwise
feasible commitment configuration. This is accomplisheé\®iuating the response
of the given configuration to the specified contingenciesallempt is made to op-
timize that response. In [57] that analysis is expandedIltwahe temporary use
of load shedding and energy storage to avoid violating ogeticy constraints. The
proposed frame-work also allows inclusion of load scheduhs a means of fuel
conservation.

In the following discussion, an example based on the shipulsion system de-
scribed in Appendix@? will be employed. The electrical load is assumed constant
over the duration of the analysis. Its value varies with th&sion and the season and
may range from about 2000 KW to 4500 KW.
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12.8.1 The Fuel Consumption Model

It is instructive to first consider the operation of the shfit$ various configurations
in terms of fuel consumption without regard to QOS constgaifihe only constraints
considered here, are the generation capacity of each oétiergtors and the electric
power flow constraints of the network.

Fuel consumption data was obtained from the Navy’s Energys€wation Program
web site http://www.i-encon.com. Based on the DDG 51 CLA$8PS data the
associated fuel data and fuel curves for both Allison GTGs@E LM2500 GTMs

can be obtained. Curve fits where used to parameterize tlaeiaerms of ship
speedy, in knots. There are three propulsion alignments with égtiuel curves.

Trail Shaft One GTM engine online and one shaft windmilling.

frs=117.17 exp(0.1087v)

Split Plant One GTM engine online on each shaft.

fsp =18174 exp(0.098v)

Full Power Two GTM engines online on each shaft.

fep = 33448 exp(0.082v)

For theAllison 501-K34 GTG fuel consumption, the curve was parameterized in
KW electric load,L and the number of GTG8lgTc.

feTc=0.068L+97.4NgT¢

Figures 12.11 and 12.12 show the fuel consumption at lowdsp@e to 8 knots)
and high speed (above 8 knots), respectively, assuming startrelectric load of
3000 KW. Split plant operation has two GTMs operational, oneeach shaft with
all electric power supplied by two GTGs, as one would not bi#icsent. This is
the most fuel costly configuration. Trail shaft operatiosdésnewhat better as only
one GTM is operational. Note that one GTM can comfortablydpize 22 knots.
The HED motoring configuration with 2 GTGs supplying 3000 Kakid 1500 KW
(or 2011 HP) for propulsion — so that about 8 knots is achilevabwith 500 KW
remining. This is the most fuel efficient configuration fowlepeed operation, see
Figure 12.11. The HED generation configuration allows althaf GTGs to be shut
down, but this configuration is not as efficient as motoring.

The HED motoring configuration can only be used above 8 kndts 3vGTGs op-
erational, thereby, increasing fuel consumption andnigidi to about the same as
trail shaft HED generation. With three GTGs and 3000 KW ottileal load, it can
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only produce a maximum speed of about 12 knots. Consequerglgmitted from
the high speed considerations in Figure 12.12. In the higledpange, trail shaft
HED generation is the most fuel efficient operating confitjara Also note that the
optimal speed is in the range of 14-15 knots.

Fuel Consumption
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. —  Split Plant
250 \\ - Trail Shaft
N
N -~ HED Mot, 2GTG
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S 2000 U --  HEDGenTS 8
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| | | | | |
2 3 4 5 6 7 8

Speed, Knots

Fig. 12.11: Low speed fuel consumption as a function of speedarious configurations.
Electrical load fixed at 3,000 KW.
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Fig. 12.12: High speed fuel consumption as a function of dpeevarious configurations.
Electrical load fixed at 3,000 KW.
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12.8.2 Optimal Response to Contingencies

From Section 12.8.1, it is clear that without consideratibisupply reliability the
most efficient operational configuration at low speed id shaft HED motoring,
and at high speed operation it is trail shaft HED generafidve. question now turns
to how QOS constraints alters this picture. In accordandke Wefinition 12.3, to
answer this it is necessary to evaluate the candidate coafign with respect to

all contingency events ig¢Z. This requires delineating the admissible corrective ac-
tions to each contingency and then evaluating the correipgmesponse in terms
of continuity of supply variable®’.

