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Preface

During the past decade we have had to confront a series of control design problems –
involving, primarily, multibody electro-mechanical systems – in which nonlinearity
plays an essential role. Fortunately, the geometric theoryof nonlinear control sys-
tem analysis progressed substantially during the 1980s and90s, providing crucial
conceptual tools that addressed many of our needs. However,as any control systems
engineer can attest, issues of modeling, computation, and implementation quickly
become the dominant concerns in practice. The problems of interest to us present
unique challenges because of the need to build and manipulate complex mathemat-
ical models for both the plant and controller. As a result, along with colleagues and
students, we set out to develop computer algebra tools to facilitate model building,
nonlinear control system design, and code generation, the latter for both numerical
simulation and real time control implementation. This bookis an outgrowth of that
continuing effort. As a result, the unique features of the book includes an integrated
treatment of nonlinear control and analytical mechanics and a set of symbolic com-
puting software tools for modeling and control system design.

By simultaneously considering both mechanics and control we achieve a fuller
appreciation of the underlying geometric ideas and constructions that are common to
both. Control theory has had a fruitful association with analytical mechanics from its
birth in the late 19th century. That historical relationship has been reaffirmed during
the past two decades with the emergence of a geometric theoryfor nonlinear control
systems closely linked to the modern geometric formulationof analytical mechanics.
Not surprisingly, the shared evolution of these fields has paralleled the needs of tech-
nology. Today, mechanicians and control engineers are brought together in fields like
space systems engineering, robotics, ground and sea vehicle design, and biomechan-
ics. Consequently, our integrated approach provides a richset of models and control
design examples that are of contemporary and practical interest.

Control theory would be quite sterile without concrete connections to the nat-
ural world. The process of modeling is just as central to control engineering as is
control theory itself. A control system design project doesnot begin when a control
engineer is handed a model; it begins at the onset of model formulation.



VIII Preface

Our main thesis is that a full appreciation of the meaning andsignificance of
either theory benefits by developing their connection and byapplying them to mean-
ingful examples. The capability to do the latter requires supporting computational
tools. In this book, we highlight and exploit the computational infrastructure com-
mon to both modern analytical mechanics and nonlinear control. To achieve the full
benefits of the concepts now available, we need to exploit symbolic as well as nu-
merical computing techniques. However fortuitous it may be, it is only during the
past decade that symbolic computing technology (or computer algebra) has matured
to the level of serious engineering application.

We emphasize symbolic computing because it is essential forworking with
nonlinear, parameter-dependent systems and it is a relatively new tool for engineers.
Symbolic computing does not replace numerical computing. It supplements and en-
hances it. Recognizing the distinctions between symbolic and numerical computing
and how best to integrate them is a significant challenge. We will use symbolic com-
puting for several purposes:

1. to perform basic mathematical operations (like implement a coordinate transfor-
mation or compute a Lie bracket),

2. to build explicit mathematical models,

3. to simplify models (e.g., via Taylor linearization or symmetry reduction),

4. to generate numerical simulation code,

5. to implement nonlinear control constructions (such as compute an inverse system
or perform feedback linearization),

6. to generate numerical code for implementing controllers.

In this work we employ examples of various levels of complexity from sim-
ple examples that illustrate a theoretical point in a transparent way to examples with
detailed models for which results are too complex to exhibitin print, but can never-
theless be manipulated using a computer. We will provide examples of the latter type
using electronic media, specifically,Mathematicanotebooks. The point is that when
working with engineering grade models it is not reasonable to visually examine or
manually manipulate symbolic expressions by hand. However, it is possible to work
effectively with such expressions using a computer.

Many of us were attracted to control systems engineering because it enables a
broad exposure to numerous areas from traditional engineering disciplines to com-
puter and information sciences and mathematics, to economics, biology, and even
social sciences. Indeed, it would be quite a challenge to findan engineer in the field
for more than a few years without cross-disciplinary experience. While, in recent
years, the need for a multidisciplinary approach has been touted as generally nec-
essary for technological progress, it has always been that way in the control field.
Because of the extraordinary scope of control applications, control engineers have
traditionally sought out the unifying principles that makeit possible to function cre-
atively in a varied and complicated environment.



Preface IX

From its emergence as a coherent discipline, control engineering has involved
a high level of abstraction. Mathematics, perhaps the ultimate unifying principle,
and certainly the most successful language invented by man to clarify and commu-
nicate complex ideas without ambiguity, has been a cornerstone of its development.
In writing this book, we had to make choices to balance competing objectives. One
of the most difficult was to establish a correct level of mathematical abstraction and
rigor. We view ourselves as engineers, not mathematicians,and it is from that point
of view that we came to a judgment. Mathematicians may decidethat our arguments
lack rigor and some engineers may find our discussion too formal. However, we can
judiciously sacrifice rigor for accessibility, but we oftenneed precise statements to
clearly identify the range of applicability of a technique or to establish reliable ma-
chinery for computing.

We are indebted to many students and colleagues whose collaborations with
us on various research and engineering projects contributed in countless ways to the
writing of this book. In particular, we would like to acknowledge Dr.Reza Ghanadan
of Bell Laboratories, Mr. Chris LaVigna, Dr. Carole Teolis,and Mr. Eric Salter, all
of Techno-Sciences, Inc., for their contributions to the development and application
of theProPac software package, and to Mr. Gaurav Bajpai of Drexel University for
his careful reading of the manuscript.

Philadelphia, Pennsylvania Harry G. Kwatny
College Park, Maryland Gilmer L. Blankenship
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Part I

Preliminaries





1

Introduction

As inexpensive processors have become increasingly ubiquitous in all manner of
physical devices, the opportunities and demand for using them to improve func-
tionality and performance has pushed control design technology to new limits.
While ‘emergent’ application areas like robotics, biomedical and micro-electro-
mechanical systems bring with them their special requirements, traditional fields
like the aerospace, automotive, marine and process industries have also expanded
the role of automation. In many of the new control problems a direct confrontation
with nonlinearity is unavoidable.

Notwithstanding the advances in our understanding of nonlinear dynamical behavior
and in nonlinear control theory itself, the state of controldesign for nonlinear sys-
tems must be considered embryonic as compared to that of linear systems. This is in
part because the possibilities of nonlinear behavior are sovast and varied, but also
because of the lack of tools for working efficiently with nonlinear problems of even
modest engineering scale.

The control design process, while not rigidly structured, always includes three crucial
elements:

1. model building

2. control design

3. control implementation

A typical control design project might follow the process inthe flow chart of Fig-
ure (1.1). Modeling is central to formulating the control design problem as well as
solving it. In our view it is an integral part of control system design. The diagram
also accurately suggests that model building, control design and control implementa-
tion may be repeated several times during the course of a project. Clearly, tools that
facilitate and automate these processes are necessary.
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Fig. 1.1: A typical design project flow chart.

Primarily for these reasons this book addresses both modeling and control and ex-
ploits symbolic computing as a means for minimizing the painful calculations, ex-
pression manipulaton and coding that would otherwise be required. A software tool-
box,ProPac, is included with the book. It is a package to be used with theMathe-
matica1 computer algebra system. More will be said about the software later.

1.1 Scope and Organization

This book provides an integrated treatment of geometric nonlinear control and ana-
lytical mechanics. Their common geometric foundation and the recurrent cross fer-
tilization between the two fields is certainly justificationenough for doing so. In fact,
the two subjects are so well matched that in describing one itis impossible to resist
drawing examples from the other. However, not the least important factors motivat-
ing us to unify this material derive from the practical considerations described above.
Control system design simply can not be divorced from modeling.

1For information aboutMathematicavisit the web site www.wolfram.com
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Chapters 2 and 3 deal with important preliminary material. Ashort summary of or-
dinary differential equations including basic Lyapunov stability concepts is given in
Chapter 2. Our treatment of these topics is brief and focuseson those items of imme-
diate use. There are many excellent texts for the interestedreader to gather additional
information. A somewhat more detailed introduction to differential geometry is pro-
vided in Chapter 3. Yet, we are still selective in our choice of material from a vast
literature, including only what we think is essential background. Basic calculations
usingMathematicaandProPacare introduced.

Our treatment of analytical mechanics is based on the Hamilton-Lagrange formula-
tion. It begins with a general construction for the kinematic parameters of multibody
tree structures in Chapter 4. System configuration coordinates are defined in terms
of a natural and general parameterization of the individualjoints. Formulas that de-
fine node inertial positions and velocities in terms of configuration coordinates and
generalized quasi-velocities are derived. These calculations are implemented in the
accompanying software. The dynamics of tree structures as well as systems with
closed loops are developed in terms of Poincaré’s form of Lagrange’s equations in
Chapter 5. Closed loops are treated by adding constraints toan underlying tree. Con-
straints may be algebraic relations among the configuraton variables and/or holo-
nomic or nonholonomic differential constraints. Constructive procedures for deriving
the equations are presented and, again, implemented in the accompanying software.
Examples illustrate the assembly of models of undersea vehicles, robotic systems,
ground vehicles and other systems.

Nonlinear control is the subject of Chapter 6. Here, we discuss smooth affine con-
trol systems. Basic concepts of nonlinear controllabilityand observabilty and local
decompositions via coordinate transformation are discussed first. In terms of con-
trol system design the focus of this book is on feedback linearization and dynamic
inversion. Exact (state) linearization as well as partial (input-output) linearization
are fully described. The chapter closes with a discussion ofnonlinear observers. Of
course, computation is a key issue.ProPac functions that implement the required
calculations are introduced and illustrated.

Feedback linearization methods are strongly model based, relying, in fact, on direct
cancellation. Consequently, robustness is a major concernand we devote the next two
chapters to robust control. Chapter 7 addresses smooth robustification of feedback
linearizing controllers. It begins with a discussion of howuncertainty propagates
through the reduction to normal form of a nominal system. Thenotion of matched
and nonmatched uncertainty is developed. Then Lyapunov redesign for matched un-
certainty and robust stabilization via backstepping for strict triangular nonmatched
uncertainty are described. Adaptive control methods for systems with uncertainty
that can be parameterized are then presented. Once again, software tools that imple-
ment the required calculations are described and illustrated.

Chapter 8 deals with variable structure control system design. The view of variable
structure control as a nonsmooth, robust variant of input-output linearization is em-
phasized. The chapter begins with a general discussion of discontinuous dynamics
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including a formulation of Lyapunov stability analysis in that context. Methods for
sliding mode and reaching control design are presented. Chattering reduction via
regularizaton and other methods are described. The inherent robustness of variable
structure controls with respect to matched uncertainty is established and a backstep-
ping method is described for strict triangular nonmatched uncertainty. Supporting
software is illustrated. The method also applies to a class of nonsmooth plants that
includes a variety of discontinuous friction models and other so-called ‘hard’ non-
linearities. Examples are given.

1.2 Theme Problems

A new feature in the second edition is the inclusion of theme problems. We have
chosen three areas in which the methods and tools described here have been applied.

1.2.1 Wheeled Vehicles

We examine vehicles with a variety of configurations and assumptions. The simplest
is a vehicle with two active drive wheels and a third idler wheel which stabilizes the
platform. A more complex two wheel vehicle does not have an idler wheel so requires
balancing. In both of these examples the drive wheels model assumes perfect rolling
without sideslip. Variations of a four wheel vehicle are also considered. Two and four
wheel drive with front wheel steering and both front and realsteering are considered.
Both perfect rolling and pneumatic tire models are employed. Finally, a four wheel
tractor with trailer and pneumatic tires is examined.

The treatment includes model development, dynamical studies including stability
and bifurcation analysis, and control analysis.

Two Wheel Vehicles

Four Wheel Vehicles

Vehicles With Trailers

1.2.2 Aircraft

1.2.3 Electric Power Networks

1.3 Software

Most of the examples in this book have been developed using the software package
ProPacdeveloped by Techno-Sciences, Inc., Lanham, MD.ProPac2.0 is included
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with this book. It is aMathematicapackage that provides a set of symbolic com-
puting tools for modeling multibody mechanical systems as well as for linear and
nonlinear control system design and analysis. There are excellent introductory books
and tutorials available forMathematica. Many of these are identified on the Wolfram
web site.

The ProPac CD contains a set of tutorial and application notebooks. These in-
clude Dynamics.nb and Controls.nb which introduce the basic modeling and con-
trol tools available inProPac. On-line help is available throughMathematica’sHelp
Browser. For more information, notebooks and other documents visit the web site:
www.technosci.com.

UsingProPacrequires version 3 or later ofMathematica. That is all that is required to
develop the equations of motion, for conducting numerical simulations withinMath-
ematica, and building the C source code required for simulations in SIMULINK 2.
Use of the latter requires MATLAB/SIMULINK and a C compiler as recommended
by the MathWorks for compiling MEX-files on the user’s platform. Functions in
ProPacgenerate C-code that compiles as SIMULINK S-functions. In this way mod-
ules for the plant and controller are easily generated for inclusion in SIMULINK
simulations. Controllers, with embellishments like filters, etc., can be downloaded
into DSP boards via MATLAB’s Real Time Workshop. The setup isillustrated in
Figure (??).

1.3.1 Installing ProPac

To installProPac, follow the two step procedure:

Step 1:Put the entire ProPac directory in Mathematica’s Applications directory. For
the PC the full path is ordinarily

C:\Program Files\Wolfram Research
\Mathematica\7.0

\AddOns\Applications\

Step 2: Start Mathematica and rebuild the Help index. The latter is accomplished
with the following simple procedure. From the main menu choose: Help⇒ Rebuild
Help Index

Once this is done, on-line help is available. In the Help Browser select Add-ons and
then TSi ProPac.

The Mex folder contains 3 C-source files that need to be included when compiling
MATLAB/SIMULINK MEX files. These may stored in any convenient location, but
must be available at the time of compilation.

2for information about MATLAB/SIMULINK visit the web site www.MathWorks.com
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Fig. 1.2:ProPacis aMathematicapackage with links to MATLAB/SIMULINK.

1.3.2 Package Content

ProPacconsists of seven packages: Dynamics, ControlL, ControlN,GeoTools, MEX-
Tools, NDTools, and VSCTools. OnceProPacis loaded all of the functions in these
packages are available for use and the appropriate packageswill be automatically
loaded as required. In general, a user does not have to be concerned about loading
any particular package. To loadProPacsimply enter<<ProPac ` (most of the pack-
age functionality is available in Mathematica 2.2, enter<<ProPac` Master` ).

Dynamics contains the model building functions and ControlL and ControlN the
linear and nonlinear control analysis functions, respectively. GeoTools includes basic
functions used in differential geometry calculations. NDTools contains supporting
functions for working with nondifferentiable nonlinearities and VSCTools contains
functions for variable structure control. MEXTools includes functions for creating
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C-code files for both models and controllers that compile as S-functions for use with
MATLAB/SIMULINK.

The Tables in the Appendix contain a brief summary of many of the available func-
tions. More details and numerous examples can be found in thehelp browser and in
the notebooks.





2

Introduction to Dynamical Systems

2.1 Introduction

In this chapter we briefly review some basic material about nonlinear ordinary differ-
ential equations that is important background for later chapters. After a preliminary
discussion of the basic properties of differential equations including the existence
and uniqueness of solutions, we turn to a short discussion ofstability in the sense
of Lyapunov. In addition to stating the most important theorems on stability and in-
stability we provide a number of illustrative examples. As part of this discussion
we introduce Lagrangian systems – a topic to be treated at great length later. This
chapter is concerned exclusively with dynamical systems (as opposed to control sys-
tems) and with smooth systems (as opposed to systems that contain nondifferentiable
nonlinearities). Those topics will be treated in later chapters. It is presumed that the
material discussed is not new to the reader and we provide only a short summary
of those elements considered immediately relevant. For a more complete discussion
many excellent text books are available. We reference a number of them in the sequel.

2.2 Preliminaries

A linear vector space, V - over the fieldR is a set of elements called vectors such
that:

1. for each pairx,y∈ V , the sumx+ y is defined,x+ y∈ V andx+ y= y+ x.

2. there is an element ‘0’ inV such that for everyx∈ V , x+0= x.

3. for any numbera ∈ R and vectorx ∈ V scalar multiplication is defined and
ax∈ V .

4. for any pair of numbersa,b∈ R and vectorsx,y∈ V : 1 · x= x, (ab)x= a(bx),
(a+b)x= ax+bx.
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A linear vector space is anormed linear spaceif for each vectorx∈ V - there corre-
sponds a real number‖x‖ called thenormof x which satisfies:

1. ‖x‖> 0, x 6= 0, ‖0‖= 0

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

3. ‖ax‖= |a| ‖x‖ ∀a∈ R, x∈ V

When confusion can arise as to which space a norm is defined in we replace‖•‖ by
‖•‖V .

A sequence{xk} ⊂ V , V a normed linear space,convergesto x∈ V if

lim
k→∞
‖xk− x‖= 0

. A sequence{xk} ⊂ V -is aCauchy sequenceif for every ε > 0 there is an integer,
N(ε) > 0 such that‖xn− xm‖ < ε if n,m> N(ε). Every convergent sequence is a
Cauchy sequence but not vice versa. The space - iscompleteif every Cauchy se-
quence is a convergent sequence. A complete normed linear space is called aBanach
space .

The most basic Banach space of interest herein isn-dimensionalEuclideanspace, the
set of alln-tuples of real numbers, denotedRn. The most common types of norms
applied toRn are thep-norms, defined by

‖x‖p = (|x1|p+ · · ·+ |xn|p)1/p , 1≤ p< ∞

and
‖x‖∞ = max

i∈{1,...,n}
|xi |

An ε-neighborhoodof an elementx of the normed linear spaceV is the setS(x,ε) =
{y∈V| ‖y− x‖< ε}. A set A in V is open if for every x ∈ A there exists anε-
neighborhood ofx also contained inA. An elementx is a limit point of a setA⊂ V

if eachε-neighborhood ofx contains points inA. A setA is closedif it contains all
of its limit points. Theclosureof a setA, denotedĀ, is the union ofA and its limit
points. A setA is densein V if the closure ofA is V .

If B is a subset ofV , A is a subset ofR, and{Va,a∈A} is a collection of open subsets
of V such that∪a∈AVa ⊃ B, then the collectionVa is called anopen coveringof B.
A setB is compactif every open covering ofB contains a finite number of subsets
which is also an open covering ofB. For a Banach space this is equivalent to the
property that every sequence{xn},xn ∈ B, contains a subsequence which converges
to an element ofB. A setB is boundedif there exists a numberr > 0 such thatB⊂
{x∈ V |‖x‖< r }. A setB in Rn is compact if and only if it is closed and bounded.

A function f taking a setA of a spaceX into a setB of a spaceY is called a
mappingof A into B and we writef : A→ B. A is thedomainof the mapping and



2.2 Preliminaries 13

B is therangeor image. The image off is denotedf (A). f is continuousif, given
ε > 0, there existsδ > 0 such that

‖x− y‖< δ⇒ ‖ f (x)− f (y)‖< ε

A function f defined on a setA is said to beone-to-oneon A if and only if for
everyx,y ∈ A, f (x) = f (y)⇒ x = y. If f is one-to-one it has an inverse denoted
f−1. If the one-to-one mappingf and its inversef−1 are continuous,f is called a
homeomorphismof A ontoB.

SupposeX andY are Banach spaces andf : X →Y . f is alinear mapif f (a1x1+
a2x2) = a1 f (x1)+a2 f (x2) for all x1,x2 ∈X anda1,a2 ∈ R (or C). In general, we
can write a linear mapping in the formy= Lx, whereL is an appropriately defined
‘linear operator.’ A linear mapf is said to beboundedif there is a constantK such
that‖ f (x)‖

Y
≤ K ‖x‖X for all x∈X . A linear mapf : X → Y is bounded if and

only if it is continuous. A linear map fromRn→ Rm is characterized by anm×n
matrix of real elements, e.g.,y= Ax. The ‘size’ of the matrixA can be measured by
the induced p-norm(or gain) ofA

‖A‖p = sup
x6=0

‖Ax‖p

‖x‖p

for which we write the following special cases

‖A‖1 = max
1≤ j≤n

m

∑
i=1

∣
∣ai j
∣
∣

‖A‖2 =
√

λmax(ATA)

‖A‖∞ = max
1≤i≤m

n

∑
j=1

∣
∣ai j
∣
∣

Here,λmax(ATA) denotes the largest eigenvalue of the nonnegative matrixATA.

f is said to be (Frechet) differentiableat a pointx∈ A if there exists a bounded linear
operatorL(x) mappingX → Y such that for everyh∈X with x+h∈ A

‖ f (x+h)− f (x)−L(x)h‖/‖h‖→ 0

as‖h‖ → 0. L(x) is called the derivative off at x. If f : Rn→ Rm is differentiable
at x thenL(x) = ∂ f (x)

/
∂x, the Jacobian off with respect tox. If f and f−1 have

continuous first derivatives,f is adiffeomorphism.

A function f : A→B is said to belong to the classCk of functions if it has continuous
derivatives up to orderk. It belongs to the classC∞ if it has continuous derivatives
of any order.C∞ functions are sometimes calledsmooth. A function f is said to be
analyticif for eachx0 ∈ A there is a neighborhoodU of x0 such that the Taylor series
expansion off atx0 converges tof (x) for all x∈U .
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Consider a transformationT : X →X , whereX is a Banach space.x ∈X is a
fixed pointof T if x = T(x). SupposeA is a subset of Banach spaceX andT is a
mapping ofA into a Banach spaceB. The transformationT is acontractiononA if
there exists a number 0≤ λ < 1 such that

‖T(x)−T(y)‖ ≤ λ ‖x− y‖ , ∀x,y∈ A

Proposition 2.1 (Contraction Mapping Theorem).Suppose A is a closed subset of
a Banach spaceX and T : A→ A is a contraction on A. Then

1. T has a unique fixed point̄x∈ A

2. If x0 ∈ A is arbitrary, then the sequence{xn+1 = T(xn), n= 0,1, . . .} converges
to x̄.

3. ‖xn− x̄‖ ≤ λ n‖x1− x0‖/(1−λ ), whereλ < 1 is the contraction constant for T
on A.

Proof: [33], page 5.

We will make use of the following important theorem.

Proposition 2.2 (Implicit Function Theorem). Suppose F: Rn×Rm→Rn has con-
tinuous first partial derivatives and F(0,0) = 0. If the Jacobian matrix∂F(x,y)

/
∂x

is nonsingular, then there exists neigborhoods U,V of the origin in Rn,Rm, respec-
tively, such that for each y∈V the equation F(x,y) = 0 has a unique solution x∈U.
Furthermore, this solution can be given as x= g(y), i.e., F(g(y),y) = 0 on V , where
g has continuous first derivatives and g(0) = 0.

Proof: [33], page 8.

2.3 Ordinary Differential Equations

Existence and Uniqueness

Let t ∈R, x∈Rn, D an open subset ofRn+1, f : D→Rn a map and let ˙x= dx/dt. We
will consider differential equations of the type

ẋ= f (x, t), x∈Rn, t ∈ R (2.1)

Whent is explicitly present in the right hand side of (2.1), then the system is said
to benonautonomous. Otherwise it isautonomous. A solution of (2.1) on a time
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intervalt ∈ [t0, t1] is a functionx(t) : [t0, t1]→Rn, such thatdx(t)/dt = f (x, t(t)) for
eacht ∈ [t0, t1]. We can visualize an individual solution as a graphx(t) : t→ Rn. For
autonomous systems it is convenient to think off (x) as a ‘vector field’ on the space
Rn. f (x) assigns a vector to each pointx∈Rn. As t varies, a solutionx(t) traces a path
throughRn. These curves are often calledtrajectoriesor orbits. At each pointx∈Rn

the trajectoryx(t) is tangent to the vectorf (x). The collection of all trajectories in
Rn is called theflow of the vector fieldf (x). This point of view can be extended to
nonautonomous differential equations in which case the vector field f (x, t) and its
flow vary with time.

Example 2.3 (Phase portraits).For two dimensional systems the trajectories can be
plotted in a plane. We will consider two systems, the Van der Pol system

[
ẋ1

ẋ2

]

=

[
x2

−0.8(1− x2
1)x2− x1

]

and the damped pendulum
[

ẋ1

ẋ2

]

=

[
x2

−x2/2− sinx1

]

Both of these systems are in so-called phase variable form (the first equation, ˙x1 = x2,
defines velocity) so the trajectory plots are called phase portraits.

Van der Pol

In[1]:= f = {x2,−x1+0.8 (1−x1ˆ2)x2};x = {x1,x2};

In[2]:= graphs3= PhasePortrait [f,x,15,{{−6,6,0.5},{−5,5,5}}];

In[3]:= Show[graphs3,AxesLabel→{x1,x2},PlotRange→ {{−4,4},{−4,4}},
DisplayFunction→ $DisplayFunction]

f =
{

x2,−x1+ .8
(
1− x1

2
)

x2
}

;x= {x1,x2} ;
graphs3= Flatten[Table[PhaseTrajectory( f ,x,15,s1,s2),{s1,−6,6,0.5},{s2,−5,5,5}]];

Damped Pendulum

In[4]:= f = {x2,−Sin[x1]−x2/2};x = {x1,x2};

In[5]:= graphs2= PhasePortrait [f,x,15,{{−20,20,0.5},{−3,3,3}}];

In[6]:= Show[graphs2,AxesLabel→{x1,x2},PlotRange→ {{−10,10},{−3,3}},
DisplayFunction→ $DisplayFunction]

The above examples illustrate several important properties of nonlinear dynamical
systems. In both cases the flow directions are to the right in the upper half plane
and to the left in the lower half plane (recall ˙x1 = x2). Thus, it is easily seen that
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Fig. 2.1: Phase portrait for the Van der Pol equation.
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Fig. 2.2: Phase portrait for the damped pendulum.

trajectories of the pendulum ultimately converge to rest points corresponding to the
pendulum hanging straight down. These have the property that f (x) = 0. Any point
x∈ Rn satisfying the conditionf (x) = 0 is called anequilibrium point. The pendu-
lum has an infinite number of equilibria spacedπ radians apart. Some of these are
attracting (the pendulum points straight down) and some repelling (straight up).

In contrast, all trajectories of the Van der Pol equation approach a periodic trajectory.
Such an isolated periodic trajectory is called alimit cycle. Some systems can exhibit
multiple limit cycles and they can be repelling as well as attracting. Equilibria and
limit cycles are two types of ‘limit sets’ that are associated with differential equa-
tions. We will define limit sets precisely below. As a matter of fact, these are the
only type of limit sets exhibited by two-dimensional systems. More exotic ones, like
‘strange attractors’ require at least three dimensional state spaces.
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The existence and uniqueness of solutions to (2.1) depend onproperties of the func-
tion f . In many applicationsf (x, t) is continuous in the variablest andx. We will
impose a somewhat less restrictive characterization off . We say that a function
f : Rn→ Rn is locally Lipschitzon an open and connected subsetD ⊂ Rn, if each
pointx0 ∈D has a neighborhoodU0 such that

‖ f (x)− f (x0)‖ ≤ L‖x− x0‖ (2.2)

for some constantL and allx∈U0. The functionf (x) is said to beLipschitzon the
setD if it satisfies the (local) Lipschitz condition uniformly (with the same constant
L) at all pointsx0 ∈ D. It is globally Lipschitzif it is Lipschitz onD = Rn. We apply
the terminology ‘Lipschitz inx’ to functions f (x, t) provided the Lipschitz condition
holds uniformly for eacht in a given interval ofR.

Note thatC0 functions need not be Lipschitz butC1 functions always are. The fol-
lowing theorems relate the notion of Lipshitz with the property of continuity.

Lemma 2.4.Let f(x, t) be continuous on D× [a,b], for some domain D⊂ Rn. If
∂ f/∂x exists and is continuous on D× [a,b], then f is locally Lipschitz in x on
D× [a,b].

Proof: (following Khalil [52], p. 77) Forx0 ∈ D there is anr sufficiently small that

D0 = {x∈Rn |‖x− x0‖< r } ⊂ D

The setD0 is convex and compact. Sincef is C1, ∂ f/∂x is bounded on[a,b]×D0.
Let L0 denote such a bound. Ifx,y∈ D0, then by the mean value theorem there is a
point z on the line segment joiningx,y such that

‖ f (x, t)− f (t,y)‖=
∥
∥
∥
∥

∂ f (t,z)
∂x

(x− y)

∥
∥
∥
∥
≤ L0‖x− y‖

The proof of this Lemma is easily adapted to prove the following.

Proposition 2.5.Let f(x, t) be continuous on[a,b]×Rn. If f is C1 in x∈ Rn for all
t ∈ [a,b] then f is globally Lipschitz in x if and only if∂ f/∂x is uniformly bounded
on [a,b]×Rn.