Example 12.4Low speed Operation: Loss of Generator. As an example, densi
operation of the system described in Appen@dat 7 knots, so the trail shaft HED
motoring is the most fuel efficient configuration. Suppose ofithe specified con-
tingencies is loss of one of the two GTGs. Figure 12.13 itatsts the situation in
terms of a state diagram. The normal operating siateonsists of two GTGs each
producing 2250 KW. The system operating in stgte@xperiences an external event
e, corresponding to a GTG failure inducing a transition toestpt From the failed
state it is desired to restore the system back to the HED ingtatate with two
GTGs and to do so without violating the QOS requirements.cbomplish this the
controller should react with a sequence of corrective astidn this example the
actions to be taken include:

1. Start up the spare GTG (it takes 6 minutes to get from skurido full power).
2. Temporarily drop non-vital load (1000 KW),

3. Supply power, temporarily from the emergency storageuteo(ESM)

4. Use the generator crisis capacity (4500 KW for up to 5 nagut

The discrete statag,i = 2,...,6 are illustrated along with admissible controllable
transitionss,i = 1,...,9. The contingency triggering event cause the system te tran
sition fromq; to gz. There are four controlled events leading to transitiomfigp.

Any departure from statg, initiates startup of GTG 3. Now, it is proposed to select
thebestsequence of controlled transitions aimed at satisfyingdfes constraints.

If the best does indeed satisfy the constraints as speaifiedfinition 12.3, then the
same process can be followed for the other contingenciélsana fails the test. If

all contingencies have an adequate response sequendeg thede is accepted as a
valid operating configuration.

In earlier publications [67] and [65] the authors introddiea approach that uses a
nonlinear DAE model to describe the continuous state dyesnm [57] new con-
cepts were introduced for improving the efficiency of the alyiic programming
computations. Logical specifications are used to definedh@ssible transition be-
havior of the discrete system, to incorporate saturatich@icontinuous control, to
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4 N

Trail Shaft

2 GTG+ESM-NVL

Fig. 12.13: Possible remedial strategies following los&®f5 from trail shaft motoring con-
figuration.

characterize the algebraic constraints of the DAE model,iathe definition of the
the cost function. Conversion of the logical specificatitmsiteger formulas using
symbolic computation enables the use of mixed-integer ayog@rogramming to
derive an optimal feedback control.

YF@ [;] vw- @ [,] véf-c@[i]
@ Y, @ Y, @ Y,
G B Gzl Gz B
®4 o Y or)
- : -

Fig. 12.14: The distribution network 12 bus configuratiocliles the generator internal
buses.
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Modeling

The system operates in onerafmodes denoted;,...,qm. Q = {d1,...,qm} is the
discrete state space. The continuous time differentgaiaic equation (DAE) de-
scribing operation in modeg is

X:fi(xayau) i=1

12.24
0=gi(x) e (1229

wherex € X C R" is the system continuous statec Y C RP is the vector of al-
gebraic variables and € U C R is the continuous control. Transitions can occur
only between certain modes. The set of admissible transiti®g C Q x Q. It is
convenient to view the mode transition system as a graph el@iments of the set

Q being the nodes and the elementsébbeing the edges. We assume that transi-
tions are instantaneous. So, if a system transitions fromlegoto g, at timet we
would write gq(t) = qi1,q(t™) = gz. We allow resets. State trajectories are assumed
continuous through events, i.&(t) = x(t*), unless a reset is specified.

Transitions are triggered by exterrealentsandguards Events are designatednd
belong to a sef. A guard is a subset of the continuous state spadbat en-
ables/disables a transition. A transition enabled by adyngdght represent a pro-
tection device. Not all transitions have guards and sontesitians might require
simultaneous satisfaction of a guard and the occurrence ebent.

Each discrete state labej,c Q, and each event labed,e & is considered to be a
logical variable that takes the value True or False. Gudsdsaae specified as logical
conditions. In this way the transition system can be defined lbgical specification
(formula).Z.

For computational purposes it is useful to associate with éagical variable, say
a, a binary variable or indicator functiodg, such thatd, assumes the values 1 or
0 corresponding respectively tobeing True or False. It is convenient to define the
discrete state vecta; = [y, . .., ). Precisely one of the elements &f will be
unity and all others will be zero.

With the introduction of the binary variables the set of dyneal equations (12.24)
can be replaced with the single DAE:

x=f06Y,0,U) = 3101 & fq (X, y,1)

0=9(XY,8) = 31 0 9q (X,Y)

(12.25)

Remark 12.5 (Power System DAE Moddiwer systems are typically modeled by
sets of semi-explicit DAEs as given by (12.24) In any madthe flow defined by
(12.24) is constrained to the 9df C X x Y defined by 0= gi (x,y). Ordinarily, it is
assumed tha¥); is a regular submanifold of x Y.
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Example 12.6Loss of Generator, Continued. The dynamical behavior ih e&the
six discrete states shown in Figure 12.13 will be modeled wéference to the net-
work illustrated in Figure 12.14.Note that the initial gtatvolves two generators
corresponding to buses 1 and 2. The spare generator condsspmbus 3. It is as-
sumed that the bus 2 generator fails. The difference bettheemitial stateg; and
the final stategg in Figure 12.13 is that the replacement generator is on areifit
bus. In summary, the reduced bus network models for the €sstae:

Stateq;: Generator buses 1 and 2, PQ buses 4,5,6, full load.
Stateqp: Generator bus 1, PQ bus 4, full load,

Stateqs: Generator buses 1 and 3, PQ buses 4,6, vital load,
Stateqy: Generator buses 1 and 3, PQ buses 4,6, ESM, full load,
Stateqs: Generator buses 1 and 3, PQ bus 4,6, ESM, vital load
Stategs: Generator buses 1 and 3, PQ bus 4,6, full load.

The Control problem

The system is observed in operation over some finite timezbofi that is divided
into N discrete time intervals of equal length. A control policyaisequence of func-
tions

= {Uo (X0,00) ;- MN-1 (XN-1,Fgn-1)) }
such thatuy, dsd = pi (X, 3 ). Thus, i generates the continuous conttgland

the discrete contradg, that are to be applied at tinle based on the stal(e<k, (qu)
observed at timé.

Consider the set ofn-tuples {0,1}™. Let A, denote the subset of elemenisc
{0,1}™ that satisfyd; + --- + dm = 1. Denote byl the set of sequences of func-
tions i : X x Am — U x {0,1}"™ that are piecewise continuous ¥n

TheOptimal Feedback Control Probleis defined as follows. For eash € X, dyp €
Ap, determine the control policyr* € 1 that minimizes the cost

In (X07 6q0) =
oN (XN, Ogn) + (12.26)

subject to the constraints (12.24) and the logical spetificai.e.,

Jir (X0,890) < I (X0,00) VITE (12.27)
12.8.3 Example

Consider, again, the loss of generator 2. This event cahisggainsition from statg,
to g as indicated in Figure 12.13. The goal now is to determinepdimal response
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strategy for this contingency. Departure frggmto any of the statess, ..., s initi-
ates startup of the spare generator (GTG3). It is assumédhin@enerator power
increases at a conservative rate of 250 KW/minute. In ufigsiger sec,

P;=1/1200 (12.28)

The goal is to steer the system from the initial stéie= 0,q = g, to the terminal
stateP; = 0.45,q = gs. This will take 9 minutes sinc®; must reach 0.45 pu from
0 pu. The fast electrical dynamics will be neglected so thatdnly dynamics are
associated with equation (12.28). Each mode is describgd2@8) and a set of
algebraic equations describing the network.

The nine minute interval is divided into nine one-minutersegts, and (12.28) is
replaced by the discrete time equation

Psit1 = P3;+60/1200 (12.29)

The goal is to find a sequence of state transitions that steersystem from the
initial state{0, gy} to the final statg0.45,q; } such that QOS constraints are met. To
do this, an optimal control is sought that minimizes a cofinéd to reflect the QOS
objectives. In this example, the cabis

J= 23:24 [Vi — 1] + max[0, P, — 0.5] + 0.3 o sm+ 0.15nv L

wheredesy anddyy L are binary variables that take the values 0 odgsy = 1 de-
notes the ESM is active artgy| = 1 denotes the non-vital load is dropped, whereas
in each case, the value zero denotes the opposite. Dynaotcgonming is used

to obtain the switching strategy illustrated in Figure B2.The weights assigned to
dksm=1,dsu=1 are selected to reflect a judgement of the relative cost pfam

ing these actions.

Notice that following the failure, the controller immedt switches to configu-
ration gz which means that the non-vital load is dropped and the ESkletlion
providing 1000 KW of supporting power. It is worth noting thhe power provided
by GTG1 isP; = 0.494pu which is still below the unit’s normal rating of 0.5 pu.
If no action is taken, GTM1 would provide 0.786 pu power whiglust below the
unit’s five minute crisis capability (0.9 pu). However, thatage levels are also un-
acceptably low. After one minute, the optimal strategy shéfs togs, in which the
ESM is turned off, but the non-vital loads remain disconadcThe GTG1 power
output increases to 0.642 pu. The system remains in this &iafour minutes by
which time the GTG1 power output has dropped below its norataig to 0.444 pu.
At this point the configuration is switched tg, the non-vital load is picked up and
the GTG1 power output increase to 0.640 pu. The system rernrathis configura-
tion and reaches the target state in four minutes as the Gb@#&rmoutput reduces
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linearly to its target value. Throughout this trajectorg thus voltages remain within
acceptable limits.
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Fig. 12.15: The optimal strategy is shown in terms of the tiragod and GTG3 power level.
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Fig. 12.16: The optimal strategy is shown as a discrete statsition diagram.