Let us state the key existence result.

Proposition 2.6 (Local Existence and Uniqueness).Let f(x, t) be piecewise con-
tinuous in t and satisfy the Lipschitz condition

‖ f (x, t)− f (t,y)‖ ≤ L‖x− y‖
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for all x,y∈ Br = {x∈ Rn |‖x− x0‖< r } and all t∈ [t0, t1]. Then there exists aδ > 0
such that the differential equation with initial condition

ẋ= f (x, t), x(t0) = x0 ∈ Br

has a unique solution over[t0, t0+δ].

Proof: ( [52], p. 74)

A continuation argument leads to the following global extension.

Proposition 2.7 (Global Existence and Uniqueness).Suppose f(x, t) is
piecewise continuous in t and satisfies

‖ f (x, t)− f (t,y)‖ ≤ L‖x− y‖

‖ f (x, t0)‖< h

for all x,y∈Rn and all t∈ [t0, t1]. Then the equation

ẋ= f (x, t), x(t0) = x0

has a unique solution over[t0, t1].

Continuous Dependence on Parameters and Initial Data

Let µ ∈Rk and consider the parameter dependent differential equation

ẋ= f (x, t,µ), x(t0) = x0 (2.3)

We will show that a solutionx(t; t0,x0,µ) defined on a finite time interval[t0, t1] is
continuously dependent on the parameterµ and the initial datat0,x0.

Definition 2.8. Let x(t; t0,ξ0,µ0) denote a solution of (2.3) defined on the finite in-
terval t∈ [t0, t1] with µ = µ0 and x(t0; t0,ξ0,µ0) = ξ0. The solution is said todepend
continuously onµ at µ0 if for anyε > 0 there is aδ > 0 such that such that for allµ
in the neighborhoodU=

{
µ ∈ Rk |‖µ− µ0‖< δ

}
, (2.3) has a solution x(t; t0,ξ0,µ)

such that
‖x(t; t0,ξ0,µ)− x(t; t0,ξ0,µ0)‖< ε

for all t ∈ [t0, t1]. Similarly, the solution is said todepend continously onξ at ξ0 if
for any ε > 0 there is aδ > 0 such that such that for allξ in the neighborhood
X =

{
ξ ∈ Rk |‖ξ − ξ0‖< δ

}
, (2.3) has a solution x(t; t0,ξ ,µ0) such that

‖x(t; t0,ξ ,µ0)− x(t; t0,ξ0,µ0)‖< ε

for all t ∈ [t0, t1].
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The following result establishes the basic continuity properties of (2.3) on finite time
intervals.

Proposition 2.9.Suppose f(x, t,µ) is continuous in(x, t,µ) and locally Lipschitz in
x (uniformly in t andµ) on [t0, t1]×D×{‖µ− µ0‖< c} where D⊂ Rn is an open
connected set. Let x(t; t0,ξ0,µ0) denote a solution of (2.3) that belongs to D for all
[t0, t1]. Then givenε > 0 there isδ > 0 such that

‖ξ − ξ0‖< δ, ‖µ− µ0‖< δ

implies that there is a unique solution x(t; t0,ξ ,µ) of (2.3) defined on t∈ [t0, t1] and
such that

‖x(t; t0,ξ ,µ)− x(t; t0,ξ0,µ0)‖< ε, ∀t ∈ [t0, t1]

Proof: ( [52], p. 86)

We emphasize that the results on existence and continuity ofsolutions hold on finite
time intervals[t0, t1]. Stability, as we shall see below, requires us to consider solutions
defined on infinite intervals. We will often tacitly assume that they are so defined.
Continuity issues with respect to both initial conditions and parameters for solutions
on infinite time intervals are quite subtle.

Invariant Sets

In the following paragraphs we shall restrict attention to autonomous systems

ẋ= f (x), x(t0) = x0 (2.4)

In many instances the results can be extended to nonautonomous systems by extend-
ing the nonautonomous differential equation with the addition of a new state ˙xn+1 = 1
to replacet in the right side of the differential equation.

Let us denote byΨ(x, t) the flow of the vector fieldf on Rn defined by (2.4) i.e.
Ψ(x, t) is the solution of (2.4) withΨ(0,x) = x:

∂Ψ(x, t)
∂ t

= f (Ψ(x, t)) , Ψ(0,x) = x

Definition 2.10.A set of points S⊂ Rn is invariantwith respect to f if trajectories
beginning in S remain in S both forward and backward in time, i.e., if s∈ S, then
Ψ(t,s) ∈ S,∀t ∈R.

Obviously, any entire trajectory of (2.4) is an invariant set. Such an invariant set is
minimal in the sense that it does not contain any proper subset which is itself an
invariant set.

A set S is invariant if and only ifΨ(t,S) 7→ S for eacht ∈ R.
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Nonwandering Sets

Definition 2.11.A point p∈Rn is anonwandering pointwith respect to the flowΨ if
for every neighborhoodU of p and T> 0, there is a t> T such thatΨ(t,U)∩U 6= /0.
The set of nonwandering points is called thenonwandering set, and denotedΩ .
Points that are not nonwandering are calledwandering points.

The nonwandering set is a closed, invariant set. For proofs and other details see,
for example, Guckenheimer and Holmes [32], Arrowsmith and Place [3] or Sibirsky
[94]. The detailed structure of the nonwandering set is an important aspect of the
analysis of strange attractors.

Obviously, fixed points and periodic trajectories belong toΩ .

Limit Sets

Definition 2.12.A point q∈Rn is said to be anω-limit point of the trajectoryΨ(t, p)
if there exists a sequence of time values tk→+∞ such that

lim
tk→∞

Ψ(tk, p) = q

q is said to be anα -limit point of Ψ(t, p) if there exists a sequence of time values
tk→−∞ such that

lim
tk→−∞

Ψ(tk, p) = q

The set of allω-limit points of the trajectory through p is theω-limit set, Λω(p), and
the set of allα -limit points of the trajectory through p is theα -limit set, Λα (p).

Hirsch and Smale [41] remind us thatα ,ω are the first and last letters of the Greek
alphabet and, hence, the terminology.

Proposition 2.13.Theα -, ω- limit sets of any trajectory are closed invariant sets
and they are subsets of the nonwandering setΩ .

Proof: Hirsch and Smale [41] or Sibirsky [94] for closed, invariantsets. That they
are subsets ofΩ is obvious.

We can make some simple observations

1. if r ∈Ψ(t, p), thenΛω(r) = Λω(p) andΛα (r) = Λα (p), i.e., any two points on
a given trajectory have the same limit points.

2. if p is an equilibrium point, i.e.,f (p) = 0 or p=Ψ(t, p), thenΛω(p) =Λα (p) =
p.
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3. If Ψ(t, p) is a periodic trajectoryΛω(p) = Λα (p) =Ψ(R, p), i.e., theα andω
limit sets are the entire trajectory.

Finally, let us state the following important result.

Proposition 2.14.A homeomorphism of a dynamical system mapsω-, α - limit sets
into ω-, α - limit sets.

Proof: [94].

2.4 Lyapunov Stability

2.4.1 Autonomous Systems

In the following paragraphs we consider autonomous differential equations and as-
sume that the origin is an equilibrium point:

ẋ= f (x), f (0) = 0 (2.5)

with f : D→ Rn, locally Lipschitz in the domainD.

Definition 2.15.The origin of (2.5) is

1. astable equilibrium pointif for eachε > 0, there is aδ(ε)> 0 such that

‖x(0)‖< δ⇒ ‖x(t)‖< ε ∀t > 0

2. unstableif it is not stable, and

3. asymptotically stableif δ can be chosen such that

‖x(0)‖< δ⇒ lim
t→∞

x(t) = 0

The concept of Lyapunov stability is depicted in Figure (2.3).

The next seemingly trivial observation is nontheless useful. Among other things, it
highlights the distinction between stability and asymptotic stability.

Lemma 2.16 (Necessary condition for asymptotic stability). Consider
the dynamical systeṁx= f (x) and suppose x= 0 is an equilibrim point, i.e., f(0) =
0. Then x= 0 is asymptotically stable only if it is an isolated equilibrium point.
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x0

Fig. 2.3: Definition of Lyapunov stability.

Proof: If x= 0 is not an isolated equilibrium point, then in every neighborhoodU of
0 there is at least one other equilibrium point. Thus, that not all trajectories beginning
in U tend to 0 ast→ ∞.

For linear systems the following result is easily obtained.

Proposition 2.17.The origin of the linear systeṁx=Ax is a stable equilibrium point
if and only if

∥
∥eAt

∥
∥≤ N < ∞ ∀t > 0

It is asymptotically stable if and only if, in addition,
∥
∥eAt

∥
∥→ 0, t→ ∞

Proof: Exercise (chooseδ = ε/N)

Positive Definite Functions

Definition 2.18.A function V: Rn→Rn is said to be

1. positive definiteif V (0) = 0 and V(x)> 0, x 6= 0,

2. positive semidefiniteif V (0) = 0 and V(x)≥ 0, x 6= 0,

3. negative definite(negative semidefinite) if −V(x) is positive definite (positive
semidefinite)

For a quadratic formV(x) = xTQx, Q= QT , the following statements are equivalent

1. V(x) is positive definite

2. the eigenvalues ofQ are positive real numbers
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3. all of the principal minors ofQ are positive

|q11|> 0,

∣
∣
∣
∣

q11 q12

q21 q22

∣
∣
∣
∣
> 0, . . . , |Q|> 0

Definition 2.19.A C1 function V(x) defined on a neighborhood D of the origin is
called aLyapunov functionrelative to the flow defined bẏx = f (x) if it is positive
definite and it is nonincreasing along trajectories of the flow, i.e.,

V(0) = 0, V(x)> 0, x∈ D−{0}

V̇ =
∂V(x)

∂x
f (x) ≤ 0

2.4.2 Basic Stability Theorems

Stability of a dynamical system may determined directly from an examination of
the trajectories of the system or from a study of Lyapunov functions. The basic idea
of the Lyapunov method derives from the idea of energy exchange in physical sys-
tems. A general physical conception is that stable systems dissipate energy so that
the stored energy of a stable system decreases or at least does not increase as time
evolves. The notion of a Lyapunov function is thereby an attempt to formulate a
precise, energy-like theory of stability.

Proposition 2.20 (Lyapunov Stability Theorem).If there exists a Lyapunov func-
tion V(x) on some neighborhood D of the origin, then the origin is stable. Further-
more, ifV̇ is negative definite on D then the origin is asymptotically stable.

Proof: Givenε > 0 chooser ∈ (0,ε] such that

Br = {x∈ Rn |‖x‖< r } ⊂ D

Now, we can find a level setCα = {x∈ Rn |V(x) = α } which lies entirely withinBr .
Refer to Figure (2.4). The existence of such a set follows from the fact that sinceV
is positive and continuous onBr , it has a positive minimum,α , on∂Br . The level set
Cα defined byV(x) = α must lie entire inBr .

Now, sinceV is continuous and vanishes at the origin, there exists aδ > 0 such that
Bδ lies entirely within the set bounded byCα , i.e.,

Ωα = {x∈Rn |V(x)≤ α }

SinceV is nonincreasing along trajectories, trajectories which begin inBδ must re-
main inΩα , ∀t > 0. Hence they remain inBε . In the event thaṫV is negative definite,
V decreases steadily along trajectories. For any 0< r1 < r there is aβ < α such that
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Fig. 2.4: Sets used in proof of the Lyapunov stability theorem, Proposition (2.20).

Bβ lies entirely withinBr1. SinceV̇ has a strictly negative maximum in the annular
regionBr −Br1, any trajectory beginning in the annular region must eventually enter
Br1. Thus, all trajectories must tend to the origin ast→ ∞.

Unlike linear systems, an asymptotically stable equilibrium point of a nonlinear sys-
tem may not attract trajectories from all possible initial states. It is more likely that
trajectories beginning at states in a restricted vicinity of the equilibrium point will
actually tend to the equilibrium point ast → ∞. The above theorem can be used to
establish stability and also to provide estimates of thedomain of attractionusing
level sets of the Lyapunove functionV(x).

The following theorem due to LaSalle allows us to more easilycharacterize the do-
main of attraction of a stable equilibrium point and is a morepowerful result than
the basic Lyapunov stability theorem because the conditions for asymptotic stability
do not requirėV to be negative definite.

Proposition 2.21 (LaSalle Invariance Theorem).Consider the system defined by
equation (2.5). Suppose V(x) : Rn→ R is C1 and letΩc designate a component of
the region{x∈ Rn |V(x)< c}. SupposeΩc is bounded and that withinΩc V̇(x)≤ 0.
Let E be the set of points withinΩc whereV̇ = 0, and let M be the largest invariant
set of (2.5) contained in E. Then every solution x(t) of (2.5) beginning inΩc tends to
M as t→ ∞.

Proof: (following [71]) V̇(x) ≤ 0 implies thatx(t) starting inΩc remains inΩc.
V(x(t)) nonincreasing and bounded implies thatV(x(t)) has a limitc0 ast→ ∞ and
c0 < c. By continuity ofV(x), V(x) = c0 on the positive limit setΛω(x0) of x(t)
beginning atx0 ∈Ωc. Thus,Λω(x0) is in Ωc andV̇(x) = 0 onΛω(x0). Consquently,
Λω(x0) is in E, and since it is an invariant set, it is inM.
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Note that the theorem does not specify thatV(x) should be positive definite, only that
it have continuous first derivatives and that there exist a bounded region on which
V(x) < c for some constantc. A number of useful results follow directly from this
one.

Corollary 2.22. Let x= 0 be an equilibrium point of (2.5). Suppose D is a neighbor-
hood of x= 0 and V : D→ R is C1 and positive definite on D such thatV̇(x) ≤ 0 on
D. Let E=

{
x∈D

∣
∣V̇(x) = 0

}
and suppose that the only entire solution contained

in E is the trivial solution. Then the origin is asymptotically stable.

Corollary 2.23. Let x= 0 be an equilibrium point of (2.5). Suppose

1. V(x) is C1

2. V(x) is radially unbounded (Barbashin-Krasovskii condition),i.e.,

‖x‖→ ∞⇒V(x)→ ∞

3. V̇(x)≤ 0, ∀x∈ Rn

4. the only entire trajectory contained in the set E=
{

x∈ D
∣
∣V̇(x) = 0

}
is the

trivial solution.

Then the origin is globally asymptotically stable.

The stability theorems provide only sufficient conditions for stability and construc-
tion of a suitable Lyapunov function may require a fair amount of ingenuity. In the
event that attempts to establish stability do not bear fruitit may be useful to try to
confirm instabilty.

Proposition 2.24 (Chetaev Instability Theorem). Consider equation (2.5) and
suppose x= 0 is an equilibrium point. Let D be a neighborhood of the origin. Sup-
pose there is a function V(x) : D→R and a set D1⊂ D such that

1. V(x) is C1 on D,

2. the origin belongs to the boundary of D1, ∂D1,

3. V(x)> 0 andV̇(x)> 0 on D1,

4. On the boundary of D1 inside D, i.e. on∂D1∩D, V(x) = 0

Then the origin is unstable

Proof: Choose anr such thatBr = {x∈Rn |‖x‖ ≤ r } is in D. Refer to Figure (2.5).
For any trajectory beginning insideU = D1∩Br at x0 6= 0, V(x(t)) increases indef-
initely from V(x0) > 0. But by continuity,V(x) is bounded onU . Hencex(t) must
leaveU . It cannot do so across its boundary interior toBr so it must leaveBr .
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Fig. 2.5: Sets used in proof of the Chetaev instability theorem, Proposition (2.24).

Stability of Linear Systems

Consider the linear system
ẋ= Ax (2.6)

Proposition 2.25.Consider the Lyapunov equation

ATP+PA=−Q (2.7)

(a) If there exists a positive definite pair of symmetric matrices P,Q satisfying the
Lyapunov equation then the origin of the system (2.6) is asymptotically stable.

(b) If there exists a pair of symmetric matrices P,Q such that P has at least one
negative eigenvalue and Q is positive definite, then the origin is unstable.

Proof: Consider (a) first. ChooseV(x) = xTPx and computėV = xT(ATP+PA)x=
−xTQx. The assumptions and the LaSalle stability theorem lead to the conclusion
that all trajectories tend to the orgin ast → ∞. Case (b) requires application of
Chetaev’s instability theorem. In this case considerV(x) = −xTPx. Recall that for
symmetricP the eigenvalues ofP are real, they may be positive, negative or zero.
On the positive eigenspace,V < 0, on the negative eigenspace,V > 0, and on the
zero eigenspace,V = 0. SinceP has at least one negative eigenvalue, the negative
eigenspace is nontrivial and there is a set of points,D, for whichV > 0. Let Bε be
an open sphere of small radiusε centered at the origin. SinceV is continuous, the
boundary ofD in Bε , ∂D∩Br , consists of points of points at whichV = 0. It in-
cludes the origin and is never nonempty (even if all eigenvalues ofP are negative).
ForV(x) = −xTPx, V̇ = xTQx and it is always positive sinceQ is assumed positive
definite. Thus, the conditions of Proposition (2.24) are satisfied.
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SupposeQ> 0 and theP has a zero eigenvalue. If the matrixP has a zero eigenvalue
then there are pointsx 6= 0 such thatV(x) = xTPx= 0. But at such pointṡV(x) =
−xTQx< 0. Since V(x) is continuous this means that there must be points at which
V assumes negative values. Thus,P must also have a negative eigenvalue. Thus, we
have the following corollary to Proposition (2.25).

Corollary 2.26. The linear system (2.6) is asymptotically stable if and onlyif for
every positive definite symmetric Q there exists a positive definite symmetric P that
satisfies the Lyapunov equation (2.7).

Lagrangian Systems

The Lyapunov analysis of the stability of nonlinear dynamical systems evolved from
a tradition of stability analysis via energy functions thatgoes back at least to La-
grange and Hamilton. We will consider a number of examples which are physically
motivated and for which there are energy functions that serve as natural Lyapunov
function candidates. Consider the class of Lagrangian systems characterized by the
set of second order differential equations

d
dt

∂L(x, ẋ)
∂ ẋ

− ∂L(x, ẋ)
∂x

= QT (2.8)

where

1. x∈ Rn denotes a vector ofgeneralized coordinatesandẋ= dx/dt are thegener-
alized velocities.

2. L : R2n→R is theLagrangian. It is constructed from the kinetic energy function
T(x, ẋ) and the potential energy functionU(x), via L(x, ẋ) = T(x, ẋ)−U(x).

3. The kinetic energy has the form

T(x, ẋ) = 1
2 ẋTM(x)ẋ

where for each fixedx, the matrixM(x) is positive definite.

4. The potential energy is related to a force vectorf (x) via

U(x) =
∫

f (x)dx

5. Q(x, ẋ, t) is a vector of generalized forces.

Occasionally it is convenient to write the second order equations in first order form
by defining new variablev= ẋ to obtain

[
ẋ
v̇

]

=

[
v

−M−1(x) f (x)− 1
2M−1(x)

[
∂M(x)

/
∂x
]
+M−1(x)Q

]

(2.9)
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Another useful first order form is Hamilton’s equations obtained as follows. Define
thegeneralized momentumas

pT =
∂L
∂ ẋ

= ẋTM(x)⇒ ẋ= M−1(x)p (2.10)

Define theHamiltonian H: R2n→ R

H(x, p) =
[
pT ẋ−L(x, ẋ)

]

ẋ→M−1p =
1
2 pTM−1(x)p+U(x) (2.11)

The Hamiltonian is the total energy expressed in momentum rather than velocity
coordinates. Notice that Lagrange’s equation can be written

ṗT − ∂L
∂x

= QT (2.12)

Now, using the definition ofH, (2.11), write

dH =
∂H
∂x

dx+
∂H
∂ p

dp= dpT ẋ+ pTdẋ− ∂L
∂x

dx− ∂L
∂ ẋ

dẋ= dpT ẋ− ∂L
∂x

dx

Using (2.12) we have

∂H
∂x

dx+
∂H
∂ p

dp= ẋTdp− (ṗ−Q)T dx

Comparing coefficients ofdpanddx, we have Hamilton’s equations.

ẋ=
∂H(x, p)

∂ pT , ṗ=−∂H(x, p)
∂xT +Q (2.13)

Example 2.27 (Soft Spring).Consider a system of with kinetic and potential energy
functions

T =
x2

2

2
, U =

x2
1

1+ x2
1

Lagrange’s equations in first order form ( ˙x1 = x2) with viscous damping are

[
ẋ1

ẋ2

]

=

[
x1

−2 x1
(1+x2

1)
2 − cx2

]

If we take the total energy as a candidate Lyapunov function,

V(x1,x2) =
1
2x2

2+
x2

1

1+ x2
1

an easy calculation shows thatV̇ = −cx2 ≤ 0 for c> 0. Furthermore, the seṫV = 0
consists of thex1-axis and the only entire solution contained therein is the trivial
solution. We conclude that the origin is asymptotically stable. We can not, however,
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conclude global aymptotic stability because the Lyapunov function is not radially
unbounded. Let us look at the level sets ofV:

In[7]:= ContourPlot [V,{x1,−5,5},{x2,−2,2},PlotPoints→ 50,

Contours→ 15,ColorFunction→ (GrayLevel [((#+0.1)/1.1)ˆ(1/4)]&),

FrameLabel→ {x1,x2}]

-4 -2 0 2 4
x1

-2

-1

0

1

2

x2

and, finally, at the trajectories:

In[8]:= Show[graphs2,AxesLabel→{x1,x2},PlotRange→ {{−5,5},{−2,2}},
DisplayFunction→ $DisplayFunction]

Example 2.28 (Variable Mass).Consider a system with variable inertia, typical of a
crankhaft. The kinetic and potential energy functions are
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T = (2− cos2x1)x2
2, U = x2

1+
1
4x4

1

Systems with variable mass are much easier to analyze using Hamilton’s equations,
so we define the generalized momentump= (2− cos2x1)x2 and the Hamiltonian

H(x1, p) =
p2

2(2− cos2x1)
+ x2

1+
1
4x4

1

Again with viscous damping, Hamilton’s equations are

[
ẋ1

ṗ

]

=

[ p
2−cos2x1

−2x1− x3
1− p2sin2x1

(2−cos2x1)2
+ 2c p

(2−cos2x1)2

]

It is not difficult to computeḢ, indeed,

In[9]:= Simplify [Jacob [H,{p,x1}].{−D[H,x1]−D[R,p],D[H,p]}]

Out[9]=
2 c p2

(−2+Cos[2 x1])3

We conclude thatḢ ≤ 0 for c > 0. Moreover, the only entire trajectory in the set
Ḣ = 0 is the trivial solution, and sinceH is radially unbounded, we can cnclude that
the origin is globally asymptotically stable. Let is look atthe level curves ofH

In[10]:= ContourPlot [H,{x1,−6,6},{p,−12,12},PlotPoints→ 100,Contours→ 25,

ColorFunction→ (GrayLevel [(#+0.1)/1.1)ˆ(1/4)]&),FrameLabel→ {x1,p}]
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and at the state space trajectories
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In[11]:= graphs3= PhasePortrait [f,x,15,{{−6,6,2},{−5,5,5}}];
Show[graphs3,AxesLabel→{x1,p},PlotRange→{{−4,4},{−4,4}},

DisplayFunction→ $DisplayFunction]
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Example 2.29 (Multiple Equilibria).Consider the system

ẍ+
∣
∣x2−1

∣
∣ ẋ3− x+ sin

(πx
2

)

= 0

Notice that the system has three equilibria(x, ẋ) = (0,0),(−1,0),(1,0). We can de-
termine their stability by examining the system phase portraits or using a Lyapunov
analysis based on total energy as the candidate Lyapunov function. First let us exam-
ine the phase portraits.

In[12]:= U =− 2
π
+

x12

2
+

2 Cos
[π x1

2

]

π
;

In[13]:= T = x2ˆ2/2;V = T+U;

In[14]:= F= Simplify [D[U,x1]];

f = {x2,− Abs[x1ˆ2−1] x2ˆ3−F};x = {x1,x2};
In[15]:= graphs3= PhasePortrait [f,x,2,{{−2,2,0.5},{−1,1,1}}];

In[16]:= Show[graphs3,AxesLabel→{x1,x2},PlotRange→{{−1.5,1.5},{−1,1}},
DisplayFunction→ $DisplayFunction]
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Thus, we see that the equilibrium point(0,0) is unstable and that the other two,
(±1,0), are asymptotically stable. Now, let us consider the Lyapunov viewpoint.
The total energy is

V =
ẋ2

2
+

x2

2
− 2

π

(

1− cos
(πx

2

))

A straightforward calculation leads to

V̇ =−
∣
∣x2−1

∣
∣ ẋ2

The LaSalle theorem (2.21) can now be applied. Let us view thelevel surfaces.

In[17]:= ContourPlot [V,{x1,−2,2},{x2,−1,1},PlotPoints→ 50,

Contours→ 15,ColorFunction→ (GrayLevel [((#+0.1)/1.1)ˆ(1/4)]&),

FrameLabel→ {x1,x2}]
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Notice that there are level surfaces that bound compact setsthat include the equilib-
rium point(1,0). Pick one and designate itΩc1. Moreover,V̇ ≤ 0 everywhere, hence
specifically inΩc1, and the maximum invariant set contained inΩc1 is the equilib-
rium point. Consequently, all trajectories beginning inΩc1 tend to(1,0) so it is an
asymptotically stable equilibrium point. A similar conclusion can be reached for the
equilibrium point(−1,0).

2.4.3 Stable, Unstable, and Center Manifolds

Consider the autonomous system (2.5) and supposex= 0 is an equilibrium point so
that f (0) = 0. LetA := ∂ f (0)/∂x. Define three subspaces ofRn:

1. thestable subspace, Es: the eigenspace of eigenvalues with negative real parts

2. theunstable subspace, Eu: the eigenspace of eigenvalues with positive real parts

3. thecenter subspace, Ec: the eigenspace of eigenvalues with zero real parts

An equilibrium point is calledhyperbolicif A has no eigenvalues with zero real part,
i.e., there is no center subspace,Ec. In the absence of center subspace the lineariza-
tion is a reliable predictor of important qualitative features of the nonlinear system.
The basic result is given by the following theorem. First, some definitions.

Let f ,g beCr vector fields onRn with f (0) = 0,g(0) = 0. M is an open subset of the
origin in Rn.

Definition 2.30.Two vector fields f and g are said to be Ck-equivalenton M if there
exists a Ck diffeomorphism h on M, which takes orbits of the flow generated by f
on M, Φ(x, t), into orbits of the flow generated by g on M,Ψ(x, t), preserving ori-
entation but not necessarily parameterization by time. C0-equivalence is referred to
as topological equivalence. If there is such an h which does preserve parameteriza-
tion by time then f,g are said to be Ck -conjugate. C0-conjugacy is referred to as
topological-conjugacy.

Proposition 2.31 (Hartman-Grobman Theorem).Let f(x) be a Ck vector field on
Rn with f(0) = 0 and A:= ∂ f (0)/∂x. If A is hyperbolic then there is a neighborhood
U of the origin in Rn on which the nonlinear flow oḟx= f (x) and the linear flow of
ẋ= Ax are topologically conjugate.

Proof: (Chow & Hale [21], p. 108)

Definition 2.32.Let U be a neighborhood of the origin. We define thelocal stable
manifoldand local unstable manifoldof the equilibrium point x= 0 as, respectively,

Ws
loc = {x∈U |Ψ(x, t)→ 0 as t→ ∞∧Ψ(x, t) ∈U ∀t ≥ 0}

Wu
loc = {x∈U |Ψ(x, t)→ 0 as t→−∞∧Ψ(x, t) ∈U ∀t ≤ 0}
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Proposition 2.33 (Center Manifold Theorem). Let f(x) be a Cr vector
field on Rn with f(0) = 0 and A:= ∂ f (0)/∂x. Let the spectrum of A be divided
into three setsσs,σc,σu with

Reλ =







< 0
= 0
> 0

λ ∈ σs

λ ∈ σc

λ ∈ σu

Let the (generalized) eigenspaces ofσs,σc,σu be Es,Ec,Eu, respectively. Then there
exist Cr stable and unstable manifolds Ws and Wu tangent to Es and Eu, respectively,
at x= 0 and a Cr−1 center manifold Wc tangent to Ec at x= 0. The manifolds
Ws,Wc,Wu are all invariant with respect to the flow of f(x). The stable and unstable
manifolds are unique, but the center manifold need not be.

Proof: [82].

Example 2.34 (Center Manifold).Consider the system

ẋ= x2, ẏ=−y

from which it is a simple matter to compute

x(t) = x0
/
(1− tx0), y(t) = y0e−t ⇒ y(x) =

[

y0e−1/x0

]

e1/x

The phase portrait is shown below. Observe that(0,0) is an equilibrium point with:

A =

[
0 0
0 −1

]

⇒ Es = span

{
0
1

}

, Ec = span

{
1
0

}

Notice that the center manifold can be defined using any trajectory beginning with
x < 0 and joining with it the positivex-axis. Also, the center manifold can be cho-
sen to be the entirex-axis. This is the only choice which yields an analytic center
manifold.

In[1]:=

f={x1ˆ2,-x2};x={x1,x2};
graphs3=PhasePortrait[f,x,8,{{-0.2,0.1,.05},{-0.5,0 .5,0.5}}];

Show[graphs3,AxesLabel->{"x,WˆC","y,WˆS"},
PlotRange->{{-0.2,0.2},{-0.25,0.25}},
DisplayFunction->$DisplayFunction,Frame->True,Frame Style->Black,
ImageSize->{360,215},AspectRatio->Full,AxesOrigin-> Automatic,
AxesStyle->Directive[Black,Thick]]
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There are some important properties of these manifolds thatwill not be examined
here. See, for example, [32] and [3]. Let us note, however, that existence and unique-
ness of solutions insure that two stable (or unstable) manifolds cannot intersect or
self-intersect. However, a stable and an unstable manifoldcan intersect. The global
stable and unstable manifolds need not be simple submanifolds ofRn, since they may
wind around in a complex manner, approaching themselves arbitrarily closely.

Motion on the Center Manifold

Consider the system of differential equations

ẋ= Bx+ f (x,y)
ẏ=Cy+g(x,y)

(2.14)

where(x,y) ∈Rn+m, f ,g and their gradients vanish at the origin, and the eigenvalues
of B have zero real parts, those ofC negative real parts. The center manifold is tangent
to Ec:

Ec = span

[
In

0m×n

]

It has a local graph

Wc =
{
(x,y) ∈ Rn+m |y= h(x)

}
, h(0) = 0,

∂h(0)
∂x

= 0

Onceh is determined, the vector field on the center manifoldWc (i.e., the surface
defined byy= h(x)) can be projected onto the Euclidean spaceEc as

ẋ= Bx+ f (x,h(x)) (2.15)

These calculations lead to the following result (see [32]).

Proposition 2.35 (Center Manifold Stability Theorem). If the origin of (2.15) is
asymptotically stable (resp. unstable) then the origin of (2.14) is asymptotically sta-
ble (resp. ustable).
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To computeh, we use the fact that onWc it is required thaty= h(x) so that

ẏ=
∂h(x)

∂x
ẋ=

∂h(x)
∂x

[Bx+ f (x,h(x)]

But ẏ is also governed by (2.14) so we have the partial differential equation

∂h(x)
∂x

[Bx+ f (x,h(x)] =Ch(x)+g(x,h(x) (2.16)

that needs to be solved along with the boundary conditionsh(0) = 0, ∂h(0)
∂x = 0.

Example 2.36.Consider the following two dimensional system from Isidori[46].

ẋ= cyx− x3

ẏ=−y+ayx+bx2

wherea,b,c are real numbers. It is easy to see that the origin is an equilibrium point
and that it is in the form of (2.14) withB= 0 andC=−1. To computeh we need to
solve the partial differential equation

∂h
∂x

[
cxh(x)− x3]+h(x)−ah(x)x−bx2 = 0 (2.17)

with boundary conditionsh(0) = 0, ∂h(0)
∂x = 0.

Assume a polynominal solution of the form

h(x) = a0+a1x+a2x
2+a3x3+O(x4)

In view of the boundary conditions we must havea0 = 0 anda1 = 0. Substituteh
into (2.17) as follows, usingMathematica,

In[18]:= h= a2 xˆ2+a3 xˆ3+O[x]ˆ4;

F= D[h,x](c x h−xˆ3)+h−a h x−b xˆ2

Out[18]= (a2−b) x2+(−a a2+a3) x3+O[x]4

Thus, we have

In[19]:= a2= b;a3= a a2;h
Out[19]= b x2+a b x3+O[x]4

Now, obtain the motion on the center manifold

In[20]:= dx= c h x−xˆ3
Out[20]= (−1+b c) x3+a b c x4+O[x]5

The last result can be rewritten as

ẋ= (−1+bc)x3+abcx4+O(x5)

Thus, we have the following results,
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(a) if bc< 1, the motion on the center manifold is asymptotically stable,

(b) if bc> 1, it is unstable,

(c) if bc= 1, anda 6= 0, it is unstable

(d) if bc= 1, anda= 0, the above calculations are inconclusive. But in this special
case it is easy to verify thath(x) = x2 and the center manifold dynamics are
ẋ= 0. So the motion is stable, but not asymptotically stable.

2.5 Differential-Algebraic Equations

2.6 Problems

Problem 2.37.Plot the level sets of the following norms onR2:

(a) ‖x‖=
√

x2
1+ x2

2

(b) ‖x‖= |x1|+ |x2|
(c) ‖x‖= sup(|x1| , |x2|)

Problem 2.38.Consider a system described by the differential equation:

ẍ+g(x) = 0

that describes a unit point mass with spring forceg(x). Show that(x, ẋ) = (0,0) is a
stable equilibrium point if

(a) xg(x)> 0, x 6= 0

(b) g(0) = 0

Problem 2.39.Consider the dissipative system

ẍ+aẋ+2bx+3x2 = 0, a,b> 0

(a) Show that there are two equilibrium points(x, ẋ) = (0,0) and(x, ẋ) = (−2b/3,0)

(b) By linear approximation show that(0,0) is asymptotically stable and that
(−2b/3,0) is unstable.

(c) Use the total energy of the undamped system (a = 0) as a Lyapunov function
and identify a largest region of attraction for(0,0). Show that the boundary of
this region passes through the point(−2b/3,0).
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(d) Pick values fora,b> 0 and plot state trajectories and level surfaces for the en-
ergy.

Problem 2.40.Consider the system

ẋ1 = x2

ẋ2 =−x1− x2sat(x2
2− x2

3)
ẋ3 = x3sat(x2

2− x2
3)

(a) Show that the origin is the unique equilibrium point.

(b) Taylor linearize at the origin and show that it is asymptotically stable.

(c) UsingV(x) = xTx, show that the origin is globally asymptotically stable.

Problem 2.41.Investigate the stability of the origin, including estimates of the do-
main of attraction, of the following systems:

(a) ẍ= x− sat(2x+ ẋ), Hint: UseV(x) = xẋ,

(b) ẍ+ ẋ|ẋ|+ x− x3 = 0, Hint: Use total energy forV(x).
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Introduction to Differential Geometry

3.1 Introduction

This chapter provides an overview of the differential geometry concepts necessary
for a modern discussion of nonlinear control and analyticalmechanics. We need to
develop a basic understanding of manifolds, vector fields and flows, distributions
and integral submanifolds along with tools that allow us to compute and manipulate
these objects. The material described only very briefly hereis deep and rich and a
more thorough discussion can be found in many text books, e.g., [14, 41, 107, 89].
It has its roots in analytical mechanics but it has become a cornerstone of nonlinear
control.

In essence this chapter develops the tools required to address the evolutionary behav-
ior of systems whose state spaces are curved rather than flat surfaces. Examples of
the importance of this generalization abound. We have already considered the flow of
a dynamical system on a curved surface when evaluating stability on a center man-
ifold in the last chapter. Sometimes it is convenient to consider the state space of a
pendulum to be a cylinder rather than the flat Euclidean spaceR2. Electric power
systems are typically modeled by systems of differential-algebraic equations in the
form

ẋ= f (x,y)
0= g(x,y)

wherex ∈ Rn, y ∈ Rm, and f : Rn+m→ Rn, g : Rn+m→ Rm are smooth functions.
Clearly the motion is constrained to the set of points inRn+m that satisfy the alge-
braic equation. Under the right circumstances, this set is an n-dimensional smooth
surface. In other applications from robotics to spacecraftmodels often have state
spaces that are not flat. Control design itself imposes the need to consider flows
on general surfaces. Unique aspects of the navigation of ships and aircraft between
points on earth arise because the motion takes place on a sphere. Control theoretic
examples include the generalization of the concept of zero dynamics to nonlinear
systems and the study of sliding modes in variable structurecontrol systems.
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While the subject matter might seem abstract on first acquaintance, its underlying
concepts are quite intuitive and appealing. The formalism provides a precise basis
for working with geometric ideas and the reader new to this material will no doubt
find justification and clarification for familiar calculations.

We begin with a discussion of manifolds in Section 2 and then proceed to tangent
spaces, vector fields and covector fields in Section 3. Section 4 introduces distribu-
tions, codistributions and the Frobenius theorem. Distributions play a role in non-
linear system theory much like that of linear subspaces in linear system theory. The
Frobenius theorem answers classical questions of integrability central to problems of
mechanics and partial differential equations. It turns outto be equally important to
nonlinear control. Important tranformations of state equations are derived, based on
distributions possessing certain properties and tools forcomputing such distribution
are described. Section 5 provides a brief introdution to LieGroups and Lie Algebras
with the addition of some algebraic structure to the geometric objects of Sections 2,
3 and 4.

3.2 Manifolds

Roughly speaking a manifold is a smooth surface embedded in aEuclidean space of
some dimension. We will need a more precise definition in order to work effectively
with manifolds, but before proceeding formally let us examine how we ordinarily
characterize such surfaces. Consider the Euclidean spaceR2 and supposex,y are its
coordinates. The set of points that comprise a surface inR2, e.g., the unit circle, is
generally modeled in one of three ways:

• explicitly, by a mappingy= g(x) (or, x= g(y)),

• implicitly, by a relationf (x,y) = 0,

• parametrically, by a mappingx= h1(s), y= h2(s), s∈U ⊂ R.

The explicit model is typically inadequate. For example, the unit circle, does not
admit a global explicit representation. We would have to represent two pieces of the
circle by separate expressions. Representations of the unit circle are

• explicit, top half:y=
√

1− x2 and bottom half:y=−
√

1− x2,

• implicit, x2+ y2 = 1,

• parametric,y= sins, x= coss, s∈ [0, 2π)

In practice, interesting manifolds require either an implicit or a parametric represen-
tation even for a local characterization. Explicit representations, however, can also be
useful as we have already seen in the computation of center manifolds in the previous
chapter.
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Now, let us turn to the formalities. Recall that ahomeomorphismbetween any two
topological spaces is a one-to-one continuous mapping witha continuous inverse.
A homeomorphism not only maps points in a one-to-one manner,but it maps open
sets in a one-to-one manner. Thus, ifϕ : M→ N is a homeomorphism,M andN are
topologically the same.

A differentiable manifoldN of dimensionn is a set of points that is locally topo-
logically equivalent to the Euclidean spaceRn. This concept can be made precise
by introducing a set of local coordinate systems called charts. Each chart consists
of an open setU ⊂ N and a mappingϕ that mapsU homeomorphically ontoϕ (U).
A general discussion of differential manifolds and their application can be found in
many texts including [14, 41, 107]. The key elements of the following definition are
depicted in Figure (3.1).

Definition 3.1. An m-dimensional manifold is a set M together with a countable col-
lection of subsets Ui ⊂M and one-to-one mappingsϕi : Ui→Vi onto open subsets Vi

of Rm, each pair(Ui ,ϕi) called acoordinate chart, with the following properties:

1. the coordinate charts cover M,
⋃

i
Ui = M

2. on the overlap of any pair of charts the composite map

f = ϕ j ◦ϕ−1
i : ϕi(Ui ∩U j)→ ϕ j(Ui ∩U j)

is a smooth function.

3. if p∈Ui , p̄ ∈U j are distinct points of M, then there are neighborhoods, W of
ϕi(p) in Vi andW̄ ofϕ j(p̄) in Vj such that

ϕ−1
i (W)∩ϕ−1

j (W̄) = /0

The coordinate charts provide the setM with a topological structure so that the man-
ifold is a topological space. Condition 3. of the definition is a form of the so-called
Hausdorff separation axiom so that these manifolds are Hausdorff topological spaces.
The coordinates inRm of the image of a coordinate mapϕ (p), p∈M are called the
coordinates ofp. A chart(U,ϕ ) is called a local coordinate system. If the overlap
functions f = ϕ j ◦ϕ−1

i arek-times continuously differentiable, then the manifold is
called aCk-manifold. Ifk=∞, then the manifold is said to be smooth. It is analytic if
the overlap functions are analytic. A local coordinate system is called a cubic coordi-
nate system ifϕ (U) is an open cube about the origin inRm. If p∈M andϕ (p) = 0,
the coordinate system is said to be centered atp.

Example 3.2 (Differentiable Manifolds).The following are simple examples of dif-
ferentiable manifolds.

1. The Euclidean spaceRm is anm-dimensional manifold. There is a single chart,
U =Rm. The corresponding coordinate map is simply the identity map Id : Rm→
Rm.
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Fig. 3.1: This figure illustrates coordinate charts, local coordinate maps and compatibility
(overlap) functions on manifoldM.

2. Any open subsetU ⊂ Rm is an m-dimensional manifold with single chartU and
coordinate map again the identity.

3. The unit circleS1 = {(x,y)|x2 + y2 = 1} can be viewed as a one dimensional
manifold with two coordinate charts. Define the chartsU1 = S1−{(−1,0)} and
U2 = S1−{(1,0)}. Now we define the coordinate maps by isometric projection.

ϕ1 =
2y

1− x
: S1−{(−1,0)}→R1∼= {(1,y)}

ϕ2 =
2y

1− x
: S1−{(1,0)}→ R1∼= {(−1,y)}

The overlap functions are given by

f1 = ϕ2 ◦ϕ−1
1 =

1+ x
1− x

: R1−{0}→ R1−{0}

f2 = ϕ1 ◦ϕ−1
2 =

1− x
1+ x

: R1−{0}→ R1−{0}

Another description is obtained if we identify a point onS1 by its angular coor-
dinateθ, where(x,y) = (cosθ,sinθ, with two angles equivalent if they differ by
an integral multiple of 2π. Thus, we have a single chartU = {θ| 0< θ ≤ 2π}.

4. The unit sphereS2 = {(x,y,z)|x2 + y2+ z2 = 1} is another basic example of a
manifold with two coordinate charts. We may choose
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U1 = S2−{(0,0,1)}
U2 = S2−{(0,0,−1)}

obtained by deleting the north and south poles, respectively from the sphere. Lo-
cal coordinate functions can be defined as stereographic projections (from, re-
spectively, the north or south poles) onto the horizontal plane that passes through
the origin:

ϕ1(x,y,z) =

{
x

1− z
,

y
1− z

}

ϕ2(x,y,z) =

{
x

1+ z
,

y
1+ z

}

The compatibility function is

f2,1 = ϕ1◦ϕ−1
2 : R2−{0}→ R2−{0}

f2,1(x,y) =

{
x

x2+ y2 ,
y

x2+ y2

}

5. In general, ifM andN are smooth manifolds of dimensionm andn, then their
Cartesian productM×N is a smooth manifold of dimensionm+n. If their re-
spective coordinate maps areϕi : Ui →Vi ⊂ Rm andϕ̄ j : Ū j → V̄j ⊂ Rn, then the
induced coordinate charts onM×N are the Cartesian products

ϕi× ϕ̄ j : Ui×Ū j →Vi× V̄j ⊂ Rn+m

For our purposes a differentiable manifold can always be conceived as a smooth
surface embedded in a Euclidean space. The unit sphereS2 and the torusT2 are
manifolds embedded inR3. As noted, manifolds are ordinarily specified as subman-
ifolds of Euclidean space in one of two ways, parametricallyor implicitly. Before
describing these repesentations formally we define the notion of maximal rank of
maps.

Definition 3.3 (Maximal Rank Condition). Let F : Rm→Rn be a smooth map. The
rank of F at x0 ∈ Rm is the rank of the Jacobian DxF(x0). F is of maximal rankon
S⊂ Rm if the rank of F is maximal (the minimum of m and n) for each x0 ∈ S.

A submanifold can be defined parametrically as follows.

Definition 3.4. A submanifold embedded in Rn is a set M⊂ Rn, together with a
smooth one-to-one mapφ : Π ⊂ Rm→M, m≤ n, which satisfies the maximal rank
condition everywhere, whereΠ is called the parameter space and M= φ(Π ) is the
image ofφ. If the maximal rank condition holds but the map is not one-to-one, then
the set M (or the functionφ) is called an immersion.
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Example 3.5 (One Dimensional Submanifolds in R2 and R3). The following are some
examples for parametrically defined one dimensional submanifolds. Notice that plots
of parametrically defined submanifolds inR2 andR3 can easily be generated using
theMathematicafunctionsParametricPlot andParamtricPlot3D .

Consider a submanifoldN embedded inR3 defined by mappingf : R→R3

f (t) = (cost,sint, t)

N is a helix which spirals up the z axis. It is one-to-one andDt f = (−sint,cost,1) so
that the maximal rank condition is satisfied.

In[21]:= ParametricPlot3D [{Cos[t],Sin[t], t},{t,−3 π,3 π},
BoxRatios→{1,1,2},Boxed→ False,Ticks→ None,Axes→ False];

Now, consider a submanifold embedded inR2 defined by the mapping

f (t) = ((1+e−t/4)cost,(1+e−t/4)sint)

Then ast→ ∞, N spirals in to the circle x2 + y2 = 1.

In[22]:= D[{(1+Exp[−t/4]) Cos[ t],(1+Exp[−t/4]) Sin[ t]}, t]
Out[22]=

{
− 1

4
e−t/4 Cos[t]− (1+e−t/4) Sin[t],(1+e−t/4) Cos[t]− 1

4
e−t/4 Sin[t]

}

In[23]:= ParametricPlot [{(1+Exp[−t/4]) Cos[ t],(1+Exp[−t/4]) Sin[ t]},
{t,0,8 π},AspectRatio→ Automatic,Axes→ False];
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As another example, consider the mappingf : R→R2

f (t) = (sint,2sin2t)

N = f (R) is a figure eight which is self intersecting at the origin ofR2. Thus, f
is not one-to-one although the maximum rank condition is satisfied sinceDt f =
(−cost,−4cos2t) never vanishes.

In[24]:= ParametricPlot [{ Sin[ t],2Sin[ 2 t]},{t,0,2 π},Axes→ False];

Let us modify the previous example by defining

f (t) = (sin(2arctant),2sin(4arctant))

Now f is one-to-one and N passes through the origin only once. The maximal rank
condition holds.

In[25]:= ParametricPlot [{ Sin[2 ArcTan[ t]],2 Sin[ 4 ArcTan[ t]]},
{t,0,100 π},PlotPoints→ 200,PlotRange→ All ,Axes→ False];
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In[26]:= D[{ Sin[2 ArcTan[ t]],2 Sin[ 4 ArcTan[ t]]}, t]
Out[26]=

{2 Cos[2 ArcTan[t]]
1+ t2

,
8 Cos[4 ArcTan[t]]

1+ t2
}

Example 3.6 (The sphere S2). Now consider the sphereS2. First, we generate a graph
using a parametric specification of the sphere:

f (t,u) = {cost sinu,sint sinu,cosu}
In[1]:= ParametricPlot3D[{Cos[t] Sin[u], Sin[t] Sin[u], Cos[u]} ,

{t, 0, 2Pi}, {u, 0, Pi}]

The maximal rank condition can be tested by computing the Jacobian using the
ProPac functionJacob and then testing for its rank by examining the span of its
columns usingSpan.

In[2]:= AA=Jacob[ {Cos [t] Sin [u], Sin [t] Sin [u], Cos [u] }, {t,u }]

Out[2]= {{−Sin[t] Sin[u],Cos[t] Cos[u]},{Cos[t] Sin[u],Cos[u] Sin[t]},
{0,−Sin[u]}}
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In[3]:= Simplify[Cos [u] Span[Transpose[AA]]]

Out[3]= {{Cos[u],0,−Cos[t] Sin[u]},{0,Cos[u],−Sin[t] Sin[u]}}

We see that the rank condition is satisfied everywhere exceptat the poles. Thus, the
given mapping defines a submanifold ofR3 that is the sphere with the poles removed.

Example 3.7 (The torus T2).

Now consider the torusT2. First, we generate a graph of the torus using the prametric
representation:

f (t,u) = {cost(3+ cosu),sint(3+ cosu),sinu}
In[4]:= ParametricPlot3D[

{Cos[t] (3 + Cos[u]), Sin[t] (3 + Cos[u]), Sin[u]},
{t, 0, 2π}, {u, 0, 2π},PlotPoints→ 40,Axes→ False,

Boxed→ False]

Now, let us exam the maximal rank condition.

In[5]:= AA = Jacob [{Cos[t] (3 + Cos[u]), Sin[t] (3 + Cos[u]), Sin[u]},{t,u}]
Out[5]= {{−(3+Cos[u]) Sin[t],−Cos[t] Sin[u]},

{Cos[t] (3+Cos[u]),−Sin[t] Sin[u]},{0,Cos[u]}}
In[6]:= Simplify [Span[Transpose [AA ]]]

Out[6]= {{Sin[u],0,−Cos[t] Cos[u]},{0,Sin[u],−Cos[u] Sin[t]}}

The mapping fails to have have maximum rank whenu= 0, i.e., on the outer edge
(in thex− y plane) of the torus. The torus with these points removed is a properly
parametrically defined submanifold ofR3 as specified by the given mapping.

It is illustrative to consider generating one dimensional submanifolds ofR3 by draw-
ing curves on the surface of the torus (these would be submanifolds of the torus as
well). We will consider mappingsf : R→R3 of the form:
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f (t) = {cost(3+ cosα t),sint(3+ cosα t),sint}

whereα is a parameter. These mappings produce curves on the torus surface. If α
is a rational number they are closed curves. Ifα is irrational then, even though the
mapping is one-to-one, its image is dense in the torus and itsclosure is the torus. The
following computations illustrate these two cases.

In[7]:= ParametricPlot3D[

{Cos[t] (3 + Cos[10 t]), Sin[t] (3 + Cos[10t]), Sin[10 t]},
{t, 0, 2π},PlotPoints→ 200,Axes→ False,Boxed→ False];

In[8]:= ParametricPlot3D[

{Cos[t] (3 + Cos[π 10/3 t]), Sin[t] (3 + Cos[π 10/3t]), Sin[π 10/3 t]},
{t, 0, 20π},PlotPoints→ 2000,Axes→ False,Boxed→ False];

Among these examples two of them illustrate submanifolds that are somewhat patho-
logical. Namely, the spiral in Example (3.5) and the irrational mapping onto the torus
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in Example (3.7). In these cases, although the mapf is one-to-one and satisfies the
maximal rank condition, it is not a homeomorphism (see Figure (3.2). This is the
source of the complex topology of these submanifolds. We define a class of subman-
ifolds with a more congenial topological structure.

a


R


Im
R


Fig. 3.2: The mapping is not a homeomorphism because the inverse is not continuous. Every
neighborhood of points on the spiral arbitrarily close to the limiting circle contain points that
map back into distinct points in the parameter space.

Definition 3.8. A regular manifoldM embedded in Rn is a manifold parameterized
by a smooth mappingφ : Π ⊂ Rm→M ⊂ Rn, such that for each x∈M there exists
a neighborhood U of x in Rn such thatφ−1(U ∩M) is a connected open subset ofΠ
(equivalently,φ maps homeomorphically onto its image).

In applications, manifolds are sometimes specified by a parameterization, but it is
equally common to define manifolds implicitly. The following theorem is a conse-
quence of the implicit function theorem.

Proposition 3.9.Consider a smooth mapping F: Rn→ Rm, m≤ n. If F satisfies the
maximal rank condition on the set S= {x∈ Rn| F(x) = 0}, then S is a regular, n−m
dimensional manifold embedded in Rn.

Let us make a few remarks and observations about Proposition(3.9).

1. Notice that it is only required that the maximal rank condition be satisfied on the
set whereF vanishes, i.e., onS itself. If the maximal rank condition is satisfied
everywhere, then each level set ofF , {x|F(x) = c} is a regular submanifold of
Rn of dimensionm−n.

2. A manifoldSso defined is called animplicit submanifold .
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3. Suppose(U,ϕ ) is a local coordinate system onM and thatk is an integer 0≤
k< m. Let a∈ ϕ (U) and define

S= {p∈U |ϕi(p) = ϕi(a), i = k+1, . . . ,m} (3.1)

The subsetS of M together with the coordinate system
{

ϕ j\S, i = 1, . . . ,k
}

forms a submanifold ofM called aslice of the coordinate system(U,ϕ ). The
concept of a slice will be important in discusing controllability and observbility.

4. Any smooth manifold can be implicitly defined in a Euclidean space of suitable
dimension.

Example 3.10.Consider the mapF : R3→ Rdefined by

F(x,y,z) = x2+ y2+ z2−2
√

2(x2+ y2)

F is of maximal rank everywhere except on the the circle{x2 + y2 = 2,z = 0}
where the Jacobian vanishes and on thez-axis where it does not exist. The level
sets

{
(x,y,z) ∈ R3 |F(x,y,z) = c

}
are tori for−2< c< 0, and like spheres with in-

dented poles forc > 0. For c=-2, the level set is the circle{x2+ y2 = 2,z= 0} on
which the gradient ofF vanishes.

Example 3.11.Consider the set of orthogonal matrices

O(2) = {X ∈ R2×2|XTX = I}

Such matrices form a subset ofR4. In fact, among the four coordinatesx1, x2, x3, x4,

X =

[
x1 x2

x3 x4

]

there are three independent constraints

x2
1+ x2

3 = 1

x1x2+ x3x4 = 0

x2
2+ x2

4 = 1

It is easy to check that the Jacobian is of full rank onO(2) so thatO(2) is an implicitly
defined regular submanifold of dimension 1 inR4. We can obtain a deeper insight into
the structure of this manifold by seeking a (one-dimensional) parameterization. Let
us attempt to identify

x1 = cosθ,x3 = sinθ

which clearly satisfies the first equation. The second equation is then satisfied by

x2 =−sinθ,x4 = cosθ
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or
x2 = sinθ,x4 =−cosθ

either of which satisfies the fourth relation. It follows that the matrices can be either
of the form

X1 =

[
cosθ −sinθ
sinθ cosθ

]

, 0≤ θ < 2π

or

X2 =

[
cosθ sinθ
sinθ −cosθ

]

=

[
cosθ −sinθ
sinθ cosθ

][
1 0
0 −1

]

, 0≤ θ < 2π

First, note that each family of matrices is in one-to-one correspondence with the
points on a circle. They are disconnected because they have no common elements.
Thus, we say that the manifoldO(2) has the structure of two disconnected copies
of S1. Second, note that the matrixX1 (viewed as an operator onR2) represents a
rotation in the plane (through an angleθ) whereas,X2 represents a relection in the
x-axis followed by a rotation. Third, note that det{X1} = 1 and det{X2} = −1. The
determinant distinguishes the two components of the manifold O(2). Fourth, observe
that the set of matricesX1(θ) contains the identity element, in particular,X1(0) = I2.
However, the set of matricesX2(θ) does not.

3.3 Tangent Spaces and Vector Fields

3.3.1 The Tangent Space and Tangent Bundle

Consider a smooth two dimensional surface embedded inR3. At each point on this
surface it is easy to envision a tangent plane. Suppose a particle moves along a path
in the surface. Then its velocity vector at a specified point on the path lies in the
tangent plane to the surface at the prescribed particle location. The generalization of
this concept to motion in more abstract manifolds is of central importance.

Definition 3.12.Let p : R→ M be a Ck, k ≥ 1 map so that p(t) is a curve in a
manifold M. The tangent vector v to the curve p(t) at the point p0 = p(t0) is defined
by

v= ṗ(t0) = lim
t→t0

{
p(t)− p(t0)

t− t0

}

The set of tangent vectors to all curves in M passing through p0 is the tangent space
to M at p0, denoted TMp0.

If M is an implicit submanifold of dimensionm in Rm+k, i.e.,F : Rm+k→ Rk, M =
{x ∈ Rm+k|F(x) = 0} andDxF satisfies the maximum rank condition onM, Then
TMp is the kerDxF(p) (translated, of course to the pointp). That isTMp is the
tangent hyperplane toM at p. See Figure (3.3).
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Fig. 3.3: The tangent space to the manifoldM at the pointx, TMx.