In summary, using the engine fuel consumption data, a sebssiple operational
configurations, and mission specific electric load and spged requirements it is
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a straightforward matter to compute the most fuel efficigrdrating configuration.
However, when QOS constraints are imposed, the problem iis cumplicated. In
this case, it is necessary to delineate all credible coatinggs and eliminate any con-
figuration which violates the QOS constraints for any onehefd¢ontingent events.
The occurrence of a contingency should trigger a remedi@radesigned to pre-
vent violation of the QOS constraints. The goal is to desigogtimal sequence of
available remedial actions. The cost function is consgdiédtom penalties associ-
ated with QOS violations which are balanced against costscéated with the using
the available remedial actions. With a remediation stratigfined, the response to
a contingency can be evaluated to determine if a QOS constsaiiolated.
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ProPac

A.1 Getting Help

The MathematicagpackageProPacis an integral part of this boolRroPaccontains
subpackages for multibody dynamics, linear control, andlinear control. Once it
is installed, as described in Chapter 1, appropriate paskag! be loaded automat-
ically as they are required. However, individual packagas lse manually loaded
by simply entering GeometricTools, Dynamics, LinearCohtNonlinearControl,
or MEXTools as desired. Once a package is loaded, enter ?&domools, ?Dy-
namics, ?LinearControl, ?NonlinearControl, or ?MEXTooéspectively, to obtain
a complete list of available functions. Then enter ?Fumdimme to obtain usage
information for the functiorFunctionName . After ProPacis installed, theMath-
ematicaHelp index should be rebuilt as described in Chapter 1. Whisnig done,
help will also be available in the Help Browser under Add-ons

The CD that accompanies this book includes sevielahematicanotebooks that
illustrate the use oProPac The notebooks, Dynamics.nb and Controls.nb are in-
tended to give an overview of the available functions.

Of course, all standartathematicafunctions and packages are available and
ProPacis compatible with theMathematicgpackage Control Systems Profesional,
available from Wolfram Research.

A.2 Quick Reference Tables

The following tables provide a summary of the available fioxts. They are not all
inclusive. A complete list of available functions can beadbed as described in the
Section??.
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Function Name

Operation

Bode

produces a Bode plot of the transfer function of a (sgalantinuous
time system

RootLocus generates the root locus plot for a given trarigfestion

Nyquist generates the Nyquist plot for a given transfer fiamc
ColorNyquist generates a color version of the Nyquist plot

PhasePortrait computes a family of state space trajesttoiea vector field orR?

and returns a list of graphics objects

Table A.1: Graphics Functions

Function Name

Operation

ControllablePair

test for controllability

ObservablePair

test for observability

ControllabilityMatrix

returns the controllability maii

ObservabilityMatrix

returns the observability matrix

PolePlace

state feedback pole placement based on Ackesrfann
mula with options

DecouplingConrol

state feedback and coordinate transftiom that decouples
input-output map

RelativeDegree

computes the vector relative degree

LyapunovEquation

computes the soluti®hof AT +PA= —Q

AlgebraicRiccatiEquation

computes the positive solutibthe algebraic Riccati equa-
tion

LQR, LQE

compute optimal quadratic regulator and estimpssame-
ters

Table A.2: Linear Systems: Time Domain
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Function Name

Operation

LeastCommonDenominator

finds the least common denomimdittre elements of a
proper, rational G(s)

Poles

finds the roots of the least common denominator

LaurentSeries

computes the Laurent series up to specifiled or

AssociatedHankelMatrix

computes the Hankel matrix agdediwith Laurent expan-
sion of G(s)

McMillanDegree

computes the degree of the minimal reatimadf G(s)

RelativeDegree

computes the relative degree of a linedersys

ControllableRealization

computes the controllable ezdion of a transfer function

ObservableRealization

computes the observable realizafia transfer function

KalmanDecomposition

returns a Kalman decomposition afiedi system

Table A.3: Linear Systems: Frequency Domain

Function Name

Operation

LieBracket computes the Lie bracket of a given pair of vetitdds

Ad computes the iterated Lie bracket of specified order ofia pa
of vector fields

Involutive tests a set of vector fields to determine if it igdhutive

Span generates a set of basis vector fields for a given settfrve

fields

TriangularDecomposition

computes the transformationttlaagularizes a vector field
from a given involutive distribution, invariant with resp¢o
the vector field