Let (U,ϕ ) be a local coordinate chart that contains the pointp0 ∈ M and suppose
p(t), with p(t0) = p0, denotes a curve inM andx(t) = ϕ (p(t)∩U) its image in
V ⊂ ϕ (U)⊂ Rm, as depicted in Figure (3.4). The tangent vector to the curvep(t) at
p0 in M is v and the corresponding tangent vector tox(t) at x0 in Rm is v̄. Thus, we
have the following definition.

Definition 3.13.The components of the tangent vector v to the curve p(t) in M in the
local coordinates(U,ϕ ) are the m numbers v1, . . . ,vm where vi = dϕi

/
dt.

Another interpretation of a tangent vector is as an operatoron scalar valued smooth
functions. Consider theCk mapF : M→R. Let y= f (x), x∈ ϕ (U)⊂ Rm denote the
realization ofF in the local coordinates(U,ϕ ). Again, supposep(t) denotes a curve
in M with x(t) its image inRm. Then the rate of change ofF at a pointp on this curve
is

d f
dt

= v1
∂ f
∂x1

+ · · ·+ vm
∂ f
∂xm

(3.2)

R
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Fig. 3.4: Motion along a curve in the manifoldM is quantified in a local coordinate system.
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Let us remark on some alternative views of the tangent vector. Notice that there are
many curves inM that pass throughp and have the same tangent vector. We can de-
fine equivalence classes of curves by defining an equivalencerelation among curves:
two curves passing throughp with the same tangent vector are equivalent. Each class
is associated with a unique tangent vector. Thus, a tangent vector atp is sometimes
defined as an equivalence class of curves throughp. All curves belonging to the
same class obviously produce the same value fordF/dt. Conversely, the tangent
vector(v1, . . . ,vm), is uniquely determined by the action of the directional derivative
operator (called aderivation)

v = v1
∂

∂x1
+ · · ·vm

∂
∂xm

(3.3)

on such an equivalence class of curves. Thus, it is also possible to define the tangent
vector as a map (the directional derivative) from the space of (equivalence classes
of) differentiable functions passing throughp to the real line. As a derivation, the
tangent vector satisfies two important properties

1. linearityv( f +g) = v( f )+ v(g)

2. Liebniz’ rulev( f ◦g) = v( f )◦g+ f ◦ v(g)

Both concepts of the tangent vector, 1) as a velocity vector -the curves approach, or
2) as a directional derivative - the derivation approach, are useful and may be used
interchangeably. We can easily reconcile these viewpointsby noting that a tangent
vector(v1, ..,vi , ..,vm) = (0, ..,1, ..,0) corresponds to the operatorv = ∂

/
∂xi .

Thus, we have the following definition.

Definition 3.14.The set of partial derivative operators constitute a basis for the tan-
gent space TMp for all points p∈U ⊂M which is called thenatural basis.

The above definition makes sense when the tangent space is viewed as a space of dif-
ferential operators. The formulation of the tangent vectoras a directional derivative
requires a local coordinate system, i.e., a chart(U,ϕ ). We are free, however, to define
a coordinate system for the tangent spaceTMp. The ‘natural’ coordinate system on
TMp induced by(U,ϕ ) has basis vectors which are tangent vectors to the coordinate
lines onM passing throughp. When taking the curves viewpoint, the tangent space
TMp is simply Rm and its elements may be thought of as column vectors and the
symbolsvi = ∂

/
∂xi represent the (unit) basis vectors.

At each pointp∈M, we have defined the tangent space. Taken together, these spaces
form the tangent bundle.

Definition 3.15.The union of all the tangent spaces to M is called thetangent bundle
and is denoted TM,

TM =
⋃

p∈M

TMp
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The tangent bundle is a manifold with dim{TM} = 2dim{M}. A point in TM
is a pair (x,v) with x ∈ M, v ∈ TMx. If (x1, ..,xm) are local coordinates onM
and (v1, ..,vm) components of the tangent vector in the natural coordinate sys-
tem onTMx, then natural local coordinates onTM are (x1, . . . ,xm,v1, . . . ,vm) =
(x1, . . . ,xm, ẋ1, . . . , ẋm). Recall the natural ‘unit vectors’ onTMx arev1= ∂

/
∂x1, ...,vm=

∂
/

∂xm.

The mappingπ : TM→ M which takes the point(x,v) in TM to x in M is called
thenatural projectionon TM. The inverse image ofx underπ is the tangent space
at x, π−1(x) = TMx. TMx is called thefiber of the tangent bundle over the point
x. A sectionof TM is a mappingσ : M → TM such that the composite mapping
π◦σ : M→ M is the identity. The mappingι : M→ TM such thatι (x) is the zero
vector ofTMx is called thenull section.

One of the most important applications of the idea of tangentbundle occurs in ana-
lytical mechanics where the tangent bundle generalizes theconcept of a state space.
A mechanical systemis a collection of mass particles which interact through phys-
ical constraints or forces, such as the pendulum of Figure (3.5). A configurationis
a specification of the position for each of its constituent particles. Theconfiguration
spaceis a setM of elements such that any configuration of the system corresponds to
a unique point in the setM and each point inM corresponds to a unique configura-
tion of the system. The configuration space of a mechanical system is a differentiable
manifold called theconfiguration manifold. Any system of local coordinatesq on the
configuration manifold are calledgeneralized coordinates. Thegeneralized veloci-
tiesq̇ are elements of the tangent spaces toM, TMq represented in the natural basis.
Thestate spaceis the tangent bundleTM which has local coordinates(q, q̇).

θ
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TM
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θ


TM
θ


TM
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Fig. 3.5: The pendulum illustrates the relationships between the configuration manifoldM, the
tangent spaceTMθ , and the state spaceTM.

3.3.2 The Differential Map

Let C be a curve inM parameterized by the mappingφ : R→M. Let F : M→ N be
a smooth mapping. The image ofC under the mappingF is the curveC̄ in N which
has a parameterization̄φ = F ◦φ. Refer to Figure (3.6). At any pointp on C there
is a tangent vectorv∈ TMp which maps to a tangent vector ¯v∈ TNF(p). We wish to
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determine the induced mappingF∗ : TMp→ TNF(p) which takes tangent vectors into
tangent vectors.

In local coordinates, the chain rule provides

dφ̄
dt

=
∂F
∂x

dφ
dt

(3.4)

v̄=
∂F
∂x

v (3.5)

This relation defines the desired mapping,F∗, in local coordinates. We note that it is
linear and that its matrix representation is simply the Jacobian of the mappingF . F∗
is called thedifferential mapof F and is sometimes denoteddF. Notice that

v̄i = v1
∂Fi

∂x1
+ · · ·+ vm

∂Fi

∂xm
= v(Fi), i = 1, . . . ,n (3.6)

So that
v̄(y) = (v(F1(p)), . . . ,v(Fn(p))) , y= F(p) ∈ N (3.7)

From the derivational point of view, the mappingdF is realized in local coordinates
by

v̄ = v(F1(p))
∂

∂y1
+ · · ·+ v(Fn(p))

∂
∂yn

=
n

∑
i=1

v(Fi(p))
∂

∂yi
(3.8)

wherey are the local coordinates onN. Because the differential map takes tangent
vectors inTMp to TNF(p) it is defined at the pointp. Thus, it would be appropriate
to write F∗|p or dF|p. However, the point of evaluation is typically not indicated and
is normally clear from the context.
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Fig. 3.6: Motion along a curve in the manifoldM maps into a manifoldN. The mapping
induces a map between the tangent spacesTMp andTNF(p).

The following is a useful result which provides for computing the differential map
for composite functions

Lemma 3.16.Suppose F: M→ N and H : N→ P are smooth maps between mani-
folds, then

d(H ◦F) = dH◦dF

where dF: TMx→TNy=F(x), dH : TNy→TPz=H(y) and d(H◦F) : TMx→TPz=H(F(x)).
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Proof: Direct computation in local coordinates provides the matrix representation of
d(H ◦F). For anyv∈ TMx

d(H ◦F)(v) =
∂H(F(x))

∂x
(v) =

∂H(y)
∂y

∂F(x)
∂x

(v) = dH(dF(v)) = dH◦dF(v)

3.3.3 Cotangent Spaces

The dual space toTMp is denotedT∗Mp and it is called thecontagent spaceto M at
p∈M. The elements ofT∗Mp are calledtangent covectors. Recall that the dual space
V∗ of a linear vector spaceV is the space of linear functions fromV to R. Thus, if we
identify the elements ofTMp as column vectors of dimensionm, the covectors may
be thought of as row vectors of dimensionm. There is a natural relationship between
the differential mapping and the cotangent space. Letφ be a smooth mappingφ :
M→R. Its differential atp∈M is a linear mapφ∗ : TMp→ TRφ(p) ∼= R. Sinceφ∗ is
a linear map fromTMp to the real line, it is an element of of the dual space toTMp,
that is, the cotangent spaceT∗Mp. In local coordinatesφ∗ is realized by

ṽ=

⌊
∂φ
∂x1

, · · · , ∂φ
∂xm

⌋

= v(φ)

Let ei , i = 1, ,mdenote the natural basis vectors ofTMp. The natural basis vectorse∗i
for T∗Mp are defined by the relations

e∗i ej = δi j , i, j = 1, ...,m (3.9)

Recall, that

e1 =










1
0
...
...
0










, e2 =









0
1
0
...
0









, ..., em =










0
...
...
0
1










(3.10)

so that the basis vectors forT∗Mp are the row vectors

e∗1 = [1,0, ..,0], e∗2 = [0,1, ..,0], ..., e∗m = [0,0, ..,1] (3.11)

Correspondingly, in the derivations viewpoint,TMp is a linear vector space of dif-
ferential operators which act on scalar valued functions onM and the basis elements
for TMp areei = ∂

/
∂xi , i = 1, ,m. The differential map associated with the smooth

mappingφ : M→R is

φ∗(v) = v(φ)
d
dy

(3.12)
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Of course, there is a one to one correspondence betweenv(φ)d/dy∈ TRφ(p) and
v(φ)∈R. Thus, it is convenient to writedφ(v) = v(φ) and refer todφ as the differen-
tial mapping. In this way we again identify the differentialmappings of scalar valued
functions as elements ofT∗Mp, i.e., the differential mappingsdφ(v) are cotangent
vectors. We seek basis elements inT∗Mp, e∗i , such that

e∗i (ej) = e∗i

(
∂

∂x j

)

= δi j , i, j = 1, ,m (3.13)

Let φ = xi , the coordinate map, and notice that

dxi
∂

∂x j
=

∂xi

∂x j
= δi j (3.14)

Thus, the set of cotangent vectors{dx1, ..,dxm} constitute a basis for the cotangent
spaceT∗Mp. Now, any smooth functionφ : M→ R gives rise to a cotangent vector
dφ which can be expressed

dφ =∑m
i=1v∗i dxi (3.15)

v∗i =
∂φ
∂xi

(3.16)

so that

dφ =
m

∑
i=1

∂φ
∂xi

dxi (3.17)

SupposeF : M→N is a smooth map. Recall that its differential,F∗ or dF : TMp→
TNF(p), is a linear map that takes tangent vectors inM to tangent vectors inN. This
map is realized in local coordinates by the Jacobian ofF . Consequently, there is an
induced map between cotangent spaces called thecodifferentialand denotedF∗ or
δF : T∗NF(p)→ T∗Mp. This map, realized by the transpose of the Jacobian ofF , is
sometimes called thepull-backas it takes covectors onN back to covectors onM. To
see this, consider a covectorω ∈ TM∗p. Thenω is a linear mapping that takes each
v∈ TMp to R. Let F : M→ N be a smooth mapping. Then the induced differential
mapdF takes vectors inTMp into TNF(p), in local coordinates

w=
∂F
∂x

v (3.18)

We seek a covectorµ ∈ TN∗F(p) such thatωv= µw for all v∈ TMp, i.e.,

ωv= µ
∂F
∂x

v, ∀v∈ TMp (3.19)

Clearly, in local coordinates,ω andµ are related by

ω = µ
∂F
∂x

(3.20)

This is the pull-back mapping.
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3.3.4 Vector Fields and Flows

A vector field f (x) on a manifoldM is a mapping that assigns a vectorf ∈ TMx,
whereTMx is the tangent space toM at x, to each pointx∈M. Formally, we define:

Definition 3.17.A vector fieldv on M is a map which assigns to each point p∈M, a
tangent vector v(p) ∈ TMp. It is a Ck-vector fieldif for each p∈M there exist local
coordinates(U,ϕ ) such that each component vi(x), i = 1, ...,m is a Ck function for
each x∈ ϕ (U).

A vector field can be viewed as a mappingv : M→ TM with the property that the
composite mappingπ◦ v : M→M 1 is the identity mapping, i.e.π◦ v(x) = x. Thus,
the vector fieldv is a section of the tangent bundle.

Definition 3.18.An integral curveof a vector field v on M is a parameterized curve
p= φ(t), t ∈ (t1, t2) ⊂ R whose tangent vector at any point coincides with v at that
point.

Consider local coordinates(U,ϕ ) onM, and the induced natural coordinates onTMp.
Then if φ(t) is an integral curve, its imagex(t) = ϕ ◦φ(t) ⊂ Rm must satisfy the
differential equationdx/dt = v(x).

If v(x) is sufficiently smooth, standard existence and uniqueness theorems for sys-
tems of ordinary differential equations imply corresponding properties for integral
curves on manifolds. First we define a maximal integral curve.

Definition 3.19.Let Ip denote an open interval of R with0∈ Ip. Supposeφ : Ip→M
is an integral curve of the vector field v such thatφ(0) = p. The integral curveφ is
maximal if for any other integral curvêφ : Îp→M with φ̂(0) = p, thenÎp⊂ Ip and
φ̂(t) = φ(t) for t ∈ Îp.

Now, the existence and uniqueness theorem can be stated.

Proposition 3.20.Suppose v is a smooth (Ck) vector field on M. Then there exists a
unique maximal integral curveφ : Ip→M passing through the point p∈M.

Proof: The result follows from the standard results on differential equations.

Definition 3.21.Let v be a smooth vector field on M and denote the parameterized
maximal integral curve through p∈M byΨ(t, p) so thatΨ : Ip×M→M where Ip is
a subinterval of R containing the origin andΨ(0, p) = p.Ψ(t, p) is called theflow
generated byv.

1recall thatπ is the natural projection.
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The flowΨ has the following basic property.

Proposition 3.22.The flowΨ of a smooth vector field v satisfies the differential
equation on M

d
dt

Ψ(t, p) = v(Ψ(t, p)), Ψ(0, p) = p

and has the semigroup property

Ψ(t2,Ψ(t1, p)) = Ψ(t1+ t2, p)

for all values of t1, t2 ∈R and p∈M such that both sides of the relation are defined.

Proof: The differential equation merely states thatv is tangent to the curveΨ(t, p)
for all fixed p. The initial condition is part of the definition ofΨ. The semigroup
property follows from the uniqueness property of differential equations. Both sides
of the equation satisfy the differential equation and have the same initial condition at
t2 = 0.

We will adopt the following notation

exp(tv)p :=Ψ(t, p) (3.21)

The motivation for this is simply that the flow satisfies the three basic properties
ordinarily associated with exponentiation. In particular, we have (from the properties
of the flow function):

exp(0 ·v)p= p (3.22)

d
dt
[exp(tv)p] = v(exp(tv)p) (3.23)

exp[(t1+ t2)v]p = exp(t1v)exp(t2v)p (3.24)

whenever defined. Note the distinction between the vector field used as a column
vector (v) and as a derivation (v).

The vector field is said to becompleteif Ip coincides withR. Thus the flow is defined
on all ofR×M.

Further justification for the exponential notation comes from the action of a vector
field on functions. Letv be a vector field onM and f : M→Ra smooth function. The
value of f along the flow (along an integral curve ofv passing throughp) is given in
local coordinates byf (exp(tv)x). Then the rate of change off can be computed

d
dt f (exp(tv)x) = ∂ f (exp(tv)x)

∂x
dexp(tv)x

dt = ∂ f (exp(tv)x)
∂x v(exp(tv)x)

=
m
∑

i=1
vi(exp(tv)x) ∂

∂xi
f (exp(tv)x) = v( f )(exp(tv)x)

(3.25)

wherev= {v1(x), ...,vm(x)} is also in local coordinates. Similarly,
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d2

dt2
f (exp(tv)x) = v2( f )(exp(tv)x) (3.26)

wherev2 = v(v( f )), and so on. Thus, the Taylor series aboutt = 0 is

f (exp(tv)x) = f (x)+ t v( f )(x)+
t2

2
v2( f )(x)+ · · ·=

∞

∑
k=0

tk

k!
vk( f )(x) (3.27)

A similar formula is valid for vector valued functionsF : M→ Rn. Let us interpret
the action ofv on F component-wise, that isv(F) = (v(F1), . . . ,v(Fn))T . Then we
have

F(exp(tv)x) = F(x)+ t v(F)(x)+
t2

2
v2(F)(x)+ · · ·=

∞

∑
k=0

tk

k!
vk(F)(x) (3.28)

An important operation is the orLie derivativeof a mapF : M→Rn with respect to
a vector fieldv onM.

Definition 3.23.Let v(x) denote a vector field on M and F(x) a mapping F: M→Rn,
both in local coordinates. Then theLie derivativeof F with respect to v of order
0, . . . ,k is

L0
v(F) = F, Lk

v(F) =
∂Lk−1

v (F)

∂x
v (3.29)

Using this notation we can write

vk(F)(x) = Łk
v(F)(x) (3.30)

so that

F(exp(tv)x) =
∞

∑
k=0

tk

k!
Lk

v(F)(x) (3.31)

In particular, supposeF is the coordinate map fromM to Rm, F(x) = x, so that
F(exp(tv)x) = exp(tv)x and we have

exp(tv)x = x+ t v(x)(x)+
t2

2
v2(x)(x)+ · · ·=

∞

∑
k=0

tk

k!
vk(x)(x) =

∞

∑
k=0

tk

k!
Lk

v(x)(x)

(3.32)
The Taylor expansion is identical to that of the classical exponential.

3.3.5 Lie Bracket

The Lie bracket is a binary operation on vector fields that is essential in the subse-
quent discussion.
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Definition 3.24. If v,w are differentiable vector fields on M, then theirLie bracket
[v,w] is the unique vector field defined in local coordinates by the formula

[v,w] =
∂w
∂x

v− ∂v
∂x

w

In terms of the derivation viewpoint, the Lie bracket is the unique vector field satis-
fying

[v,w]( f ) = v(w( f ))−w(v( f )) (3.33)

for all smooth functionsf : M → R. In local coordinates we can easily derive the
formula

[v,w] =
m

∑
i=1
{v(wi)−w(vi)}

∂
∂xi

=
m

∑
i=1

m

∑
j=1

{

v j
∂wi

∂x j
−wi

∂vi

∂x j

}
∂

∂xi
(3.34)

which is precisely the definition we have adopted.

The Lie bracket can be given useful geometric interpretations. First, let us consider
the Lie bracket as a directional derivative. We will computethe rate of change of a
vector fieldw as seen by an observer moving with the flowΨ(x, t) generated by a
second vector fieldv.

Proposition 3.25.Suppose v,w are smooth vector fields on M andΨ(x, t) is the flow
generated by v. Then

dw(Ψ(x, t))
dt

∣
∣
∣
∣
t=0

= [v,w]|x

Proof: We need to comparew(Ψ(x, t)) with w(x) ast → 0. Since these two vectors
exist in different tangent spaces (TMΨ(x,t) andTMx, respectively) we need to ‘pull
back’w(Ψ(x, t)) to the tangent spaceTMx. This is easily done using the differential
map. Thus,

dw(Ψ(x,t))
dt

∣
∣
∣
t=0

= lim
t→0

[
Ψx(x,−t)w(Ψ(x,t))−w(x)

t

]

= lim
t→0

[
(I−vx(x) t)(w(x)+wx(x)v(x) t)−w(x)

t

]

= wx(x)v(x)− vx(x)w(x)
= [v,w]|x

Now, let us consider the Lie bracket as a commutator of flows. Beginning at pointx
in M follow the flow generated byv for an infinitesimal time which we take as

√
ε

for convenience. This takes us to a pointy= exp(
√

ε v)x. Then followw for the same
length of time, then−v, then−w. This brings us to a pointψ given by (see Figure
(3.7)):

ψ(ε,x) = e−
√

εwe−
√

εve
√

εwe
√

εvx (3.35)
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Proposition 3.26.Let v andw be smooth vector fields on M. Thenψ(ε,x), as given
by (3.35), with x fixed defines a continuous path in M. Moreover,

d
dε

ψ(0+,x) = [v,w]|x

Proof: Our proof follows [89]. Let us writey= e
√

εvx, z= e
√

εwy, u= e−
√

εv, ψ =

e−
√

εwu. Now, for any vector fieldv we can use the Taylor series representation for
the flow function, i.e.

etvx= x+ v(x)t+ 1
2vx(x)v(x)t

2+O(t3)

Applying this successively toψ, we obtain

ψ = u−w(u)
√

ε + 1
2wx(u)w(u)ε +O(ε3/2)

= z−{w(z)+ v(z)}√ε +
{

1
2wx(z)w(z)+ vx(z)w(z)+ 1

2vx(z)v(z)
}

ε
+O(ε3/2)

= y− v(y)
√

ε +
{

vx(y)w(y)−wx(y)v(y)+ 1
2vx(y)v(y)

}
ε +O(ε3/2)

= x+ {vx(x)w(x)−wx(x)v(x)}ε +O(ε3/2)

Differentiating with respect toε we get the desired result:

dψ
dε

∣
∣
∣
∣
ε=0

= vx(x)w(x)−wx(x)v(x)

As we will see in later chapters, this theorem has important implications for the
control of certain types of nonlinear systems.

We say that the vector fieldsv,w (or their flows)commuteif

ψ(ε,x) = x= e−
√

εwe−
√

εve
√

εwe
√

εvx (3.36)

for all ε,v ∈ R andx ∈ M such that both sides are defined. The two vector fields
commute if and only if[v,w] = 0. See Figure (3.7).

We can define higher order Lie Bracket operations. For notational convenience we
define theadoperator.

Definition 3.27. If v,w are Ck vector fields on M we define the kth-order iterated Lie
bracket oradoperation:

ad0
v(w) = w, adk

v(w) = [v,adk−1
v (w)] (3.37)

The following identity will prove useful.
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y


v


w


-v


-w


[v,w]


x


z
u


ψ
(
ε
,x)


Fig. 3.7: The commutation properties of the Lie bracket are illustrated in this diagram.

Lemma 3.28.Suppose h is a smooth scalar valued function on a manifold M and f ,
g are smooth vector fields on M. Then

L[ f ,g]h= L f Lgh−LgL f h

Proof: Compute, in local coordinatesx

L f Lgh=
∂ (Lgh)

∂x
f

and
∂Lgh
∂x

=
∂
∂x

(
∂h
∂x

g

)

=

(

gT ∂2h
∂x2 +

∂h
∂x

∂g
∂x

)

Consequently

L f Lgh= gT ∂2h
∂x2 f +

∂h
∂x

∂g
∂x

f

Similarly,

LgL f h= f T ∂2h
∂x2 g+

∂h
∂x

∂ f
∂x

g

Since∂2h
/

∂x2 is symmetric, we obtain

L f Lgh−LgL f h=
∂h
∂x

(
∂g
∂x

f − ∂ f
∂x

g

)

=
∂h
∂x

[ f ,g] = L[ f ,g]h

This is the desired result.
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3.3.6 Covector Fields

Like vector fields, covector fields play an important role in our subsequent discus-
sion.

Definition 3.29.A covector fieldor one-formω, on a smooth manifold M is a map-
ping that assigns to each point p∈M a tangent covectorω(p) in T∗p M.

With any smooth functionλ : M→ R one can associate a covector fielddλ . On the
other hand it is not every covector field can be expressed as the differential of a scalar
function.

Definition 3.30.A covector fieldΩ on the manifold M is said to beexactif there
exists a smooth, real vaued functionλ : M→ R such thatω = dλ .

Recall that the Lie bracket can be interpreted as a directional derivative ((3.25)). We
can define a directional derivative for covector fields as well. Supposeω is a smooth
covector field andv a smooth vector field on a manifoldM. As usual denote the flow
generated byv, eminating fromx∈M at t = 0 byΨ(x, t). We wish to compute

dω(Ψ(x, t))
dt

∣
∣
∣
∣
t=0

(3.38)

Proposition 3.31.Suppose v is a smooth vector field andω a smooth covector field
on M. For each x∈M the derivative exists and in local coordinates is given by

dω(Ψ(x, t))
dt

∣
∣
∣
∣
t=0

=

[
∂ωT

∂x
f

]T

+ω
∂ f
∂x

Proof: Again, we need to pull backω(Ψ(x, t)) from T∗Ψ(x,t)M to T∗x M and compute

dω(Ψ(x, t))
dt

∣
∣
∣
∣
t=0

= lim
t→0

[
δΨ(x, t)ω(Ψ(x, t))−ω(x)

t

]

Now, for smallt the pull back is approximated by

δΨ(x, t)ω(Ψ(x, t))≈
(

ω(x)+

[
∂ω(x)T

∂x
v(x)t

]T
)

(I + vx(x)t)

so that

dω(Ψ(x, t))
dt

∣
∣
∣
∣
t=0

= lim
t→0

1
t

{[
∂ω(x)T

∂x
v(x)t

]T

+ω(x)vx(x)t +O(t2)

}

The result follows.

Thus, we give the following definition.
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Definition 3.32.Let f be a smooth vector field andω a smooth covector field on M.
TheLie derivativeof ω along f is the unique covector field denoted Lf ω and defined
in local coordinates at the point x∈M by

L f ω(x) =

[
∂ωT

∂x
f

]T

+ω
∂ f
∂x

Remark 3.33 (Lie Derivative of a Differential Form).Supposeh(x) is a scalar func-
tion and let the covector fieldω be defined by

ω = dh(x) =
(

∂h(x)
∂x1

· · · ∂h(x)
∂xn

)

Using the formula in Definition (3.32) it is straightforwardto compute

L f (dh) = f T(x)
∂2h(x)

∂x2 +
∂h(x)

∂x
∂ f (x)

∂x

On the other hand, recall that the Lie derivative of the scalar function h(x) with
respect to a vector fieldf is

L f h=
∂h(x)

∂x
f (x)

We can differentiate to compute

d(L f h) = f T(x)
∂2h(x)

∂x2 +
∂h(x)

∂x
∂ f (x)

∂x

Hence, we see that
d(L f h) = L f (dh)

3.4 Distributions and the Frobenius Theorem

3.4.1 Distributions

Let v1, . . . ,vr denote a set ofr vector fields on a manifoldM of dimensionm. ∆(p) =
span{v1(p), . . . ,vr(p)} is a subspace ofTMp∼ Rm.

Definition 3.34.A smooth distribution∆ on M is a map which assigns to each point
p ∈ M, a subspace of the tangent space to M at p,∆(p) ⊂ TMp such that∆p is
the span of a set of smooth vector fields v1, . . . ,vr evaluated at p. We write∆ =
span{v1, . . . ,vr}. A distribution∆ hasdimension dimspan{v1(p), . . . ,vr(p)} at p. It
is nonsingular (or regular) at pointp ∈ M if there is a neighborhood of p in M on
which the dimension of∆ is constant. Otherwise, the point p is asingular pointof ∆ .
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In general thebasisvector fields{v1, . . . ,vr} are not unique. Ifv is a vector field on
M we say thatv belongs to a given distribution∆ on M if v(p) ∈ ∆(p),∀p∈M. We
write v∈ ∆ . SupposeU ⊆M is an open set and∆ is of constant dimensionr onU .
For a smooth vector fieldv∈ ∆ = span{v1, . . . ,vr} onU , it follows that there is a set
of smooth coefficients,c1, . . . ,cr such that

v(p) =
r

∑
i=1

ci(p)vi(p), ∀p∈U (3.39)

The notion of an integral curve of a single vector field can be generalized to that of
an integral manifold of a set of vector fields or its corresponding distribution.

Definition 3.35.An integral submanifoldof a distribution∆ = span{v1, . . . ,vr} is a
submanifold N⊂M such that TNp = ∆(p) for each p∈N. The distribution∆ or the
set of vector fields{v1, . . . ,vr} is said to be (completely) integrable if through every
point p∈M there passes an integral manifold.

SupposeN is an integral submanifold of∆ = span{v1, . . . ,vr} onM. Then

TMp⊃ ∆ = TNp (3.40)

and dim(TNp) = dim(N) at eachp∈N. But

dim∆(p) = dimspan{v1(p), ..,vr(p)}

may vary asp varies throughoutM. Thus, not all integral manifolds need be of the
same dimension. Moreover, there may be a manifoldN of smaller dimension than
∆ that is tangent to it in the sense that∆ contains a subset of smooth vector fields
that spanTNp at each pointp∈ N. This is the basis for a weaker notion of integral
manifolds and integrability that is sometimes employed. For this reason the integral
manifolds of the above definition are sometimes calledmaximalintegral submani-
folds and the terminology completely integrable requires the existence of maximal
integral manifolds.

Definition 3.36.A system of smooth vector fields{v1, . . . ,vr} or the distribution∆ =
span{v1, . . . ,vr} on M is said to bein involution or involutive if there exist smooth
real valued functions ci jk (p), p∈M and i, j,k = 1, . . . , r such that for each i, j

[vi ,v j ] =
m

∑
k=1

ci j
k vk

The concept of an involutive distribution is key to many important results. The fol-
lowing Lemma provides a result that will prove extremely useful in applications.
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Lemma 3.37.Suppose∆ = {v1(x), . . . ,vk(x)} is a smooth, nonsingular and involu-
tive distribution of dimension k on a neighborhood U of x0 in Rn. Then there exists a
smooth integral manifold of∆ , of dimension k, passing through the point x0. Morover,
the manifold is parametrically characterized, locally around x0, by the mapping:

φ(s) = φs1
1 ◦φs2

2 ◦ · · · ◦φsk
k (x0)

whereφt
i (x) = ψi(x, t) is the flow generated by the vector field vi(x) and ‘◦’ denotes

composition with respect to x.

Proof: According to Definition (3.4) we need to show that there exists a neighbor-
hoodV of the origin inRn such that

(i) φ(s) is a smooth one-to-one map onV

(ii) φ(s) satisfies the maximal rank condition for eachs∈V

(iii) the manifold φ(V) is an integral manifold of∆ , i.e., each∂φ(x)
/

∂si ∈ ∆(x),
i = 1, . . . ,k.

Notice that the mapping is well defined on a neighborhoodof the origin ofRk because
each flow functionφt

i (x0) is defined for sufficiently smallt. Now, use the chain rule
to compute

∂φ
∂si

=
∂φs1

1
∂x · · ·

∂φ
si−1
i−1
∂x

∂
∂si

(
φsi

i ◦ · · · ◦φsk
k (x0)

)

=
∂φs1

1
∂x · · ·

∂φ
si−1
i−1
∂x vi

(
φsi

i ◦ · · · ◦φsk
k (x0)

)

In particular, ats= 0 we haveφ0
i ◦ · · · ◦φ0

k (x0) = x0, for eachi, includingφ(0) = x0,
so that

∂φ(0)
∂si

= vi(x0)

Since the tangent vectorsvi(x0), i = 1, . . . ,k are independent, the mappingφ has
rankk at s= 0. This establishes (i).

Notice that the pointxi = φsi
i ◦ · · ·φsn

n (x0) reached by propogating forward fromx0

can also be reached by propogating backward fromx, i.e.,xi = φ−si−1
i−1 ◦ · · ·φ−s1

1 (x)
so that

∂φ
∂si

(x) =
(
φs1

1

)

∗ · · ·
(
φsi−1

i−1

)

∗ vi

(

φ−si−1
i−1 ◦ · · ·φ−s1

1 (x)
)

wherex= φ(s). In view of the fact that vectors∂φ(0)
/

∂si are linearly independent,
for sufficiently smalls, so are the vectors∂φ(x)

/
∂si . What remains to be shown is

that each∂φ(x)
/

∂si ∈ ∆(x), i = 1, . . . ,k. This calculation is given in [7, p27].

Example 3.38 (Parametric from Implicit Manifold).One useful application of Lemma
(3.37) is the development of a parametic representation of amanifold from an
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implicit representation. Consider the mappingF : Rk → Rn, k < n and suppose
rank∂F

/
∂x= k on the set

M = {x∈ Rn |F(x) = 0}

ThenM is a regular manifold of dimensionn− k. It follows that

∆(x) = ker
∂F(x)

∂x

is a nonsingular, involutive distribution of dimensionn−k. M is an integral manifold
of ∆ . Let v1(x), . . . ,vn−k(x) be a set of basis vector fields for∆ and supposex0 ∈
M. Now, let φsi

i (x) denote the flow corresponding to the vector fieldvi(x). The a
parametric representation of theM is the mapφ : Rn−k→ Rn given byφ(s) = φs1

1 ◦
· · ·φsn−k

n−k (x0).

To compute the parametricφ(s) givenF(x) requires the following procedure. The
calculations involve four steps:

(i) compute the JacobianDF ,

(ii) generate a smooth basis set for kerDF,

(iii) compute the flow functions ( a local parameterization can be based on the expo-
nential map),

(iv) form the composition.

These steps have been implemented in theProPacfunction:

ParametricManifold[f,x,x0,n] .

The following illustration shows that the calculations – even though local, because
of the use of the exponential map – capture interesting characteristics of the surface.

In[9]:= F= {x3ˆ3+x2∗x3+x1};

In[10]:= Surf= ParametricManifold [F,{x1,x2,x3},{0,0,0},3]

2 vector fields computed.

2 flow functions computed.

Out[10]= {{−k13−k1 k2,k2,k1},{k1,k2}}

In[11]:= ParametricPlot3D [Surf [[1]][[{1,2,3}]],{k1,−1.5,1.5},{k2,−2,2},
PlotPoints−> {25,25},
BoxRatios−> {1,1,0.3},
AxesEdge−> {None,None,None},
ViewPoint−> {0.25,−1,0.5},
Boxed−> False]
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We are now in a position to state the key result of this section. One formulation of
the original Frobenius theorem is as follows.

Proposition 3.39.Let{v1, . . . ,vr} be a nonsingular set of vector fields with

dimspan{v1, . . . ,vr}= k

on M. Then the set of vector fields or the distribution∆ = span{v1, . . . ,vr} is inte-
grable with all integral manifolds of dimension k if and onlyif it is involutive.

Proof: Sufficiency is established by Lemma (3.37). Necessity is proved as follows.
Supposex0 is a point on an integral manifoldM of ∆ . Then there exists a neigborhood
U of x0 and a mappingF : Rn→Rn−k such that, aroundx0, M is defined by

M = {x∈U |F(x) = 0}

SinceM is an integral manifold, by definition we have

∂F
∂x

vi = 0, i = 1, . . . ,k

or equivalently,

Lvi Fj(x) = 0, i = 1, . . . ,k, j = 1, . . . ,n− k, x∈U

Now, compute the Lie derivative ofFj along the vector field[v j ,vi ].

L[vj ,vi ]Fj(x) = Lvj Lvi Fj(x)−Lvi Lvj Fj(x) = 0

Thus, we have
∂F
∂x

[vi ,v j ] (x) = 0
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But the ker∂F
/

∂x is spanned by the vectorsv1(x), . . . ,vk(x). Thus, we conclude that
[v j ,vi ] ∈ ∆ for i, j = 1, . . . ,k so that∆ is involutive.

These integral manifolds allow a partition ofM into submanifolds of dimensionk.
The set of all integral manifolds is called afoliation of the manifoldM, and the
integral manifolds are theleavesof the foliation.

A stronger version of this theorem is due to Hermann.

Proposition 3.40.Let ∆ = span{v1, . . . ,vr} be smooth distribution on M. Then the
system is integrable if and only if it is in involution.

Proof: See [39]

This theorem provides necessary and sufficient conditions for integrability. Once
again, the manifoldM is filled with integral submanifolds. However, the integral
submanifolds need not be of the same dimension. A more complete discussion of the
Frobenius theorem and its implications can be found in [1] or[107].

Example 3.41 (Foliation of a Singular Distribution).An example of an integrable,
but singular, distribution is the following. LetM = R3 and consider the distribution
∆ = span{v,w} with

v=





−y
x
0



 ,w=





2zx
2yz

z2+1− x2− y2





A simple calculation shows that[v,w]≡ 0 so that the distribution∆ is completely in-
tegrable. However, the distribution is singular because dim∆ = 2 everywhere except

1. on the z-axis (x= 0,y= 0)

2. on the circlex2+ y2 = 1,z= 0

where dim∆ = 1. Thez-axis and the circle are one-dimensional integral manifolds.
All others are the tori:

Tc =
{

(x,y,z) ∈ R3
∣
∣
∣(x2+ y2)−1/2(x2+ y2+ z2+1) = c> 2

}

Setr2 = x2+ y2 to obtain a representation of the torus in polar coordinates:

(

r− c
2

)2
+ z2 =

(c
2

)2
−1
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3.4.2 Coordinate System from a set of Vector Fields

We will encounter situations in which we would like to know whethern given vector
fields,{v1, . . . ,vn} defined on ann-dimensional manifoldN can be used to establish
local coordinates onN.

Theorem 3.42.Given a set of smooth vector fields{v1, . . . ,vn} on the n-dimensional
manifold N, there exist local coordinates x around p∈ N, with

∂
∂xi

= vi

if and only if

(i) dimspan{v1(p), . . . ,vn(p)}= n, and

(ii) [vi ,v j ] = 0, 1≤ i, j ≤ n

Remark 3.43.Note that since the Lie bracket is antisymmetric, the test (ii) need only
be applied for 1≤ i ≤ n, i ≤ l ≤ n.

Proof: For sufficiency follow Warner’s [107] version of the Frobenius Theorem.

To prove necessity, assume there is a local coordinate system defined by a chart
{U,ϕ} consisting of a coordinate mapϕ : U → V whereV is a neighborhood of 0
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in Rn, U is a neighborhood ofp in N andϕ (p) = 0. Then there aren independent
induced coordinate directions given by the vector fields

∂
∂xi

= vi =
∂ϕ−1

∂xi

thereby establishing (i). Now consider a two dimensional sliceUi j in U defined by

Ui j = {p∈U |ϕk(p) = ck, k∈ {1, . . . ,n}\{i, j}}

where theck’s are arbitrary constants, sufficiently small so thatUi j 6= /0. Take two
arbitrarily close pointsa,b∈Ui j with local coordinatesxa = ϕ (a), xb = ϕ (b). Then,
the coordinates ofa andb are related by

xb = ev j (xb
j−xa

j )evi(xb
i −xa

i )xa

or going the other way

xa = ev j (xa
j−xb

j )evi(x
a
i −xb

i )xb

In other words, the flows generated by the vector fieldsvi ,v j , commute. In the limit
xa→ xb this implies that[vi ,v j ] = 0.

3.4.3 Codistributions

We may work with dual objects to vector fields and distributions. Acovector field w
onM assigns to each pointp∈M an elementw(p)∈T∗Mp. A codistributionΩ onM
is a mapping which assigns a subspaceΩ(p) of T∗Mp to each pointp∈M. As with
distributions we writeΩ = span{w1, . . . ,wr}. Distributions are sometimes associated
with special codistributions. As an example, for eachp∈M, theannihilator of the
distribution∆(p) is the set of all covectors which annihilate vectors in∆(p)

∆⊥(p) :=
{

w∈ T∗Mp |w(v) = 0, ∀v∈ ∆(p)
}

(3.41)

It is sometimes more descriptive to denote the annhilator of∆ by ann∆ as an alterna-
tive to∆⊥. Conversely, given a codistributionΩ , we define itskernel, a distribution
Ω⊥

Ω⊥(p) :=
{

v∈ TMp |v(w) = 0, ∀w∈Ω(p)
}

(3.42)

Sometimes we write kerΩ as an alternative toΩ⊥. It is not difficult to verify that
the if p is a regular point of a smooth distribution∆ , then it is a regular point of the
codistribution∆⊥. Moreover, there is a neighborhoodU of p such that∆⊥ restricted
to U is a smooth codistribution.

Remark 3.44 (Computing with Distributions & Codistributions).The comments above
are consistent with the association of a distribution with amatrix whose columns are
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its basis vector fields and the association of a codistribution with a matrix whose
rows are its covector fields. Then it is possible to do formal pointwise geometric
calculations (like projections) with distributions and codistributions using standard
constructions from linear algebra. Some elemetary relationships between distribu-
tions and codistributions will prove particuarly useful inlater calculations. For ex-
ample,[∆1∩∆2]

⊥= ∆⊥1 +∆⊥2 provides a convenient way to compute the intersection
of two distributions.

Now, suppose∆ = span{v1, . . . ,vr} is a smooth, involutive, and nonsingular distri-
bution of dimensionk on a neighborhoodU of p ∈ M. Thek-dimensional integral
surfaces of∆ can be characterized onU bym−k functionsλ1(x) = c1, . . . ,λm−k(x) =
cm−k. Moreover, for eachx ∈U , the differentialsdλ1, . . . ,dλm−k must must be or-
thogonal to∆ or equivalently, the codistributionΩ = ∆⊥ is spanned by the exact
covectorsdλ1, . . . ,dλm−k. These observations lead to another version of the classical
Frobenius theorem.

Proposition 3.45.Suppose∆ = span{v1, . . . ,vr} is a smooth, involutive, and nonsin-
gular distribution of dimension k on a neighborhood U of p∈M. Then there exist a
set of functionsλ1(x), . . . ,λm−k(x) on U that satify the first order partial differential
equations






∂λ1
∂x
...

∂λm−k
∂x




 [v1 · · · vk ] = 0

The ideas embodied in the Frobenius theorem will prove to be fundamental to the
study of nonlinear control systems. The integral surfaces implied by the theorem set
up a natural coordinate system that will be used below to study controllability and
observability. For the moment, however, consider the following problem of finding a
coordinate system ‘matched’ to a given distribution. Suppose∆ = span{v1, . . . ,vr} is
a smooth, nonsingular, involutive distribution of dimensionk on some neighborhood
U of a pointx0 in an m-dimensional manifoldM. Assume that the distribution is
characterized by a set of local coordinates,x. Then there arek-dimensional integral
surfaces that form a foliation ofU . Now, we wish to choose local coordinates inU ,
k of which locate points within these surfaces and the remaining m− k coordinates
identify the surface.

We can characterize the integral surfaces in two ways. First, adjoin to the givenk
vector fields an additionalm− k vector fieldsvk+1, . . . ,vm such that

span{v1, . . . ,vm}= Rm (3.43)

Let ψi(t,x) = ψt
i (x) denote the flow generated by the vector fieldvi . Then the com-

position
Ψ(z1, . . . ,zm) = ψz1

1 ◦ψz2
2 ◦ · · · ◦ψzm

m (x0) (3.44)
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defines a coordinate transformationx=Ψ(z). The new coordinates are the flow lines
associated with them vector fields. In fact,Ψ(z)|zk+1=0,...,zm=0 is a parametric repe-
sentation of the integral surface passing through the pointx0. Other leaves of the
foliation are obtained by settingzk+1 = ck+1, . . . ,zm= cm whereck+1, . . . ,cm are con-
stants. Thus, the integral surfaces are naturally identified in these new coordinates.

Another characterization of the integral surfaces can be obtained by identifying the
functionsλ1, . . . ,λn−k of Theorem (3.45). LetΦ(x) denote the inverse coordinate
transformation, i.e.,z=Ψ−1(x) = Φ(x). Then

λ1(x) = Φk+1(x), . . . ,λm−k(x) = Φm(x) (3.45)

Note that
λ1(x) = c1, . . . ,λm−k(x) = cm−k (3.46)

provide implicit representations of the integral surfaces. Choosing the constantsc1 =
0, . . . ,cm−k = 0 produces the surface passing throughx0.

Example 3.46.Consider the following example from Isidori ([46], Example1.4.3).
The given distribution

∆ = span{v1,v2}
is involutive. We add the vector fieldv3 :

v1 =





2x3

−1
0



 , v2 =





−x1

−2x2

x3



 , v3 =





1
0
0





and compute a new coordinate system as described in the previous paragraphs.

In[12]:= v1= {2 x3,−1,0};v2= {−x1,−2x2,x3};v3= {1,0,0};

First, let us check involutivity.

In[13]:= Involutive [{v1,v2},{x1,x2,x3}]
Out[13]= True

Now, check to insure thatv3 as specified does indeed complete the set.

In[14]:= Span[{v1,v2,v3}]
Out[14]= {{1,0,0},{0,1,0},{0,0,1}}

TheMathematicafunctionDSolve to compute the flows. To do so, we need to con-
vert the vector fields to ordinary differential equations inthe form thatMathematica
requires. TheProPacfunctionMakeODEsdoes this.

In[15]:= Eqnf1= MakeODEs[{x1,x2,x3},v1, t]

Eqnf2= MakeODEs[{x1,x2,x3},v2, t]

Eqnf3= MakeODEs[{x1,x2,x3},v3, t]
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Out[15]= BoxData({−2 x3[t]+x1′[t] == 0,1+x2′[t] == 0,x3′[t] == 0})
Out[15]= BoxData({x1[t]+x1′[t] == 0,2 x2[t]+x2′[t] == 0,−x3[t]+x3′[t] == 0})
Out[15]= BoxData({−1+x1′[t] == 0,x2′[t] == 0,x3′[t] == 0})

In[16]:= sols1= DSolve [Join [Eqnf1,{x1 [0] == y1,x2 [0] == y2,x3 [0] == y3}],
{x1 [t],x2 [t],x3 [t]}, t];

sols2= DSolve [Join [Eqnf2,{x1 [0] == y1,x2 [0] == y2,x3 [0] == y3}],
{x1 [t],x2 [t],x3 [t]}, t];

sols3= DSolve [Join [Eqnf3,{x1 [0] == y1,x2 [0] == y2,x3 [0] == y3}],
{x1 [t],x2 [t],x3 [t]}, t];

In[17]:= psi1= {x1 [t],x2 [t],x3 [t]}/.sols1 [[1]];

psi2= {x1 [t],x2 [t],x3 [t]}/.sols2 [[1]];

psi3= {x1 [t],x2 [t],x3 [t]}/.sols3 [[1]];

The transformation is obtained via Equation (3.44) using theProPacfunctionFlowCompositon .

In[18]:= Psi= FlowComposition [{psi3,psi2,psi1}, t,{y1,y2,y3},
{0,0,1},{z3,z2,z1},∞]

Out[18]=
{

2 ez2 z1+e−z2 z3,−z1,ez2}

TheMathematicafunctonSolve is used to obtain the inverse transformaton.

In[19]:= Trans= Inner [Equal,{x1,x2,x3},Psi,List]

Out[19]=
{

x1== 2 ez2 z1+e−z2 z3,x2==−z1,x3== ez2}

In[20]:= InvTrans= Solve [Trans,{z1,z2,z3}]
Out[20]= {{z3→ x3 (x1+2 x2 x3),z1→−x2,z2→ Log[x3]}}

Theλ functions of Theorem (3.45) are obtained using Equation (3.45).

In[21]:= λ = z3/.InvTrans

Out[21]= {x3 (x1+2 x2 x3)}

We easily confirm the conclusion of Theorem (3.45).

In[22]:= Jacob [λ ,{x1,x2,x3}]
Out[22]=

{{
x3,2 x32,x1+4 x2 x3

}}

In[23]:= Simplify [Jacob [λ ,{x1,x2,x3}].Transpose [{v1,v2}]]
Out[23]= {{0,0}}
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3.4.4 Invariant Distributions

The importance of invariant subspaces in linear control theory is well known. For
example, controllability, observability and modal subspaces all have a distinctive
place in linear systems analysis. A corresponding role in nonlinear control theory is
played by invariant distributions.

Definition 3.47.A distribution∆ = span{v1, . . . ,vr} on M is invariant with respect
to a vector field f on M if the Lie bracket[ f ,vi ], for each i= 1, . . . , r is a vector field
of ∆ .

We will use the notation[ f ,∆ ] = span{[ f ,vi ], i = 1, . . . , r} so that∆ is invariant with
respect tof may be stated[ f ,∆ ] ⊂ ∆ . Observe that in general

∆ +[ f ,∆ ] = ∆ + span{[ f ,vi ], i = 1, .., r } = span{v1, ..,vr , [ f ,v1], .., [ f ,vr ]}

Example 3.48 (Invariant Linear Subspaces).It is easily demonstrated that the notion
of an invariant distribution is a natural generalization ofthe concept of an invari-
ant linear subspace. Consider a subspaceV = span{v1, . . . ,vr} of Rn, wherevi ∈ Rn,
i = 1, . . . , r, that is invariant under the linear mappingA, i.e.,AV ⊂V. Define a dis-
tribution onRn

∆V(x) = span{v1, . . . ,vr}
and a vector field

fA(x) = Ax

at eachx ∈ Rn. We will prove that∆V is invariant under the vector fieldfA. To do
so,we need only show that[ fA,vi ] ∈ ∆V for i = 1, . . . , r. Compute

[ fA,vi ] =
∂vi

∂x
fA−

∂ fA
∂x

vi =−Avi

By assumptionAvi is a vector ofV = span{v1, . . . ,vr}.

The notion of invariance applies in the obvious way to codistributions as well.

Definition 3.49.A codistributionΩ = span{ω1, . . . ,ωr} on M is invariant with re-
spect to a vector field f on M if the Lie derivative Lf ωi is a covector field ofΩ .

We will use the notationL f Ω = span{L f ωi , i = 1, . . . , r} so thatΩ is invariant with
respect tof may be writtenL f Ω ⊂Ω .
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3.4.5 Transformation of Vector Fields

When a distribution∆ is integrable, invariance with respect to a vector fieldf takes
on special significance. IfN is an integral manifold of∆ , then the integral curve off
emanating fromp∈ N remains inN. Using this fact, it is possible to construct a co-
ordinate transformation that puts the vector field in a useful (block) triangular form.
Such transformations will be employed to investigate controllability and observabil-
ity of nonlinear systems as well as to establish feedback linearizaton methods for
control system design. The main idea is established in the following lemma.

Lemma 3.50.Let ∆ be a be an involutive distribution of constant dimension d on
an open subset U of Rn and suppose that∆ is invariant under a vector field f . Then
at each point x0 ∈ U there exists a neighborhood U0 of x0 in U and a coordinate
transformation z= Φ(x), defined on U0, in which the vector field f is of the form

f̄ (z) =










f1(z1, . . .zd,zd+1, . . . ,zn)
· · ·

fd(z1, . . .zd,zd+1, . . . ,zn)
fd+1(zd+1, . . . ,zn)

· · ·
fn(zd+1, . . . ,zn)










Proof: ∆ is integrable because it is of constant dimensiond and involutive. Thus, at
each pointx0 there is a neighborhoodU0 of x0 such that an integral manifold of∆
passes through each pointx∈U0. This implies that there exists a transformation of
coordinatesz= Φ(x), defined onU0, with the property that

span{dΦd+1, . . . ,dΦn}= ∆⊥

i.e., the firstd coordinates, are in the integral manifolds and the remaining n−d are
orthogonal to the integral manifolds.

Let f̄ (z) denote the representation off in the new coordinates. Define a family of
vector fields that define bases for the tangent spacesTMz

τ i(z) =






τ i
1
...

τ i
n




 , τ i

k =

{
0 k 6= i
1 k= i

Then

[ f̄ ,τ i ] =−∂ f̄
∂z

τ i =
∂ f̄
∂zi

Moreover, for 1≤ i ≤ d, the vector fieldτ i ∈ ∆ . In fact, these vector fields form a
basis for∆ . By construction, in the new coordinates every vector field of ∆ has the
property that the lastn−d coordinates vanish. Since∆ is invariant with respect tof ,
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we have[ f̄ ,τ i ] ∈ ∆ , so that its lastn−d components vanish in the new coordinates.
Thus,

∂ f̄k
∂zi

= 0

for all d+1≤ k≤ n and 1≤ i ≤ d.

1
x


2
x
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Î
1
τ


⊥
∆
Î
2
τ

0
x


integral manifolds

1
z


2
z
 )
(
x
z
 Φ
=


Fig. 3.8: The transformation establishes new coordinates,d coordinates in thed-dimensional
integral manifolds andn−d orthogonal to them.

The transformation of Lemma (3.50) is depicted in Figure (3.8) This result implies
that under the stated conditions onf (x), the dynamical system

ẋ= f (x)

can be locally represented by the triangular decomposition

ż1 = f1(z1,z2)

ż2 = f2(z2)

Let c ∈ U0 and notice that the setSc := {x∈U0| z2(x) = z2(c)} is a ‘slice’ (sub-
manifold) of the neighborhoodU0 of dimensiond passing through the pointc∈U0.
Because of the triangular decomposition it is clear that theflow f (x) carries slices
into slices. This follows from the observation that all trajectories starting inSc ter-
minate inSeεfc after ε time units. If z2(c) satisfiesf2(z2(c)) = 0, i.e., z2(c) is an
equilibrium point of the second equation, thenSc is invariant with respect to the flow
in the sense that any trajectory beginning inSc remains therein at least until it leaves
the neighborhoodU0.

Example 3.51.Here is another example taken from Isidori ([46], Example 1.6.4).
The distribution∆ = span{v1,v2} onR4 with

v1 =






1
0
0
x2




 , v2 =






0
1
0
x1






is easily shown to be involutive and invariant with repect tothe vector field
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f =






x2

x3

x3x4− x1x2x3

sinx3+ x2
2+ x1x3






In[24]:= v1= {1,0,0,x2};v2= {0,1,0,x1};
f = {x2,x3,x3 x4−x1 x2 x3,Sin[x3]+x2ˆ2+x1 x3};

In[25]:= LieBracket [f,v1,{x1,x2,x3,x4}]
Out[25]= {0,0,0,0}

In[26]:= LieBracket [f,v2,{x1,x2,x3,x4}]
Out[26]= {−1,0,0,−x2}

Now, to obtain the new coordinate system we augment the basisfields of ∆ with
v3,v4:

In[27]:= v3= {0,0,1,0};v4= {0,0,0,1};

and confirm that the expanded set does spanR4.

In[28]:= Span[{v1,v2,v3,v4}]
Out[28]= {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

The ProPac function TriangularDecomposition implements the procedure
illustrated in Example (3.46) to obtain the required transformation and its inverse
and applies it to the vector fieldf .

In[29]:= TriangularDecomposition [f,{v1,v2,v3,v4},{x1,x2,x3,x4},
{0,0,0,0},∞]

Out[29]= {{z1,z2,z3,z1 z2+z4},{x1,x2,x3,−x1 x2+x4},
{z2,z3,z3 z4,Sin[z3]}}

Note that as required the last two elements of the transformed field only depend on
z3,z4.

3.4.6 Involutive Closure

In this section we describe two algorithms for computing distributions of fundamen-
tal importance to the subsequent discussion. We provide a description of them and
summarize their essential properties. A more complete discussion can be found in
[46].

When working with distributions, a fundamental problem is to find the ‘smallest’
distribution with the following properties:

1. it is nonsingular
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2. it contains a given distribution∆ ,

3. it is involutive,

4. it is invariant with respect to a given set of vector fields,τ1, . . . ,τq.

First, let us establish the concept of a smallest distribution.

Definition 3.52.SupposeD is a set of distributions on U. Then thesmallestor min-
imal element inD , if it exists, is the member ofD that is contained in every other
member. Thelargestor maximalelement, if it exists, is the member that contains
every other member.

The following Lemma is given by Isidori [46].

Lemma 3.53.Let ∆ be a given smooth distribution andτ1, . . . ,τq a given set of
smooth vector fields. The family of all distributions that are invariant with respect
to τ1, . . . ,τq and contains∆ contains a minimal element and it is smooth.

This distribution is denoted
〈
τ1, . . . ,τq | ∆

〉
. An algorithm for finding will now be

described. It proceeds by defining a nondecreasing set of distributions:

Algorithm 3.54
∆0 = ∆
∆k = ∆k−1+∑q

i=1[τi ,∆k−1]
(3.47)

The essential properties of the sequence of distribution sogenerated are given by the
following Lemma.

Lemma 3.55.The distributions∆k generated by Algorithm (3.54) are such that

∆k ⊂
〈

τ1, . . . ,τq
∣
∣ ∆
〉

for all k. If there exists an integer k∗ such that∆k∗ = ∆k∗+1, then

∆k∗ =
〈
τ1, . . . ,τq

∣
∣ ∆
〉

Thus, Algorithm (3.54) produces a distribution that is invariant with respect to the
given vector fields. Now, we give conditions under which it isalso involutive.

Lemma 3.56.Suppose∆ is spanned by a subset of the vector fieldsτ1, . . . ,τq and
that∆k∗ =

〈
τ1, . . . ,τq

∣
∣ ∆
〉

is nonsingular on U. Then
〈
τ1, . . . ,τq | ∆

〉
is involutive on

U.