SmallestinvariantDistribution

Computes the smalledfritistion containing a given distri-
bution and invariant with respect to a set of vector fields

LargestlnvariantDistribution

Computes the largets distion contained in the annihilator
of an exact codistribution and invariant with respect tota se
of vector fields

Table A.4: Geometry Tools
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Function Name

Operation

Contraction returns the contraction of a form with a vecteidfi
d the exterior derivative operator

FormBasis returns a basis for a given list of forms
FormDegree returns the degree of a differential form
RankCodistribution returns the Rank of a codistributiotigof 1-forms)
Wedge returns the wedge product of a set of forms

Table A.5: Differential Forms

Function Name

Operation

Joints returns all of the kinematic quantities correspogdo a list
of joint definitions

Treelnertia computes the inertia matrix of a multibody egsin a tree
structure containing flexible and rigid bodies

EndEffector returns the Euclidean Configuration Matrix dialy fixed
frame at a specified node

NodeVelocity returns the (6 dim) spatial velocity vectorabody fixed

frame at a specified node

GeneralizedForce

computes the generalized force at sgmbaoifide in terms of
generalized coordinates

RelativeConfiguration

computes the relative configuratbbody fixed frames at
specified nodes

KinematicReplacements

sets up temporary replacemers folgepeated groups of
expressions to simplify kinematic quantities

Table A.6: Kinematics
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Function Name

Operation

Treelnertia

generates the spatial inertia of a tree strectu

LeafPotential

returns the elastic potential energy assediwith leaf abso-
lute position in terms of the system generalized coordmate

BacklashPotential

Returns the Hertz impact potential @ated with a speci-
fied material potential

JointFriction

assembles a dissipation function of Lurjegyor a joint that
involves viscous, Coulomb and Stribeck effects

CreateModel

builds the kinematic and dynamic equationgrém struc-
tures

DifferentialConstraints

adds differential constrair@sattree configuration

AlgebraicConstraints

adds algebraic constraints to acmaéiguration

MakeODEs

assembles differential equations in a form thatbeainte-
grated in Mathematica

MakeLagrangeEquations

assembles Lagrange’s equatiangom that can be inte-
grated in Mathematica

Table A.7: Dynamics

Function Name

Operation

ControlDistribution

computes the controllability digution of a nonlinear
(affine) system

Controllablity

test for controllability of a nonlinear fafe) system

ObservabilityCodistribution

computes the observabiligdistribution of a nonlinear
(affine) system

Observability

test for observability of a nonlinear (affiisgstem

LocalDecomposition

computes a transformation that pusrdimear (affine) sys-
tem into Kalman-partitioned form

Table A.8: Nonlinear Controllability and Observability
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Function Name

Operation

SISONormalFormTrans

Computes the transformation takini@dinearizable SISO
system to its normal form

VectorRelativeOrder

computes the relative degree vector

DecouplingMatrix

computes the decoupling matpxx)

IOLinearize

computes the linearizing control,
u=p H{—ax +v}

NormalCoordinates

computes the partial state transfoomat(x)

LocalZeroDynamics

computes the local form of the zero dyinaf(&,0), near
X0

DynamicExtension

implements dynamic extension procepsaguce a nonsin-
gular decoupling matrix when posible

StructureAlgorithm

implements the Hirschorn-Singh stuwe algorithm for as-
sembling a dynamic inverse

Table A.9: Feedback Linearizing Functions

Function Name

Operation

AdaptiveRegulator

generates an adaptive regulator fassdf linearizable sys-
tems

AdaptiveBackstepRegulator

computes an adaptive regugtdackstepping for SISO
systems in PSFF form

AdaptiveTracking computes an adaptive tracking controlle
PSFFCond tests a system to determine if it is reducible tdFR&fn
PSFFSolve transforms a system to PSFF form if possible

Table A.10: Adaptive Control

Function Name

Operation

LinearizeToOutputlnjection

computes a transformaticet ttonverts the system to ob-
server form

Observabilitylndices

returns a list of the observabilitdices of the system

ObservableForm

computes a transformation that conveetsyhtem to ob-
servable form

Table A.11: Observer Tools
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Function Name Operation

SlidingSurface generates the sliding (switching) surfimrefeedback lin-
earizable nonlinear systems

SwitchingControl computes the switching functions - akotlie inclusion of
smoothing and moderating functions

Table A.12: Variable Structure Control
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Lyapunov equation, 26
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