Definition 3.57.The involutive closure of a given distribution∆ is the smallest invo-
lutive distribution containing∆ .
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It is obvious how Algorithm (3.54) can be used to compute the involutive closure of
a given distribution.

The dual computation of finding the ‘largest’ distribution with the following proper-
ties is also important:

1. it is nonsingular

2. it is contained within a given distribuion∆ ,

3. it is involutive,

4. it is invariant with respect to a given set of vector fields,τ1, . . . ,τq.

The existence of a distribution with these properties implies the existence of a codis-
tribution (namely, its annihilator) with the following properties:

1. it is nonsingular

2. it contains the given codistribution∆⊥,

3. it is spanned locally around eachx∈U by a set of exact covector fields,

4. it is invariant with respect to a given set of vector fields,τ1, . . . ,τq.

Thus, we seek the ‘smallest’ codistribution with these properties.

Lemma 3.58.Let Ω be a given smooth codistribution andτ1, . . . ,τq a given set of
smooth vector fields. The family of all codistributions thatare invariant with respect
to τ1, . . . ,τq and containsΩ contains a minimal element and it is smooth.

This codistribution is denoted
〈
τ1, . . . ,τq |Ω

〉
. An algorithm for finding it is:

Algorithm 3.59
Ω0 = Ω
Ωk = Ωk−1+∑q

i=1Lτi Ωk−1
(3.48)

Lemma 3.60.The codistributionsΩk generated by Algorithm (3.59) are such that

Ωk ⊂
〈

τ1, . . . ,τq
∣
∣Ω
〉

for all k. If there exists an integer k∗ such thatΩk∗ = Ωk∗+1, then

Ωk∗ =
〈
τ1, . . . ,τq |Ω

〉
.

Lemma 3.61.SupposeΩ is spanned by a set dλ1, . . . ,dλs of exact covector fields

and that
〈
τ1, . . . ,τq |Ω

〉
is nonsingular. Then

〈
τ1, . . . ,τq

∣
∣Ω
〉⊥

is involutive.

These two algorithms have been implemented in theProPacfunctons
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1. SmallestInvariantDistribution , and

2. LargestInvariantDistribution .

Examples of their use will be deferred until Chapter 6.

3.5 Lie Groups and Algebras

The concepts of a linear vector space and its linear subspaces is central to the study of
linear systems. As we have suggested, the appropriate generalization of the geomet-
ric structure of these objects is achieved by introducing manifolds, tangent spaces
and distributions (and their integral submanifolds). However, linear vector spaces
also have an important algebraic structure. By introducingan algebraic structure to
manifolds we will make the transition: Manifolds→ Lie groups and distributions→
Lie (sub)algebras.

Lie groups and Lie algebras play an important role in mechanics and nonlinear con-
trol. In the following paragraphs we give a brief summary of the relevant concepts.
Our goal here is simply to introduce essential terminology and notation and to pro-
vide some elementary examples. The interested reader should consult the many ex-
cellent references for more details.

Definition 3.62.A group is a set G with a group operation (called multiplication) m:
G×G→G, m= g ·h for g,h∈G, having the following properties:

1. if g,h∈G, then m= g ·h∈G

2. associativity: if g,h,k∈G

g · (h ·k) = (g ·h) ·k

3. identity element. There is an element e∈G such that

e·g= g= g ·e ∀g∈G

4. inverse. For each g∈G there is an inverse denoted g−1 with the property

g ·g−1 = e= g−1 ·g

Example 3.63 (Groups).

1. G= Z, the set of integers with scalar addition the group operation:

e= 0,g−1 =−g,∀g∈ Z
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2. G= R, the real numbers with scalar addition the group operation.

3. G = R+, the positive real numbers with ordinary scalar multiplication as the
group operation.

4. G = GL(n,Q), the set of invertiblen× n matrices with rational numbers for
elements and matrix multiplication the group operation.

5. G= GL(n,R), as above but the elements are real numbers.

Definition 3.64.An r-parameter Lie group is a group G which is also an r-dimensional
smooth manifold such that both the group operation, m: G×G→G,m(g,h) = g ·h
for g,h ∈ G, and the inversion, i: G→ G, i(g) = g−1,g ∈ G, are smooth mappings
between manifolds.

Example 3.65 (Lie Groups).

1. G= Rwith scalar addition as the group operation is a 1-parameterLie group.

2. GL(n,R) of invertible matrices with matrix multiplication the group operation is
ann2-parameter Lie group.

3. LetG= Rr with vector addition the group operation. This is anr-parameter Lie
group.

4. The set of nonzero complex numbersC∗ form a two parameter Lie group under
(complex) multiplication.

5. The unit circleS1⊂C∗ with multiplication induced fromC∗ is a one parameter
Lie group. This is another characterization ofSO(2), the group of rotations in
the plane.

6. The productG×H of two Lie groups is a Lie group with the product manifold
structure and the direct product group structure, i.e.,(g1,h1) · (g2,h2) = (g1 ·
g2,h1 ·h2),gi ∈G,hi ∈ H.

7. LetK be the product manifoldGl(nR)×Rn and impose a group structure onK by
defining group multiplication via(A,v)·(B,w) = (AB,v+w),A,B∈Gl(n,R) and
v,w∈Rn. ThenK is ann2+nparameter Lie group. In factK is thegroup of affine
motions of Rn. If we identify the element(A,v) of K with the transformation
x→ Ax+v onRn, then multiplication inK is the composition of affine motions.

Mappings between groups that preserve the algebraic structure of groups are of cen-
tral importance:

Definition 3.66.A map beteween Lie groups G and H,φ : G→ H, is a (Lie group)
homomorphism ifφ is smooth andφ(a ·b) = φ(a) ·φ(b) for all a,b∈G. If, in addi-
tion, φ is a diffeomorphism, it is called an isomorphism.
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Lie groups which are isomorphic (connected by an isomorphism) are considered to
be equivalent. Thus, for example, the multiplicative Lie groupR+ and the additive
Lie groupR are isomorphic and therefore equivalent. The isomorphism is φ(t) =
et , t ∈ R. Up to an isomorphism there are only two connected one-parameter Lie
groups,RandSO(2). Recall thatN is a submanifold ofM if there exists a parameter
spaceN̄ and a smooth one to one mapφ : N̄→M such thatN=φ(N̄)⊂M. Similarly,
we can define Lie subgroups by requiring that the mapφ respect the group operation.

Definition 3.67.A Lie subgroup H of a Lie group G is a submanifold of G defined
by H = φ(H̄) ⊂ G in which the parameter spacēH is itself a Lie group andφ is a
Lie group homomorphism.

Example 3.68.If ω is any real number, the submanifold

H = { (t,ωt) mod 2π| t ∈ R} ⊂ T2

is a one parameter subgroup of the toroidal groupSO(2)×SO(2). If ω is rational
thenH is isomorphic to the circle groupSO(2) and is closed, regular subgroup. Ifω
is irrational, thenH is isomorphic to the Lie groupR and is dense in the torusT4.
This Lie subgroup is not a regular submanifold ofT4.

The example illustrates that a Lie subgroupH of a Lie groupG need not be a regular
submanifold ofG and hence a Lie subgroup need not be a Lie group in and of itself.
However, the following is true.

Proposition 3.69.If G is a Lie group, then the Lie subgroup H= φ(H̄) is a regular
submanifold of G, and hence it is itself a Lie group, if and only if H is closed as a
subset of G.

Proof: (Warner [107])

Thus, rather than prove thatH is a regular submanifold ofG, it is sufficient to show
that H is a closed subset ofG in order to assure thatH is a regular Lie subgroup,
i.e., a Lie group in its own right (Olver [89]). IfG is a Lie group there is a set of
special vector fields onG which form a finite dimensional vector space called the
Lie algebra ofG.

Definition 3.70.Let G be a Lie group. For any g∈ G, left and right translation (or
multiplication) by g are, respectively, the diffeomorphisms Rg : G→G and Lg : G→
G defined by

Rg(h) = h ·g
Lg(h) = g ·h

Rg is a diffeomorphism with inverseRg−1 = (Rg)
−1. Note that
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Rg−1 (Rg(h)) = Rg(h) ·g−1 = h ·g ·g−1 = h

Similarly, Lg−1 = (Lg)
−1.

Definition 3.71.A vector field v on G is called right-invariant if

dRg (v(h)) = v(Rg(h)) = v(h ·g)

for all g,h∈G. It is left invariant if

dLg (v(h)) = v(Lg(h)) = v(g ·h)

If v,w are right (left) invariant vector fields then so isav+ bw wherea,b are real
numbers. Thus, the set of right (left) invariant vector fields forms a vector space. If
v,w are right (left) invariant vector fields onG, then so is their Lie bracket[v,w].

dRg([v,w]) = [v,w] ·g= [v ·g,w ·g] = [dRg(v),dRg(w)] = [v,w]

Example 3.72 (Right and left invariant vector fields).Here are some examples of
right and left invariant vector fields.

1. G= R. There is one right (or left) invariant vector field (up to a constant multi-
plier), v= 1 (v = ∂ /∂x). To see this note thatRy(x) = x+ y, for x,y∈ R. Thus,
the differential map is

dRy(v) = [∂Ry(x)/∂x]v= v, v∈ TRx

so that right invariance requiresv(x) = v(x+ y) for all x,y ∈ R,which implies
v(x) = constant. Similarly,Ly(x) = y+ x implies dLy(v) = v, v ∈ TRx so we
arrive at the same conclusion.

2. G = R+ (the positive real numbers with ordinary scalar multiplication as the
group operation). In this case right and left translation areRy(x) = xyandLy(x) =
yx, for x,y∈ R+. The corrsponding differential maps aredRy(v) = yv= dLy(v)
with y ∈ R+ andv ∈ TR+

x . Thus, right or left invariance requires thatyv(x) =
v(yx) for all x,y∈ R+. The general solution to this relation isv(x) = ax, a∈ R.
Thus, the unique (up to scalar multiplication) right or leftinvariant vector field
onR+ is the linear vector fieldv= x.

3. G= SO(2). The unique right or left invariant vector field is easily verified to be
v(θ) = 1 (v = ∂ /∂θ).

Lemma 3.73.The set of right (left) invariant vector fields of a group G is isomorphic
to the tangent space to G at its identity element e, TGe.

Proof: First we show that any right invariant vector field onG is determined by
its value at the identity elemente and then that any tangent vector toG at e deter-
mines a right invariant vector field. Any right invariant vector fieldv(g) onG satisfies



86 3 Introduction to Differential Geometry

dRg(v(h)) = v(Rg(h)) for all g,h∈G. SinceRg(e) = g for eachg∈G, we seth= e
and obtain

v(g) = dRg(v(e))

Conversely, any tangent vector toG at e determines a right invariant vector field by
this same formula as we now show. First note that

dRg (v(h)) = dRg (dRh (v(e))) = d (Rg◦Rh)v(e)

SinceRg ·Rh(k) = k ·h ·g for anyk∈G, this leads to

dRg(v(h)) = dRh·g(v(e))

By assumptionv(h ·g) = dRh·g(v(e)), so that we reach the conclusion that

dRg(v(h)) = v(Rg(h))

Consequently,v(g) = dRg(v(e)) is a right invariant vector field. A similar computa-
tion establishes the result for left invariant vector fields.

Definition 3.74.The Lie algebra of a Lie group G, denotedg is the vector space of
all left (or right) invariant vector fields on G.

Since each left or right invariant vector field onG is uniquely associated with a vector
tangent toG at e, we can identify the Lie algebrag of G with the tangent space to
G at e, g∼= TGe. This implies thatg is a vector space of the same dimension as the
underlying Lie group. Moreover, as is convenient, we will view the Lie algebra of a
Lie group either as the space of left or right invariant vector fields or as the tangent
space to the group at the identity element.

As was done in the above proof, we will find it useful, from timeto time, to contruct
left and right invariant vector fields on a groupG from an element of its Lie algebra
g – viewed as the tangent space toG at the identity. This is accomplished using the
formulasv(g) = dLg(β) or v(g) = dRg(β), β ∈ g, respectively. We emphasize that
in this application the differential maps take elements ing∼= TGe→ TGg. In local
coordinates the Jacobian is evaluated at the identitye.

Example 3.75 (Euclidean Space).SupposeG = Rn with vector addition the group
operation. ThenLg : Rn→Rn is given byRg(x) = g+xwith x,g∈Rn. The differential
mapdLg : TRn

x → TRn
x+g is the identity (for allx and in particular for the identity

elementx= 0), i.e.,

∂Lg

∂x
= I ⇒ ṽ= v, v∈ TRn

x, ṽ∈ TRn
g+x

Any left invariant vector fieldv(x) must satisfydLg(v(x)) = v(g+ x) for all x and
g, which in this case reduces tov(x) = v(g+ x) for all x,g ∈ Rn. Thus, every left
invariant vector field is constant in the direction ofg for arbitraryg. Thus, the set of
left invariant vector fields, and, hence, the Lie algebra ofRn, is the set of constant
vector fields.
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Example 3.76 (Rotation Group and its Lie Algebra).Let SO(3) denote the group
of rotations of three-dimensional euclidean space.SO(3) represents the configuraton
space of a rigid body free to rotate about a fixed point. An element, which we denote
by L is a rotation matrix (a real 3×3 matrix with LTL = I ). A motion of the rigid
body corresponds to a pathL(t) in the group. The velocitẏL(t) is a tangent vector to
the group at the pointL(t)∈SO(3). Recall that left and right translation onSO(3) are
the functionsLA(L) = AL andRA(L) = LA, ∀A,L ∈ SO(3). We can easily compute
the differential maps associated with these functions. Consider left translation and
supposeg(t) is a path inSO(3) passing through the pointL at t = 0. Its image under
left translation byA is ḡ(t)=Ag(t), so thaṫḡ(t) =Aġ(t). dLA : TSO(3)L→TSO(3)AL

is dLA(L) = AL. Similarly,dRA(L) = LA.

We can translate the velocity vector to the group identity element by left or right
translation, thereby identifying two different elements in the Lie algebraso(3):

ωb = dLLT L̇ = LT L̇, ωs = dRLT L̇ = L̇LT

Since,LTL = I implies L̇TL+ LT L̇ = 0, ωb andωs are skew-symmetric matrices.
Moreover, as we will see in the next chapter,ωb is simply the angular velocity (as
observed) in the body andωs is the angular velocity (as observed) in space.

The definition of a Lie algebra need not be based on the a priorireference to an
underlying Lie group. In general

Definition 3.77.A Lie algebra is a vector spaceg together with a bilinear operation

[·, ·] : g×g→ g

called the Lie bracket forg, satisfying the following axioms

1. bilinearity
[av1+bv2,w] = a[v1,w]+b[v2,w]
[v,aw1+bw2] = a[v,w1]+b[v,w2]

for a,b∈R and v,v1,v2,w,w1,w2 ∈ g.

2. skew-symmetry
[v,w] =−[w,v]

3. Jacobi identity
[u, [v,w]]+ [w, [u,v]]+ [v, [w,u]] = 0

for all u,v,w∈ g.

Notice that in our definition of a Lie algebrag of a Lie groupG, the required bilinear
operation occurs naturally and is, in fact, the ordinary Liebracket of vector fields.
The Lie algebrag of the Lie groupG consists of the left invariant vector fields on
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G. But it has been shown that the Lie bracket of two left invariant vector fields is a
left invariant vector field so that the ordinary Lie bracket of vector fields provides a
mapping[·, ·] : g×g→ g. Moreover, it satisfies the required properties 1), 2) and 3)
of the above definition.

Example 3.78 (Lie algebras).

1. The vector space of smooth vector fields on a manifoldM forms a Lie algebra
under the Lie bracket operation on vector fields.

2. The vector spacegl(n,R) of all n× n real matrices forms a Lie algebra if we
define[A,B] = AB−BA.

3. R3 with the vector cross product as the Lie bracket is a Lie algebra.

Definition 3.79.A Lie subalgebrah of a Lie algebrag is a (vector) subspace ofg
which is closed under the Lie bracket, i.e.,[v,w] ∈ h whenever v,w∈ h.

If H is a Lie subgroup of a Lie groupG, any left invariant vector field onH can be
extended to a left invariant vector field onG (setv(g) = dLg(v(e)), g∈G and where
v(e) ∈ THe⊂ TGe defines the left invariant vector field onH). In this way the Lie
algebrah of H is realized as a subalgebra ofg.

Proposition 3.80.Let G be a Lie group with Lie algebrag. If H ⊂ G is a Lie sub-
group, its Lie algebrah is a subalgebra ofg. Conversely, ifh is any s-dimensional
subalgebra ofg, there is a unique , connected subgroup H of G with Lie subalgebra
h.

Proof: We outline the basic idea of the proof. IfH is a Lie subgroup with of the Lie
groupG, then there is a common identity elemente andTHe is a subspace ofTGe.
Consequently,h is a subalgebra ofg. To prove the converse, note that any basis ofh,
say{v1, . . . ,vs}, defines a distribution onG. Sinceh is a subalgebra, each

[vi ,v j ] ∈ h⇒ [vi ,v j ] ∈ span{v1, . . . ,vs}

and thereforeh defines an involutive distribution onG. Moreover, at each pointg∈G,
{v1, . . . ,vs} is a linearly independent set of tangent vectors. Thus, the Frobenius the-
orem implies that there is ans-dimensional integral submanifold of this distribution
passing through every pointg ∈ G and through the identity elemente in particular.
This is the Lie subgroupH corresponding toh. It remains only to verify that the
manifold so defined is indeed a group.

Example 3.81 (Lie subalgebras).
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1. Recall thatGl(n,R) = Gl(n) is the set of invertiblen×n matrices with real ele-
ments and that it is a group under matrix multiplication. In fact it is a Lie group
of dimensionn2 The Lie algebra ofGl(n) is denotedgl(n). Let H be a subgroup
of Gl(n). We wish to characterize its Lie algebrah which a subalgebra ofgl(n).
We can findh∼= THe by looking at the one dimensional subgroups which are
contained inH. That is, supposea∈ gl(n)∼= TGe so that a is a (right invariant)
vector field onG and the maximal integral manifold of a passing throughe is
{eεa, ε ∈ R}. Thus,

h = {a∈ gl(n)| eεa ∈ H ∀ε ∈ R}

2. Recall the group of orthogonal matricesO(n) =
{

X ∈Gl(n)|XTX = I
}

. This
group is a subgroup ofGl(n) with dimO(n) = n(n− 1)/2. Sincegl(n) ∼= TGe

we may view the elements ofgl(n) asn×n matrices and its Lie bracket is then
matrix commutation. Let the matrixA∈ gl(n), thenA∈ h if and only if

(
eεA)T (

eεA)= I

and this is satisfied if and only ifAT +A= 0, i.e.,A is antisymmetric.

3. Another subgroup ofGl(n) is the special orthogonal group

SO(n) = {X ∈Gl(n)|detX = 1}

This Lie group is also of dimensionn(n−1)/2. It is one of the components of
O(n). In fact, it is the connected component of the identity. The Lie algebra of
SO(n) is the same as the Lie algebra ofO(n) (they have the same tangent space
at e): so(n) = real skew symmetricn×n matrices

Remark 3.82 (Properties of Lie algebras).In the following paragraphs,
we briefly summarize some useful terminology and elementaryproperties associated
with Lie algebras.

1. An algebra is thedirect sumof two algebrasa+b if g= a+b is a vector space
and[a,b] = 0. We then writeg = a⊕ b. It is thesemi-directsum if [a,b] ⊂ a,
i.e., if [w,v] ∈ a wheneverw∈ a, v∈ b. We then writeg= a⊕sb.

2. A subalgebrah is anidealof g if [h,g]⊂ h. If g= a⊕sb, thena is an ideal ofg.
If g= a1⊕a2⊕·· ·⊕an, then eachai is an ideal ofg.

3. If H is a subgroup ofG, we define the following equivalence relation. Fora,b∈
G,

a≡ b(modH), i f a−1b∈H

The equivalence classes under this relation are called theleft cosetsof H and are
denotedaH. Similarly, if we define the relation

a≡ b(modH), i f ab−1 ∈H
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The equivalence classes under this relation are called theright cosetsof H and
are denotedHa. H is normal if aH = Ha for all a∈G.

4. If H is normal, the cosets ofH form a group with group operation

(aH) · (bH) = a ·bH

This group is called thequotient groupand is denotedG/H. Consider the exam-
ple in Figure (3.9).

G=R
2
 with vector addition


G/H is the collection of all


hyperplanes parallel to H


H, a one-dimensional


subspace


Fig. 3.9: The quotient group associated with the groupG = R2 and its subgroupH, a linear
subspace ofR2, is the collection of all translations ofH.

5. Supposeh is a subalgebra ofg. For anyw∈ g, define the equivalence class ofw
in g by the relation

w≡ v(modh), w− v∈ h

The equivalence class ofw so defined is denotedw+ h. These equivalence
classes form a Lie algebra ifh is an ideal ofg. We can define a Lie bracket
on the classes

[w+h,v+h] := [w,v]+h

The set of equivalence classes now forms a new algebra calledthequotient al-
gebra, denotedg/h.
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3.6 Introduction to Differential Forms

In this section we give a brief overview of differential forms. Differential forms will
prove to be a useful conceptual and computational tool in geometric control the-
ory. More details can be found in many texts including [89]. The implementation in
ProPacof the computations described here follows that of Bonanos [13].

3.6.1 Differential Forms

Let M be a smooth manifold andTMx the tangent space atx ∈ M. A differential
k-form is a linear antisymmetric function

ω : TMx×·· ·×TMx
︸ ︷︷ ︸

k copies

= TMk
x → R

Thus, we have

1. linearity

ω(v1, ..,λ1vi + λ2v̂i , ..,vk) = λ1ω(v1, ..,vi , ..,vk) + λ2ω(v1, .., v̂i , ..,vk)

for each 1≤ i ≤ k andλ1,λ2 ∈ Rand

2. antisymmetry
ω(vi1, . . . ,vik) = (−1)ν ω(v1, . . . ,vk)

where

ν =

{
0, even permutation
1, odd permutation

1-forms

If (x1, . . . ,xn) are local coordinates, thenTMx has basis{∂
/

∂x1, . . . ,∂
/

∂xn}. The
cotangent space has a dual basis usually denoted{dx1, . . . ,dxm}, with

〈
dxi ,∂

/
∂x j
〉
=

δi j . A differential 1-form is an element in the dual space, i.e.,it is a covector field,
and has the local coordinate representation

ω = h1(x)dx1+ · · ·+hn(x)dxn

For any vector fieldv= ∑ξi(x)∂
/

∂xi we have, by definition,

ω(v) =
n

∑
i=1

hi(x)ξi(x) = 〈ω,v〉

Note that a real valued functionf (x) has associated with it the differential
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d f =
n

∑
i=1

∂ f
∂xi

dxi

which is itself a 1-form. Thus, it operates on elements ofTMx, and we can write

d f(v) = v( f )

The following notation is equivalent

d f (v) = 〈d f ,v〉= Lv( f )

3.6.2 The Exterior or Wedge Product

Let ω1, . . . ,ωk be a collection of 1-forms. We can construct a differential k-form
ω1∧ω2∧ . . .∧ωk via the formula

ω1∧ . . .∧ωk(v1, . . . ,vk) = det[ωi(v j)] (3.49)

This is thewedge product(or exterior product). The wedge product is multilinear
and antisymmetric.

1. linearity

ω1∧·· ·∧
(

αωα
i +βωβ

i

)

∧·· ·∧ωk = αω1∧·· ·∧ωα
i ∧·· ·∧ω

+βω1∧·· ·∧ωβ
i ∧·· ·∧ω

2. asymmetry
ωi1 ∧·· ·∧ωik = (−1)ν ω1∧·· ·∧ωk

where, again

ν =

{
0, even permutation
1, odd permutation

Every differential k-form may be written

ωk = ∑
i1<···<ik

ai1···ik(x)dxi1∧·· ·∧dxik

For any smoothk-form on M we can define ak+ 1-form called its differential or
exterior derivative. Its differential or exterior derivative is

dωk = ∑
i1<···<ik

dai1···ik(x)dxi1 ∧·· ·∧dxik = ∑
i1<···<ik, j

∂ai1···ik(x)
∂x j

dxi1 ∧·· ·∧dxik

Example 3.83 (Wedge Product Examples).Let us consider some basic calculations
with one and two forms.
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1. In the case of a 1-formω = ∑ai(x)dxi , we have the differential

dω =∑i dai ∧dxi =∑i, j

∂ai

∂x j
dx j ∧dxi

2. Let v = ∑vi(x)∂
/

∂xi , w = ∑wi(x)∂
/

∂xi be smooth vector fields and consider
dxi as a 1-form so that

a) dxi(v) = vi , dxi(w) = wi

b) dxi ∧dx j(v,w) =

∣
∣
∣
∣

dxi(v) dxi(w)
dx j(v) dx j(w)

∣
∣
∣
∣
= viwj −wiv j

c) dxi ∧dx j(v) =

∣
∣
∣
∣

vi dxi

v j dx j

∣
∣
∣
∣
= vidx j − v jdxi

3. Given vector fields as in 2., we can evaluate the 2-form of 1.

dω(v,w) =∑i, j

∂ai

∂x j
(viwj −wiv j)

3.6.3 The Interior Product or Contraction

Suppose thatω(v1, . . . ,vk) is a differentialk-form andv a smooth vector field, then
we define a(k−1)-form iv(ω) called theinterior productor contraction

iv(ω) = ω(v,v1, . . . ,vk−1)

for every set of vector fieldsv1, . . . ,vk−1. Notice that the inner product is bilinear
(linear in each of its two arguments). Thus, it is sufficient to determine it for basis el-
ements. Recall that the basis elements fork-forms aredxj1∧ . . .∧dxjk . Consequently,
we compute

i∂ /∂xi
(dx j1 ∧ . . .∧dx jk) =

{
(−1)κ−1dx j1 ∧ . . .∧dx jκ−1 ∧dx jκ+1∧ . . .∧dx jk i = jκ

0 i 6= jκ ∀κ
(3.50)

Example 3.84 (Contraction Examples).Here are some elementary calculations (from
Olver [89])

1. i∂ /∂x(dx∧dy) = dy

2. i∂ /∂x(dz∧dx) =−dz

3. i∂ /∂x(dy∧dz) = 0
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4. Consider the 2-form onR3

ω = α (x,y,z)dy∧dz+β(x,y,z)dz∧dx+ γ(x,y,z)dx∧dy

and the vector field

v= ξ (x,y,z)
∂
∂x

+η (x,y,z)
∂
∂y

+ ζ (x,y,z)
∂
∂z

Then compute

iv(ω) = iξ∂ /∂x(ω)+ iη∂ /∂y(ω)+ iζ∂ /∂z(ω)
=−ξβ dz+ ξγdy+ηα dz−ηγdx− ζα dy+ ζβ dx
= (ζβ −ηγ)dx+(ξγ− ζα )dy+(ηα − ξβ )dz

Consider the wedge product of ak-form ω and ap-form θ. The formula (3.50) can
be used to prove the following identity:

iv(ω∧θ) = iv(ω)∧θ +(−1)kω∧ iv(θ) (3.51)

3.6.4 Lie Derivative of Forms

Proposition 3.85.Let ω be a differential form and v a vector field on the manifold
M. Then

Łv(ω) = div(ω)+ iv(dω)

Proof: (Olver [89], p64). See also Definition (3.32).

3.7 Problems

Problem 3.86.Consider the set of affine vector fieldsA of the form f (x) = Ax+b,
A∈Rn×n, b∈Rn. Show thatA is closed under the Lie bracket operation, i.e.,[ f ,g]∈
A for all f ,g∈A .

Problem 3.87.Determine the smallest distribution that is invariant withrespect to
the vector fields

τ1(x) =

[
1
x1

]

, τ2(x) =

[
x2

x1

]

and contains the distribution∆(x) = span{τ1(x)}, i.e.,〈τ1,τ2 |∆ 〉.
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Kinematics of Tree Structures

5.1 Introduction

Multibody mechanical systems often assume the structure ofa chain or a tree. Even
when they do not (i. e., a system containing a closed loop), itis typically convenient
to build a model for an underlying tree (by breaking the loop)and then to add the
necessary constraints (to re-establish the loop). In this chapter we focus on the kine-
matics of tree structures. The next chapter will supplementthe present discussion to
accommodate constraints.

The systems we consider are composed of rigid bodies1 connected together by joints.
Each joint has a set of velocity variables and configuration parameters2 equal to the
number of degrees of freedom of the joint. The set of all jointvelocities defines the
(quasi-) velocity vector,p, for the system and the set of all joint parameters comprise
the system generalized coordinate vector,q. Our main goal is to assemble the key
kinematic equation that relates the quasi-velocities to the coordinate velocities:

q̇=V(q)p (5.1)

In addition, we wish to establish formulas that allow the computation of the position,
orientation and/or velocity of reference frames at variouslocations in the system.

We begin in the next section with an analysis of individual joints. The goal is to
characterize the motion of an outboard reference frame withrespect to an inboard
reference frame. Joints are normally defined in terms of constraints on the relative
velocity across the joint. Formulas will be derived that provide a natural parame-
terization of the joint configuraton and all other kinematicquantities. In Section 3
we turn to the kinematics of chain and tree structures. Various formulas are derived

1We do not discus flexible bodies in this book. However, the methods described here apply
with some additional constructs that are implemented inProPac. SeeProPachelp for more
information.

2At least locally.
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that allow the complete characterizaton of chain and tree configuration and veloci-
ties in terms of individual joint quantities. Computer implementation of the required
calculations are also described.

5.2 Kinematics of Joints

A joint constrains the relative motion between two bodies. In this section we develop
a mathematical desription of joints that is convenient for assembling multibody dy-
namical models.

5.2.1 The Geometry of Joints

We designate two rigid bodies and reference frames fixed within thems (space) and
b (body). The configuration spaceM of relative motion between two unconstrained
rigid bodies is the Special Euclidean groupSE(3) consisting of all rotations and
translations ofR3. SE(3) is the semi–direct product of the rotation groupSO(3) with
the vector groupR3, [89]. An element inSE(3) may be represented by a matrix

X =

[
LT R
0 1

]

, L ∈ SO(3), R∈ R3 (5.2)

Consider a space reference frameXYZand a body reference framexyz. The config-
uration of the body frame relative to the space frame isX as defined in (5.2). Recall
that location of a point at positionr in the body has locationR in the space frame
with

R = R+LTr

as illustrated in Figure 5.1. The inverse ofX is

X−1 =

[
L −R
0 1

]

(5.3)

Two successive relative motionsX1 andX2 combine to yield

X = X2X1 =

[
LT

2 R2

0 1

][
LT

1 R1

0 1

]

=

[
LT

2 LT
1 LT

2 R1+R2

0 1

]

as illustrated in Figure (5.2).

In general geometric terms, a joint is characterized by a relation on the tangent bundle
TSE(3). Such a relation is usually expressed in local coordinates by an equation of
the type (see, for example [2,3])

f (q, q̇) = 0 (5.4)
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Fig. 5.1: Point p can be represented in either the body frame or space frame.
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Fig. 5.2: Two successive rigid body motions characterized by configuration matricesX1,X2
leave the body in configurationX = X2X1 with respect to the space frame.
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where f : TSE(3)→ Rk. Natural constraints almost always occur on one of two
forms:

f (q) = 0 (5.5)

in which only the coordinates appear, or

F(q)q̇= 0 (5.6)

in which the coordinate velocities appear linearly. Equation (5.5) defines a subman-
ifold of SE(3) which identifies admissible configurations. Constraints ofthis from
are called geometric constraints because they restrict therelative geometry of the
two bodies. Constraints of the form (5.6) are called kinematic because they restrict
the relative velocity of two bodies. The geometric meaning of (5.6) is highlighted by
restating it as

q̇∈ ∆(q) (5.7)

where∆(q) is a distribution onSE(3) defined as∆(q) = Ker[F(q)]. If the constraint
is of the form of (5.6), then it is holonomic [2, 3] if the distribution∆(q) is integrable.
General conditions for integrability of a distribution arewell known and given by the
Frobenius theorem. Recall, from Chapter 3, that local coordinates onTM constitute
the pair(q,v) with q local coordinates onM andv local coordinates onTMx. Thus, in
general,TM is isomorphic toM×g, whereg denotes the Lie algebra associated with
M, it is possible to characterize joint constraints which involve velocities (i.e., (5.6))
by a smooth mapf : SE(3)× se(3)→ Rk so that the joint is defined by equations of
the form:

A(q)p= 0, (5.8)

wherep ∈ se(3) andA(q) is a linear operator onse(3). The geometric meaning of
(5.8) is

p∈ KerA(q) (5.9)

Equation (5.8) is a more general and will prove to be a more convenient characteri-
zation of kinematic joints than (5.6).

Let us takeM = SE(3) and consider the formal representation of objects belonging
to its Lie algebrag= se(3). We can use either right or left translations onM to define
g. We choose left, so that

p := X−1Ẋ =

[
L −R
0 1

][
L̇T Ṙ
0 0

]

=

[
LL̇T LṘ

0 0

]

=

[
ω̃b vb

0 0

]

(5.10)

Notice that in (5.10) we use the conventional notation, by which any vectora∈R3 is
converted into a skew-symmetric matrix ˜a(a) :

ã(a) =





0 −a3 a2

a3 0 −a1

−a2 a1 0





Thus, we see thatse(3) is isomorphic toR6 and we can consider an elementp of
se(3) to be a pair of objects– body angular velocity and linear velocity–(ωb,vb) or,
equivalently,(ω̃b,vb). When doing formal group calculations however, we use the
matrix form shown in (5.10).
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5.2.2 Simple Kinematic Joints

Kinematic joints are joints that are described by velocity constraints such as (5.6) or
(5.8). They are simple if the motion axes are fixed in (at least) one of the bodies–
in which case the constraint can be formulated so thatA is a constant (independent
of the configuration). For lack of a general terminology we call such jointssimple
kinematic joints. We now focus on simple kinematic joints. It is convenient todefine
a matrixH whose columns form a basis for KerA, [47, 48, 91], so that

KerA= ImH, H is of full rank r = dimKerA. (5.11)

Solutions of (5.8) are of the form

p= Hβ , β ∈ Rr (5.12)

β represents the joint quasi–velocity andr is the number of velocity degrees of free-
dom.H is called the joint map matrix .

Examples of Joint Map Matrices of Simple Joints -H










0
0
1
0
0
0



















0 0
1 0
0 1
0 0
0 0
0 0



















0
0
0
0
0
1



















0
0
1
0
0
s



















0 0
0 0
1 0
0 0
0 0
0 1










1do f 2do f 1do f 1do f 2do f
revolute universal prismatic screw cylindrical

bodyz−axis bodyy,z−axis bodyz−axis bodyz−axis bodyz−axis

The joint configuration is defined, in general, by the differential equations

Ẋ = X p (5.13)

or, equivalently
L̇ = −ω̃bL, Ṙ= LTvb (5.14)

It is easy enough to replacẽωb andvb by β using (5.12). LetH be partitioned so that
H1 contains the first 3 rows andH2 the second three rows of H, then

Ẋ = X

[ ∼
H1β H2β

0 0

]

(5.15)

or
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L̇ =−
∼

(H1β)L, Ṙ= LTH2β . (5.16)

The joint kinematics are defined by (5.15) or (5.16). Given the quasi–velocitiesβ ,
(5.15) and (5.16) can be integrated to provide the relative translational position and
rotation matrix of the two bodies. However, this representation may not be the most
informative and it certainly provides more information than necessary since it lo-
cates the relative position in the six dimensional groupSE(3) instead of the relevant
subgroup. If the constraint is holonomic, preciselyr dimensions would suffice. First,
we provide a result for single degree of freedom joints.

Proposition 5.1.Consider a simple single degree of freedom joint with joint map
matrix H = h∈ R6. Then the joint configuration matrix can be parameterized bya
parameterε ∈ R in the form:

X(ε) =
[

LT(ε) R(ε)
0 1

]

(5.17)

with

L(ε) = e−h̃1ε , R(ε) =
ε∫

0

e−h̃1σ h2dσ (5.18)

Proof: [60]. Consider a general one degree of freedom joint in whichH is composed
of the single columnh. Then the distribution∆(X) on SE(3) consists of the single
vector field [

LT h̃1 LTh2

0 0

]

This is an integrable distribution and we seek the integral manifold which passes
through the point

X0 =

[
I 0
0 1

]

The one dimensional manifold we seek can be characterized (at least locally) by a
mapξ : R→ SE(3). Let ε ∈ R be the parameter. Then we seek a solution to the
differential equation

dξ
dε

=

[
LT h̃1 LTh2

0 0

]

, ξ (0) = X0 (5.19)

or equivalently
dL
dε

=−h̃1L, L(0) = I (5.20)

and
dR
dε

= LTh2, R(0) = 0 (5.21)
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so that the conclusion follows.

Note that ifH is composed of several columns, sayr columns, then we can consider
this joint as a sequence ofr single column joints and computeXi(εi) for each joint.
Thus, we have

Corollary 5.2. Consider a simple joint with r degrees of freedom and joint map ma-
trix H = [h1 . . .hr ] ∈ R6×r , then there is a parameter vectorε ∈ Rr and the joint
configuration matrix can be expressed in the form

X(ε) = Xr(εr) . . .X2(ε2)X1(ε1) (5.22)

where each Xi(εi) is of the form of Proposition (5.1) with h= hi .

We conclude that any simple kinematic joint is holonomic and, in fact, we have
explicitly computed a local representation of its configuration manifold. Now, any
motion results in a velocitẏX = X p. We wish to characterize this relation (locally)
in terms of the rate of change of the joint parameters. In other words, we seek to
relateε̇ andβ . The following proposition does that.

Proposition 5.3.Consider a simple joint with joint map matrix H, and suppose the
joint is parameterized according to Proposition (5.1) and Corollary (5.2). Then the
joint kinematic equation is

ε̇ =V(ε)β (5.23)

where V(ε) is defined by the following algorithm:

1. For j = 1, ..r define and

UT
j (ε j , ..,ε1) = LT

j (ε j )U
T
j−1(ε j−1, ..,ε1), UT

0 = I (5.24)

Γj(ε j , ..,ε1) = LT
j (ε j )Γj−1(ε j−1, ..,ε1)+Rj , Γ0 = 0 (5.25)

2. Define B(ε)

B(ε) :=

[
b11 · · · b1r

b21 · · · b2r

]

(5.26)

b̃1i := Ui−1h̃i1U
T
i−1 (5.27)

b2i := Ui−1h̃i1Γi−1+Ui−1hi2 (5.28)

3. Define V(ε)

V(ε) := B∗(ε)H, B∗(ε) denotes a left inverse of B(ε) (5.29)
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Proof: [60]. Any motion results in a velocitẏX = X pwhich implies

Ẋ =∑ ∂X
∂εi

ε̇i = X(ε)p

Now, we directly compute

r

∑
i=1

∂X
∂εi

ε̇i =
r

∑
i=1

{

Xr(εr) · · ·Xi+1(εi+1)
dXi

dεi
Xi−1(εi−1) · · ·X1(ε1)ε̇i

}

and premultiplying byX−1 we obtain

r

∑
i=1

{

[Xi−1(εi−1) · · ·X1(ε1)]
−1X−1

i (εi)
dXi

dεi
Xi−1(εi−1) · · ·X1(ε1)ε̇i

}

= p (5.30)

Notice that

X−1
i (εi)

dXi

dεi
=

[
h̃i1 hi2

0 0

]

Also, defineWj(ε j , . . . ,ε1), j = 1, .., r by the recursion

Wj(ε j , . . . ,ε1) := Xj(ε j )Wj−1(ε j−1, . . . ,ε1) (5.31)

W1(ε1) = X1(ε1) (5.32)

so that (5.30) can be written

r

∑
i=1

W−1
i−1

[
h̃i1 hi2

0 0

]

Wi−1ε̇i = p (5.33)

We can easily determine, from (5.31), (5.32), thatWj is of the form

Wj =

[
UT

j (ε j , . . . ,ε1) Γj(ε j , . . . ,ε1)
0 1

]

with
UT

j (ε j , . . . ,ε1) = LT
j (ε j )U

T
j−1(ε j−1, . . . ,ε1), UT

0 = I

Γj(ε j , . . . ,ε1) = LT
j (ε j)Γj−1(ε j−1, . . . ,ε1), Γ0 = 0

Thus, (5.33) reduces to

r

∑
i=1

[
Ui−1h̃i1UT

i−1 Ui−1h̃i1Γi−1+Ui−1hi2

0 0

]

ε̇i = p=

[ ˜H1β H2β
0 0

]

(5.34)

Each expression of the formUi−1h̃i1UT
i−1 is an antisymmetric matrix so we can define

b1i ∈ R3 such that
b̃1i =Ui−1h̃i1U

T
i−1

We also define
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b2I =Ui−1h̃i1Γi−1+Ui−1hi2

Then (5.34) can be written

B(ε)ε̇ = Hβ , B(ε) =
[

b11 · · · b1r

b21 · · · b2r

]

Let B∗ denote the left inverse ofB-which exists on a neighborhood ofε = 0 because
B(0) = H is of full rank. Then

ε̇ = B∗(ε)Hβ =V(ε)β , V(ε) := B∗(ε)H

5.2.3 Compound Kinematic Joints

Not all joints are simple kinematic joints. But in many casesit is possible to define the
action of a joint in terms of a sequence of simple kinematic joints. We call such joints
compound kinematic joints. In general, a compound joint is defined as a joint which
can be characterized as the relative motion of a sequence ofp reference frames such
that relative motion between two successive frames is defined by a simple kinematic
joint. Then each of thep simple joints is characterized by a joint map matrixHi with
r i columns, a quasi–velocity vector,βi , of dimensionr i , a parameter vector,εi , of
dimensionr i , and a kinematic matrixΓi(εi). Thus if we defineε := [ε1 . . .εp] and
β := [β1 . . .βp] we have the joint kinematics defined by

ε̇ = diag[Γ1(ε1), . . . ,Γp(εp)] (5.35)

and, assuming the frames are indexed from the outermost, theoverall joint configu-
ration matrix is

X(ε) = Xp(εp) · · ·X2(ε2)X1(ε1) (5.36)

Equations (5.35) and (5.36) provide the kinematic equations for compound joints.
Figure (5.2) may be thought of as depicting a 2-frame compound joint.

Remark 5.4.In view of equation (5.36), ap-frame compound joint with joint map
matricesHi , i = 1, . . . , p, yields the same configuration manifold parameterization as
a simple joint with joint map matrixH = [H1 · · ·Hp].

As we will see below, the overall joint map matrix is also required in order to assem-
ble the dynamical equations for multibody systems. The required constructions are
provided in the following proposition.

Proposition 5.5.Consider a compound joint composed of p simple joints with joint
map matrices Hi = [h1

1 · · ·h
r i
i ] ∈ R6×r i , i = 1, . . . , p. Supposeε := [ε1 . . .εp] and
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β = [β1 · · ·βp] are the corresponding simple joint parameters and quasi–velocities.
Then the composite joint map matrix H(ε) ∈ R6×(r1+···+rp) is given by the following
construction:

H(ε) :=

[
h11 · · · h1r

h21 · · · h2r

]

(5.37)

where
h̃ j1 := Ui−1h̃ j

i1U
T
i−1

h j2 := Ui−1h̃ j
i1Γi−1+Ui−1h

j
i2 for i = 1, .., p, j = 1, .., r i (5.38)

UT
i (εi , ..,ε1) = LT

i (εi)U
T
i−1(εi−1, ..,ε1), UT

0 = I (5.39)

Γi (εi , ..,ε1) = LT
i (εi)Γi−1(εi−1, ..,ε1)+Ri, Γ0 = 0 (5.40)

Proof: [4][60]. The overall joint velocity is

Ẋ =
p

∑
i=1

r i

∑
j=1

∂X

∂ε j
i

ε̇ j
i = X(ε)p (5.41)

Notice that for each fixedi > 2,

r i

∑
j=1

∂X

∂ε j
i

ε̇ j
i = Xp(εp) · · ·Xi+1(εi+1)

{
r i

∑
j=1

∂X

∂ε j
i

ε̇ j
i

}

Xi−1(εi−1) · · ·X1(ε1) (5.42)

But, as computed above for simple joints,

r i

∑
j=1

∂X

∂ε j
i

ε̇ j
i = Xi(εi)

[ ˜hi1βi hi2β
0 0

]

(5.43)

Thus we have

Ẋ = X(ε)p

=

[ ˜h11β1 h12β1

0 0

]

+
p
∑

i=2
Xp(εp) · · ·Xi(εi)

[ ˜hi1βi hi2βi

0 0

]

Xi−1(εi−1) · · ·X1(ε1)

(5.44)

or, premultiplying through byX(ε),
[ ˜h11β1 h12β1

0 0

]

+

p
∑

i=2
[Xi−1(εi−1) · · ·X1(ε1)]

−1
[ ˜hi1βi hi2βi

0 0

]

Xi−1(εi−1) · · ·X1(ε1)

= p=

[
ω̃b vb

0 0

]

(5.45)
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This important relationship gives the body rates across thecompound joint in terms
of the joint quasi-velocities. Now, we can also write

[ ˜hi2βi hi1βi

0 0

]

=
r i

∑
j=1

[

h̃ j
i1 h j

i2
0 0

]

(5.46)

So that (5.45) can be written in the form

p= H(ε)β

whereH(ε) is constructed as stated.
Note that these equations differ from those of Proposition (5.3) only in that eachεi

is a vector of dimensionr i rather than a scalar.

5.2.4 Joint Computations

The computations described above have been implemented inProPac. The function
Joints computes all of the required joint quantities. Recall that simple joints are
characterized by the number of degrees of freedom,r, an r-vector of joint quasi-
velocities,p, and a 6× r joint map matrix,H. Across the joint, the relative velocity
vector isH p. Moreover,H is a constant (independent of the joint configuration) and
the columns represent the joint action axes in the outboard frame (by convention). A
compound joint is equivalent to a sequence of simple joints.Thus, it is necessary to
define a set of numbers that represent the degrees of freedom associated with each
intermediate frame and a corresponding set of (constant) joint map matrices. When
defining a joint inProPac, it is necessary to also assign names for both the joint
quasi-velocities and joint configuration variables.

A k-frame compound joint withn degrees of freedom is defined by the data structure:

{r,H,q, p}

where

r = k− vector whose elements define the number of degrees of freedom

for each simple joint, withn= r1+ · · ·+ rk.

H = [H1 . . .Hk] a matrix composed of the k joint map matrices of the

simple joints.

q = n− vector of joint coordinate names.

p = n− vector of joint quasi-velocity names.

Example 5.6 (2 dof simple and compound joints).Here is a sample computation that
illustrates the difference between simple and compound joints:
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In[30]:= ( * spherical joint - a simple 2-dof revolute joint * )
r1={2};H1={{1,0},{0,0},{0,1},{0,0},{0,0},{0,0}};
q1={a1x,a1z};p1={w1x,w1z};
( * universal joint - a compound 2-dof revolute joint * )
r2={1,1};H2={{1,0},{0,0},{0,1},{0,0},{0,0},{0,0}};
q2={a2x,a2z};p2={w2x,w2z};
JointLst={{r1,H1,q1,p1},{r2,H2,q2,p2}};
{V,X,H}=Joints[JointLst];

The results are given below.

Spherical Joint:

V =

(
1 0
0 cosa1x

)

X =






cosa1z −cosa1xsina1z sina1x sina1z 0
sina1z cosa1xcosa1z −cosa1zsina1x 0

0 sina1x cosa1x 0
0 0 0 1






H =










1 0
0 0
0 1
0 0
0 0
0 0










Universal Joint:

V =

(
1 0
0 1

)

X =






cosa2z −cosa2xsina2z sina2x sina2z 0
sina2z cosa2xcosa2z −cosa2zsina2x 0

0 sina2x cosa2x 0
0 0 0 1






H =










1 0
0 sina2x

0 cosa2x

0 0
0 0
0 0










Example 5.7 (3 dof Universal Joint).

A widely used example of a compound joint is the 3 degree of freedom universal
joint. Such a joint is illustrated in Figure (5.3). This joint is composed of three el-
ements and requires three frames to describe the composite motion. The relative
motion between each of them involves one degree of freedom. In our terminology
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H =










1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0










���

Fig. 5.3: Diagram of a 3 dof universal joint. Note that the joint itself is composed of three
bodies in addition to the fixed reference body.

In[31]:= H = Join [IdentityMatrix [3],DiagonalMatrix [{0,0,0}]];
r = {1,1,1};
q= {t1, t2, t3};
p= {w1,w2,w3};
JointLst= {{r,H,q,p}};
{V,X,H}= Joints [JointLst];

The results of this calculation are:

H =










1 0 −sint2
0 cost1 cost2sint1
0 −sint1 cost1cost2
0 0 0
0 0 0
0 0 0









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X =






cost2cost3 cost3sint1sint2−cost1sint3 cost1cost3sint2+sint1sint3 0
cost2sint3 cost1cost3+sint1sint2sint3 −cost3sint1+cost1sint2sint3 0
−sint2 cost2sint1 cost1cost2 0

0 0 0 1






V =





1 0 0
0 1 0
0 0 1





5.2.5 Remarks on Configuration Coordinates

The joint quasi–velocities are naturally defined by the action of the joint. Joint con-
figuration coordinates, however, are defined by the kinematic relation (5.23). While
these equations formally define the coordinates (by definingε̇), they also provide a
physical interpretation. Before examining some examples,note thatV(ε) itself fol-
lows directly from the joint definition. Therefore to the extent that there is some
freedom in specifying the joint parameters (the vectorr and the matrixH), the user
sets up the physical meaning of the coordinatesε. To see how this works, consider a
general six degree of freedom joint (unconstrained 6 dof relative motion) defined by:

In[32]:= H = IdentityMatrix [6];

r = {6};
q= {ax,ay,az,x,y,z};
p= {wx,wy,wz,ux,uy,uz};

Consider this joint as depicting the relative motion of a body with respect to a space
frame. The velocity transformation matrixV is:

V = diag(V1,V2)

V1 =





1 sinaxtanay cosaxtanay
0 cosax −sinax
0 secaysinax cosaxsecay





V2 =

[
cosaycosaz cosazsinaxsinay−cosaxsinaz cosaxcosazsinay+sinaxsinaz
cosaysinaz cosaxcosaz+sinaxsinaysinaz −cosazsinax+cosaxsinaysinaz
−sinay cosaysinax cosaxcosay

]
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Inspection and comparison with standard results (e.g., [31]) reveals that the coordi-
natesax,ay,azare Euler angles in the 3–2–1 convention, and the coordinates x,y,z
define the position of the body frame relative to the space frame, as represented in
the space frame. In other words, the quasi–velocity vector(ux,uy,uz) corresponds to
the body linear velocity in the body frame whereas the coordinate velocity(ẋ, ẏ, ż)
represent the same body linear velocity in the space frame. By interchanging the first
three columns ofH, the resultant angle parameters again turn out to be Euler param-
eters, but in different conventions. If the columns inH corresponding to angles and
linear displacements are interchanged, then the representation of the linear velocity
and displacement will switch from space to body frame (or vice–versa).

5.3 Remarks on Rotation of Rigid Bodies

5.3.1 Introduction

The orientation of a rigid body has been described as an element in the special or-
thogonal groupSO(3). Rotational motion of a rigid body is thus conceived as a tra-
jectory in the manifold associated withSO(3). In Chapter 3, elements inSO(3) were
associated with a rotation matrixL – a 3×3 real matrix that satisfiesLTL = I . SO(3)
is a 3-dimensional group. Consequently, a local parametrization involving three pa-
rameters, such as Euler angles, is commonly used to represent rigid body orientation.
Such local parameterizations may be inadequate because they do not lead to global
descriptions of all possible trajectories of rotational motion.

One example of this problem can be seen as follows. Consider an Euler angle de-
scription involving successive rotationsψ, θ, andφ about the body axesz,y, andx,
respectively. Then the coordinate derivatives are relatedto the body angular velocity
by the differential equations:

d
dt





φ
θ
ψ



=





1 sinφ tanθ cosφ tanθ
0 cosφ −sinφ
0 sinφsecθ cosφsecθ









ωx

ωy

ωz



 (5.47)

Thus, the coordinate velocity vector belongs to the span of the columns of the kine-
matic matrix

d
dt





φ
θ
ψ



 ∈ span











1
0
0



 ,





sinφ tanθ
cosφ

sinφsecθ



 ,





cosφ tanθ
−sinφ

cosφsecθ











It is not difficult to verify that

lim
θ→±π/2

span











1
0
0



 ,





sinφ tanθ
cosφ

sinφsecθ



 ,





cosφ tanθ
−sinφ

cosφsecθ










= span











1
0
0



 ,





1
0
1













114 5 Kinematics of Tree Structures

This implies that atθ = ±π/2 the motion is restricted by the model (5.47) to two
degrees of freedom. Clearly, this is not representative of arigid body free to rotate in
space. The singularity is similar to ‘gimbal lock’ in a mechanical gyroscope. In a gy-
roscope the platform does not move with global rotational freedom. The mechanical
suspension binds the platform to the inertial frame with a compound three-degree-of-
freedom joint with coordinates equivalent to Euler angles.Gimbal lock occurs when
the roll axis lies in the plane of the pitch and yaw axes.

One alternative parameterization ofSO(3) that avoids the singularity noted above
is the 4-parameterquaternionintroduced by Hamilton in 1843 [31]. The quaternion
has been applied successfully in engineering mechanics andwill be considered in the
following sections.

5.3.2 Preliminary Observations

The control of rigid body orientation is important in

5.3.3 The Quaternion

A quaternion is a four tuple of real numbersq= (q0,q1,q2,q3). It is convenient to en-
vision a quaternion as composed of two parts, a scalarq0 and vectorq = (q1,q2,q3).
The following operations are defined:

• Addition (and subtraction)

q+ p= (q0+ p0,q1+ p1,q2+ p2,q3+ p3)

• Norm
‖q‖2 = q2

0+q2
1+q2

2+q2
3

• Multiplication
q◦ p= (q0p0−q ·p,q0p+ p0q+q×p)

or, equivalently,

q◦ p=

(
q0 −qT

q q0I3+ q̃

)(
p0

p

)

• Conjugate
(q0,q)

∗ = (q0,−q)

• Inverse
q−1 = q∗/‖q‖
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• Division
q1/q2 = q1q−1

2

The matrix

Q=

(
q0 −qT

q q0I3+ q̃

)

is called thequaternion matrix. Note that

p◦q=

(
q0 −qT

q q0I3− q̃

)(
p0

p

)

= Q∗
(

p0

p

)

If ‖q‖= 1, thenq is aunit quaternion. If q is a unit quaternion, thenq−1 = q∗. Unit
quaternions form a group with multiplication as the group operation. In particular,

• If q, p are unit quaternions, thenq◦ p andp◦q are unit quaternions,

• If q is a unit quaternion, thenq−1 is a unit quaternion,

• There is a unit quaternione= (1,0) that is an identity element; i.e., for any unit
quaternionq, eq= qe= q.

If q is a unit quaternion we can always writeq in the formq= (cosθ,usinθ ) where
u is a unit vector.

Unit quaternions provide a convenient way to represent rigid body rotations. A
quaternionq with q0 = 0 is called apure quaternion. Now consider a generic vec-
tor r fixed in a rotating reference frame. We can associate it with apure quaternion
r = (0, r). Let q be a unit quaternion and consider the transformation of quaternionr
to quaternionsdefined by

s= q◦ r ◦q−1 = q◦ r ◦q∗

which is equivalent to

s=

(
q0 qT

−q q0I3+ q̃

)(
q0 −qT

q q0I3+ q̃

)(
0
r

)

This product can be expanded to find

s0 = 0 (5.48)

s=





q2
0+q2

1−q2
2−q2

3 2q1q2−2q0q3 2q0q2+2q1q3

2q1q2+2q0q3 q2
0−q2

1+q2
2−q2

3 −2q1q2+2q0q3

−2q0q2+2q1q3 2q0q1+2q2q3 q2
0−q2

1−q2
2+q2

3



 r (5.49)

We wish to show that the action of the quaternionq on a vector, as defined by (5.49),
is a rotation. To do this it is convenient to convenient to usethe vector calculus
equivalent to (5.49)
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s=
(
q2

0−q ·q
)

r +2q0q× r +2(q · r)q (5.50)

which is easily derived using the definition of quaternion product along with the
identity(a×b)×c= (a ·c)b−(a ·b)c. Now, if we replaceq by q= (cosθ,usinθ ),
we obtain

s= cos2φr +(1− cos2φ)φ(u · r)u+ sin2φu× r (5.51)

Recall that a finite rotation can always be represented by a unit vector,u, that defines
the axis of rotation and the angle of rotation,θ. We wish to investigate the rotation of
a vectorr within a specified frame. define an alternative frame with oneaxis aligned
with the rotation unit vectoru and the other two axes aligned with orthogonal unit
vectorsv andw that both lie in the plane orthogonal tou. Suppose further, thatv lies
in the plane defined byu andr so thatr can be expressedr = r0u+ r1v. The rotated
vectors is then

s= r0u+ r1vcosθ + r1wsinθ

Of course,r1v = r − (r ·u)u andw = u× v. So,

s= cosθ r +(1− cosθ)(r ·u)u+ sinθ u× r (5.52)

Comparing (5.51) and (5.52) we see thatq = (cosθ/2,usinθ/2) corresponds to a
rotation of amountθ about the unit vectoru.

5.3.4 Quaternion Representation of a Rotating Frame

Consider a rigid body free to rotate in space. Suppose that a point, fixed in the body,
is represented by vectorr defined in a body fixed frame. Thens can be considered
its representation in a space fixed frame. The rotation matrix identified in (5.49)
transformsr from body fixed coordinates to space coordinates. By convention the
matrix transforming space coordinates to body coordinatesis designatedL, so we
have

LT (q) =





q2
0+q2

1−q2
2−q2

3 2q1q2−2q0q3 2q0q2+2q1q3

2q1q2+2q0q3 q2
0−q2

1+q2
2−q2

3 −2q1q2+2q0q3

−2q0q2+2q1q3 2q0q1+2q2q3 q2
0−q2

1−q2
2+q2

3



 (5.53)

Specifically, ifr is a vector represented in the coordinates of the rotated body frame,
ands its coordinates in the fixed space frame, then

r = L(q)s, s= LT (q) r

We wish to relate the body angular velocity to the rate of change Euler parameters.
We begin with time differentiation of the expressions= q◦ r ◦q∗

ṡ= q̇◦ r ◦q∗+q◦ r ◦ q̇∗

Now substitutingr = q∗ ◦ s◦q
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ṡ= q̇◦q∗ ◦ s+ s◦q◦ q̇∗

Sinceq is a unit quaternion, the time rate of change of its norm is zero. This fact
allows us to easily establish that the scalar parts of ˙q◦ q∗ andq◦ q̇∗ are both zero.
Furthermore, if ˙q◦q∗=(0,w), thenq◦ q̇∗= (0,−w). It follows that the vectorial part
of ṡ is ṡ= 2w×s. From this we identifyΩ = 2w, whereΩ is the angular velocity of
the body in space coordinates. Thus,

q̇=
1
2

Q∗
(

0
Ω

)

or
d
dt

[
q0

q

]

=
1
2

(
q0 −qT

q q0I3− q̃

)[
0
Ω

]

=
1
2

(
−qT

q0I3− q̃

)

Ω (5.54)

It is generally more convenient to write these equations using angular velocity in
body coordinates

d
dt

[
q0

q

]

=
1
2

Q

[
0
ω

]

=
1
2

(
−qT

q0I3+ q̃

)

ω (5.55)

whereω is the body angular velocity in body coordinates. Expanding, with ω =
(ωx,ωy,ωz)

d
dt







q0

q1

q2

q3






=

1
2







−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0











ωx

ωy

ωz



 (5.56)

Exact integration of these equations for any specifiedω(t) and initial conditionq(0)
of unit length produce a solutionq(t) with ‖q(t)‖ = 1 for all t. However, imperfect
integration requires a correction. One common remedy for digital computation is to
implement

d
dt







q0

q1

q2

q3






=

1
2







q1 q2 q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0











ωx

ωy

ωz



+ κλ







q0

q1

q2

q3







(5.57)

whereλ =
(
1−q2

0−q2
1−q2

2−q2
3

)
and the parameterκ is chosen so thatκh≤ 1 and

h is the step size.

5.3.5 Euler Angles from Quaternion

It is frequently desirable to determine the Euler angles from the quaternion. For Eu-
ler angles in the 3-2-1 orzyx convention, the rotation matrix, from body to space
coordinates, is

L (φ,θ ,ψ) =





cosθ cosψ cosθ sinψ −sinθ
sinφsinθ cosψ−cosφsinψ sinφsinθ sinψ +cosφcosψ sinφcosθ
cosφsinθ cosψ +sinφsinψ cosφsinθ sinψ−sinφcosψ cosφcosθ





(5.58)
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The corresponding rotation matrix in terms of quaternions is

L (q) =





q2
0+q2

1−q2
2−q2

3 2(q1q2+q0q3) 2(q1q3−q0q2)

2(q2q1−q0q3) q2
0−q2

1+q2
2−q2

3 2(q2q3+q0q1)
2(q1q3+q0q2) 2(q3q2−q0q1) q2

0−q2
1−q2

2+q2
3



 (5.59)

Note that both of these matrices convert vector in body fixed coordinates to space
coordinates. Equation (5.59) is obtained by inverting (equivalently, transposing) the
matrix in (5.53).

Now, compare elements of (5.58) and (5.59) to obtained the following

φ = tan−1 2(q2q3+q0q1)

q2
0−q2

1−q2
2+q2

3

(5.60)

θ = sin−12(q0q2−q1q3) (5.61)

ψ = tan−1 2(q2q1+q0q3)

q2
0+q2

1−q2
2−q2

3

(5.62)

For example, comparing elements (1,3) in (5.58) and (5.59) leads directly to (5.61).
Dividing (2,3) by (3,3) in (5.58) and (5.59), respectively,and comparing the result
leads to (5.60). Similarly, dividing element (1,2) by (1,1)leads to (5.61).

5.3.6 Quaternion from Euler Angles

It is convenient and sometimes necessary to be able solve forthe quaternion parame-
ters given a the Euler angles. For instance when integratingequation (5.57), the initial
attitude is often specified in Euler angles which need to be converted to quaternion
parameters.

Comparing (5.58) and (5.59) we obtain the following four equations

tanθ
(
q2

0−q2
1−q2

2+q2
3

)
= 2(q2q3+q0q1)

sinθ = 2(q0q2−q1q3)
tanψ

(
q2

0+q2
1−q2

2−q2
3

)
= 2(q2q1+q0q3)

q2
0+q2

1+q2
2+q2

3 = 1

(5.63)

It is easily verified that these equations are satisfied by

q0 = cos1
2ψ cos1

2θ cos1
2φ+ sin1

2ψ sin 1
2θ sin 1

2φ
q1 = cos1

2ψ cos1
2θ sin 1

2φ− sin 1
2ψ sin 1

2θ cos1
2φ

q2 = cos1
2ψ sin 1

2θ cos1
2φ+ sin 1

2ψ cos1
2θ sin 1

2φ
q3 =−cos1

2ψ sin 1
2θ sin 1

2φ+ sin 1
2ψ cos1

2θ cos1
2φ

(5.64)
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5.4 Chain and Tree Configurations

In general a multibody system can be viewed in terms of an underlying tree structure
upon which is imposed additional algebraic and/or differential constraints. In this
section we describe the data structures used to define multibody tree structures. In
later sections we show how to compute velocities and configuration coordinates of
reference frames at arbitrary locations in the tree. A tree can be defined in terms of a
set of chains, each beginning at the root body.

Representation of Chain & Tree Structures

ProPacprovides tools to build models for mechanical systems that have an under-
lying tree topology. Chain structures are a special case. Systems with closed loops
are accommodated by adding constraints to the underlying tree. A tree consisting of
n bodies also containsn joints. Every system contains a base reference frame that is
designated body ‘0’. Otherwise, bodies and joints can be numbered arbitrarily. Joint
data and body data are organized into lists by the analyst, i.e.:

JointList={JointData_1,...,BodyData_n}
BodyList={BodyData_1,...,BodyData_n}

The structure of the individual data objects will be described below. Joints and bod-
ies are implicitly numbered by their position in the data lists. Each body contains a
unique ‘inboard’ node, corresponding to (the outboard sideof) a joint through which
the body connects to an inner branch of the tree, or to the root(body 0). See Fig-
ures (5.4) and (5.5). Each body may also contain ‘outboard’ nodes. The outboard
nodes are distinguished body locations that may be associated with a joint location
(the inboard side of the joint), a sensor location, a point ofapplication of an external
force or any other feature of interest. Since one joint connects the tree to the root
(the root node may be considered an outboard node of body 0), there must be at least
n−1 outboard nodes among then bodies corresponding to the remainingn−1 joints.
These are then ‘outboard joint nodes’. The outboard joint nodes must be numbered
1 throughn and must correspond to the associated joint number. The specific associ-
ation of numbers to joints is not essential but by conventionthe root node is normally
assigned the number 1. The remaining outboard notes can be numbered arbitrarily.
The inboard nodes need not be assigned numbers.

In summary there are two important book-keeping principles:

• joints and bodies are numbered according to their position in the data lists,

• outboard joint nodes must be numbered consistently with their repective joints.

A tree is composed of a set of defining chains. For instance consider a tree composed
of the following sequences of bodies:
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0,1,2,4 0,1,2,3,5 0,1,2,3,6

All defining chains of any tree will start with body 0, so we need not list it. However,
the body sequences alone do not adequately define a tree. For instance bodies 5 and
6 both connect to body 3, but they will do so through differentjoints. This informa-
tion can be provided by defining each chain as an ordered list of pairs - each pair
consisting of a body and its inboard joint: inboard joint, body. For example, consider
the following three chains:

{{1,1},{2,2},{5,4}} {{1,1},{2,2},{3,3},{4,5}}
{{1,1},{2,2},{3,3},{6,6}}

Chain 1 consists of bodies 1, 2, and 4. Body 1 connects to the reference (Body 0) at
Joint 1, Body 2 connects to Body 1 at Joint 2, and Body 4 connects to Body 2 at Joint
5. The data also indicates that body 5 connects to body 3 at joint 4 (in the second
chain), and body 6 connects to body 3 at joint 6 (third chain).Recall that each joint
is uniquely associated with an outboard node of a particularbody. A tree is defined
by the data structure:

Tree = {list of chains}
Chain = ordered list of pairs {inboard joint, body}

= {{first inboard joint, first body},...,
{last inboard joint, last body}}

Reference Frames

It is assumed that there is a single inertially fixed reference frame whose origin is
the inboard side of the root joint. Each body has a primary reference frame, fixed
in the body with origin at the inboard node. Body data is defined in this frame. As
appropriate, there may be other body fixed frames as well withorigins at outboard
node locations. Normally, the axes of these frames are parallel to the primary frame
when the body is undeformed. For the system as a whole, there is a ’reference con-
figuration’ corresponding to the nominal joint configurations (associated with zero
joint motion parameters) and undeformed bodies. In the reference configuration all
reference frames (body and space) are alligned. The analystsets up the reference
configuration when choosing body frame orientations for joint and body data defini-
tions. It is recommended that the analyst begin by defining a physically meaningful
reference configuration from which data definitions will logically follow.

Rigid Body Data Structure

A rigid body is defined by its mass, inertia matrix and the location of distinguished
points or nodes where joints or sensors may be located. We assume the following:
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1. There is a distinguished point that corresponds to the inboard joint of the body.
The body frame has its origin located there.

2. The center of mass and all other points of interest (nodes)including outboard
joint locations are defined in the body frame.

3. The inertia matrix is defined in the body frame and it is the inertia matrix about
the center of mass.

The data for a rigid body is organized in a list as follows. A rigid body withk out-
board nodes is defined by the data structure:

{com,{out1,..,outk},m,Inertia}

where

com is the center of mass location,
outi = {node number, location} for the ith outboard node,
m is the mass, and
Inertia is the inertia tensor (about the center of mass).

5.4.1 Configuration Relations

Consider a serial chain composed ofK + 1 rigid bodies connected by joints as il-
lustrated in Figure (5.4). The bodies are numbered 0 throughK, with 0 denoting the
base or reference body, which may represent any convenient inertial reference frame.
Thekth joint connects bodyk−1 at the pointCk−1 with bodyk at the pointOk.

Let Fk denote a reference frame fixed in bodyk with origin at Ok. rk
co denotes the

vector fromOk toCk in Fk andrk denotes the vector fromOk to Ok+1 in Fk. We will
use a coordinate specific notation in which vectors represented inFk (or its tangent
space) will be identified with a superscript “k”. Coordinate free relations carry no
superscript. Sometimes it is convenient to employ a frame fixed in bodyk and aligned
with Fk but with origin at some pointPk other thanOk. We use the designationFk

Pk
.

Let rk
po denote the vector fromOk to Pk in Fk. Then the parallel translation ofFk to

Fk
Pk

results in the configuraton matrix

Xk,Pk =

[
I r po

0 1

]

Thekth joint hasnk, 1≤ nk ≤ 6 degrees of freedom which can be characterized by
nk coordinatesq(k) and, correspondingly,nk quasi-velocitiesβ(k) and a configura-
tion matrix Xk(q(k)). We wish to compute the Euclidean configuraton matrix for a
reference frame fixed in the last body with origin at the terminal node of the chain,
designatedPK . For example, this would be node 5 in Figure (5.4). We obtain the
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2

K

0

1

Joint 1

K-1

Joint K

Joint 2

Fig. 5.4: A serial chain composed ofK +1 rigid bodies numbered 0 throughK andK joints
numbered 1 throughK.

kO

kC

Bodyk

, Body FramekF

Fig. 5.5: On an arbitrarykth link the inboard and outboard joint hinge points are designated
Ok andCk. The body fixed reference frame has its origin atOk.

configuration relative to the space frame by successive motions: action of joint 1→
translation toC1→ ··· → action of joint K→ translation toPK :

XPK = XK,PXK . . .X2,C2X2X1,C1X1 (5.65)

Equation (5.65) can be modified to compute the relative configuration between body
fixed frames at any two nodes in a chain or tree. To accommodatetrees in this calcu-
lation requires a simple procedure to find a chain connectingthe two nodes.
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5.4.2 Velocity Relations in Chains

Once again consider a chain composed ofK+1 bodies as illustrated in Figure (5.4).
Rodriguez et al [6-8] define the spatial velocity at pointC of any body-fixed reference
frame with origin at pointC asVc = [ω,vc] wherevc is the velocity of pointC and
ω is the angular velocity of the body. LetO be another point in the same body and
let rco denote the location ofC in the body frame with origin atO. Then the spatial
velocity at pointC is related to that atO by the relation

Vc = φ(rco)Vo (5.66)

where

φ(rco) =

[
I 0
−r̃co I

]

,

and its adjoint

φ∗(rco) =

[
I r̃co

0 I

]

(5.67)

Jointk has a joint map matrixH(k) ∈ R6×nk so that

Vo(k)−Vc(k−1) = H(k)β(k) (5.68)

Thus, sequential application of (5.66) and (5.68) leads to the following recursive
velocity relation that we write in coordinate specific notation

V i(k) = φ(r i
co(k−1))V i(k−1)+H i(k)β i(k) (5.69)

where the superscripti denotes the reference frame. Let us assume thatH(k) and
β(k) are specified in the frameFk andV(k− 1) has been computed in the frame
Fk−1 . Then it is convenient to computeV(k) in thekth frame

Vk(k) = diag(Lk−1,k,Lk−1,k)φ(rk−1
co (k−1))Vk−1(k−1)+ Hk(k)βk(k) (5.70)

If V0(0) is given, then equation (5.70) allows us to compute recursively, for k =
1, ..,K, the linear velocity of the origin ofFk and the angular velocity ofFk, both
represented in the coordinates ofFk. In what follows we takeV0(0) = 0. Abusing
notation somewhat, it is convenient to define

φ(k,k−1) = diag(Lk−1,k,Lk−1,k)φ(rk−1
co (k−1)) (5.71)

so that (5.70) can be written

Vk(k) = φ(k,k−1)Vk−1(k−1)+ Hk(k)βk(k), k = 1, ... , K, V0(0) = 0 (5.72)

Equations (5.66) and (5.72) allow a sequential computationof velocities at any point
along a chain. Notice thatφ andH depend on joint configuration parameters so that
the joint configuration and velocity variables are needed toperform the computation.
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Remark 5.8.We want to clarify the recursive velocity formula (5.72). The spatial
velocity,VOk, at thekth joint outboard node,Ok, can be computed in terms of the
velocity VOk−1 and the joint configurationX(k). The setup is shown in Figure 5.6.
Let us writeX(k) in the usual form

X (k) =

[
LT (k) R(k)

0 1

]

Now, we proceed as follows. First compute the velocity at thepointCk−1:

Body Frame


Outboard Node


Body k-1

F
k
-1


F

k


C

k
-1


Body k
 C

k


O
k
-1


O
k


r
co
(
k
-1)


Joint k, 
 X
(
k
)


Fig. 5.6: Two links in a chain provide the basis for a single recursive step.

VCk−1 = φ(rco(k−1))VOk−1, φ(r) =

[
I 0
−r̃ I

]

Next obtain the velocity across the joint in two parts, compute the velocity atO
′
k

before the joint action
V

O
′
k
= φ(R(k))VCk−1

and then add the joint action. If we assume that the action is defined in thekth body
frame then we need to representV

O
′
k

in that frame before addingHβ . Thus, we obtain

VOk = diag(L(k) ,L(k))φ(R(k))φ(rco(k−1))VOk−1 +H (k)β (k)

Suppose we defineV(k) :=VOk and
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φ(k,k−1) := diag(L(k) ,L(k))φ(R(k))φ(rco(k−1))

Then, we have the recursive velocity relation

V (k) = φ(k,k−1)V (k−1)+H (k)β (k)

5.4.3 Configuration and Velocity Computations

In addition to the functionJoints described above, there are other kinematic com-
putations implemented inProPac. We will describe and illustrate three of them:
EndEffector , RelativeConfiguration andNodeVelocity .

EndEffector[BodyList,X] returns the Euclidean configuration matrix of
a frame in the last body of a chain, with origin at the outboardjoint location.
BodyList is list of body data in nonstandard chain form, X is a corresponding list
of joint Euler configuration matrices.EndEffector can also be used in the form
EndEffector[ChainList,TerminalNode,BodyList,X] whereBodyList
is the standard body data structure.ChainList identifies the system subchain that
terminates withTerminalNode . EndEffector can also be used in the form
EndEffector[TerminalNode,TreeList,BodyList,X] in the event that
the appropriate chain has not been identified. This last formis probably the most
useful.

RelativeConfiguration[Node1,Node2,TreeList,BodyList ,X,q]
returns the configuration matrix for a body fixed frame at nodeNode2 as seen by an
observer in a body fixed frame at nodeNode1. Note that each node is defined in a
specific body and the frame is fixed in the body in which the nodeis defined.

NodeVelocity[ChainList,TerminalNode,BodyList,X,H,p] returns
the velocity atTerminalNode , where the body data,BodyList , the joint dataX
andH, and the quasivelocity namesp corresponds to the chain defined byChainList .
The velocity is a six element vector defined in the body fixed frame. This function
is used byGeneralizedForce that will be described later. The following syntax
may also be used, similarly to the functionEndEffector :

NodeVelocity[ChainList,TerminalNode,BodyList,X,H,q, p] ,

and

NodeVelocity[TerminalNode,TreeList,BodyList,X,H,q,p ] .

Example 5.9 (5 dof Robot Arm).The functions described above will be illustrated
with an example of a 5 dof robot arm as shown in Figure (5.7).

First define the joint data:
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Fig. 5.7: A 5 dof robot arm is illustrated. The body fixed reference frames located at the
inboard joint nodes are illustrated. Note that in the reference configuration the reference frames
are alligned.

In[33]:= r1= {1};H1= {{0},{0},{1},{0},{0},{0}};
q1= {theta1};p1= {w1};
r2= {1};H2= Transpose [{{1,0,0,0,0,0}}];
q2= {theta2};p2= {w2};
r3= {1};H3= Transpose [{{0,0,0,0,1,0}}];
q3= {y};p3= {v};
r4= {2};H4= Transpose [{{0,1,0,0,0,0},{1,0,0,0,0,0}}];
q4= {theta3, theta4};p4= {w3,w4};
JointList= {{r1,H1,q1,p1},{r2,H2,q2,p2},{r3,H3,q3,p3},{r4,H4,q4,p4}};

Define body data:

In[34]:= com1= {0,0, l1/2}; mass1= m1; out1= {2,{0,0, l1}};
Inertia1= DiagonalMatrix [{J1x,J1x,J1z}];
com2= {0, l2/2,0}; mass2= m2; out2= {3,{0, l2,0}};
Inertia2= DiagonalMatrix [{J2x,0,J2x}];
com3= {0, l3/2,0}; mass3= m3; out3= {4,{0, l3,0}};
Inertia3= DiagonalMatrix [{J3x,0,J3z}];
com4= {0, l4/2,0}; mass4= m4; out4= {5,{0,0, l4}};
Inertia4= DiagonalMatrix [{J4x,J4y,J4z}];

BodyList= {{com1,{out1},mass1, Inertia1},{com2,{out2},mass2, Inertia2},
{com3,{out3},mass3, Inertia3},{com4,{out4},mass4, Inertia4}};

and the interconnection structure

In[35]:= TreeList={{{1,1},{2,2},{3,3},{4,4}}};
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The joint parameters are computed with the command:

In[36]:= {V,X,H}= Joints [JointList];

The joint velocity transformation matrices can be displayed as follows.

In[37]:= V[[1]]//MatrixForm

Out[37]= (1)

In[38]:= V[[2]]//MatrixForm

Out[38]= (1)

In[39]:= V[[3]]//MatrixForm

Out[39]= (1)

In[40]:= V[[4]]//MatrixForm

Out[40]=
(1 0
0 Cos[theta3]

)

Using the functionEndEffector the configuration of a frame fixed at node 4 can
be computed.

In[41]:= TerminalNode= 4;

XE = EndEffector [TerminalNode,TreeList,BodyList,X];

In[42]:= XE[[{1,2,3},4]]//MatrixForm

Out[42]=

(−l2Cos[theta2]Sin[theta1]− l3 Cos[theta2]Sin[theta1]−yCos[theta2]Sin[theta1]
l2Cos[theta1]Cos[theta2]+ l3 Cos[theta1]Cos[theta2]+yCos[theta1]Cos[theta2]

l1+ l2 Sin[theta2]+ l3 Sin[theta2]+ySin[theta2]

)

In[43]:= XE[[{1,2,3},{1,2,3}]]//MatrixForm

Out[43]=

(Cos[theta1] −Cos[theta2]Sin[theta1] Sin[theta1]Sin[theta2]
Sin[theta1] Cos[theta1]Cos[theta2] −Cos[theta1]Sin[theta2]

0 Sin[theta2] Cos[theta2]

)

As another example, we can compute the relative configuration of a frame at node 4
as seen by an oberver in a frame at node 2. We use the functionRelativeConfiguration .

In[44]:= Node1= 2;Node2= 4;q= Flatten [{q1,q2,q3,q4}];

RelativeConfiguration [Node1,Node2,TreeList,BodyList,X,q]//MatrixForm

Out[44]=

(1 0 0 0
0 Cos[theta2] −Sin[theta2] (l2+ l3+y)Cos[theta2]
0 Sin[theta2] Cos[theta2] (l2+ l3+y)Sin[theta2]
0 0 0 1

)

The configuration of a frame at node 4 relative to node 3 is a pure translation:

In[45]:= RelativeConfiguration [3,4,TreeList,BodyList,X,q]//MatrixForm
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Out[45]=

(1 0 0 0
0 1 0 y
0 0 1 l3
0 0 0 1

)

Finally, we compute the spatial velocity of a frame fixed in body 3 at node 4.

In[46]:= p= Flatten [{p1,p2,p3,p4}];

TerminalNode= 4;

NodeVelocity [TerminalNode,TreeList,BodyList,X,H,q,p]//MatrixForm

Out[46]=

(

w2
w1Sin[theta2]
w1 Cos[theta2]

−w1(l2+ l3+y)Cos[theta2]
v

w2(l2+ l3+y)

)

5.5 Problems

Problem 5.10 (Reconnaissance robot).The reconnaissance robot shown in Figure
(5.8) moves on a flat surface. The vehicle has three degrees offreedom, its linear
coordinatesx,y and its angular orientationθ. The radar system also has three degrees
of freedom. It can move vertically,z, and rotate in both azimuth and elevation,φ,ψ,
relative to the vehicle. Suppose the radar system is pointing at a target, the vehicle
and radar configuration are known as well as the range to target. Compute the target
coordinates in a space fixed frame.

Problem 5.11 (Overhead crane).The overhead crane shown in Figure (5.9) is used
to move and position heavy loads in thex−zplane. The cart moves in one (x) linear
direction on rails, the arm connects to the cart via a revolute joint (angleφ from
downwardz direction) and the cable lengthL is variable. Assume that the cable is
always in tension and treat the payload as a point mass. The arm cable joint can
be treated as a two degree of freedom compound joint consisting of rotation and
extension (to model cable playout). Determine the spatial coordinates of the payload
in terms of the four joint parameters.
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Fig. 5.8: A reconnaissance vehicle carrying a range-findingradar system.
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Fig. 5.9: An overhead crane used for moving and positioning heavy loads.





6

Dynamics

6.1 Introduction

The purpose of this chapter is to describe symbolic computing tools for assembling
and manipulating control system design models for constrained multibody mechan-
ical systems. The methods introduced in [60] for chains and trees are summarized
and extended to constrained systems. New computing tools that support the analysis
of constrained systems are described and illustrated.

The derivation of the explicit dynamical equations of motion for mechanical systems
of even moderate complexity is difficult and time consuming.1 Consequently, there
has been a growing interest in automated derivation using computers [60, 73, 18, 11].
Much of this work has focused on chain and tree structures that characterize impor-
tant robotic and vehicular systems. Many systems, however,are not tree structures;
they involve closed loops or other forms of algebraic and/ordifferential constraints
imposed on top of an underlying tree. Typical examples wouldbe a grasping robotic
hand or a vehicle with rolling wheels. The additional complexity of such systems
magnifies the utility of computer assembly of the governing equations.

Our discussion is based onPoincaŕe’s equations[2, 19, 20] also referred to asLa-
grange’s equations in quasi-coordinates[85, 86] orpseudo-coordinates[27], and the
Euler-Poincaŕe’s equationsin [83]. Poincaré’s equations preserve the underlying the-
oretical structure and elegance of the Lagrange formulation, but they are often more
natural and can be substantially simpler than Lagrange’s equations. Furthermore,
their assembly can be much easier to automate making them a practical choice for
modeling ‘industrial strength’ systems. Perhaps most importantly, in the words of
[86]: “The main advantage. . . is the unification of the form ofthe ordinary Lagrange
equations, the equations of motion of nonholonomic systems, and also equations
such as Euler’s dynamical equations of motion of a rigid bodywith a fixed point.”

1Note that modeling and simulation software such as ADAMS andDADS do not produce
explicit nonlinear equations of motion required for control system analysis and design.
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The dynamical equations will be generated in the form

M(q)ṗ+C(p,q)p+F(p,q) = Q (6.1)

wherep is a vector of quasi-velocities,q is the generalized coordinate vector,Q is
a vector of externally applied generalized forces and the functionsM(q), C(p,q)
andF(p,q) are the parameters of the system. The assembly ofQ, M(q), C(p,q) and
F(p,q) is the main topic of this chapter. In combination with the kinematic equations
describe in the previous chapter

q̇=V(q)p (6.2)

these equations provide a consistent closed set of equations.

In Section 2 we develop Poincaré’s formulation of Lagrange’s equations and in Sec-
tion 3 we apply it to general chain and tree structures. Then we consider constrained
systems in Section 4 in which we treat both holonomic and nonholonomic differen-
tial constraints as well as configuraton constraints. We describe symbolic computing
tools and give examples along the way. Finally, in Section 5,we describe numerical
simulation.

6.2 Poincaŕe’s Equations

It is well known that in some cases it is easier to formulate the equations of motion
in terms of velocity variables that can not be expressed as the time derivatives of any
corresponding configuration coordinates. Such velocitiesare called quasi-velocities
and are often associated with so-called quasi-coordinates. Quasi-velocities are mean-
ingful physical quantities. The angular velocity of a rigidbody is a prime example.
Quasi-coordinates are not meaningful physical quantities. They make sense only in
terms of infinitesimal motions. The notion of quasi-velocities and quasi-coordinates
leads to a generalization of Lagrange’s equations which is applicable to systems with
nonholonomic as well as holonomic constraints. Such generalizations were produced
at the turn of the century and are associated with the names ofPoincare, Appell,
Maggi, Hamel, Gibbs and Boltzman (see, for example, Arnold et al [2] and Niemark
and Fufaev [86], Gantmacher [27]).

6.2.1 Preliminaries

Consider a holonomically constrained system whose possible configurations corre-
spond to the points of a smooth manifoldM of dimensionm called theconfigura-
tion manifold. Local coordinates onM can be used to define the system configu-
ration. They are calledgeneralized coordinates. Any motion of the system over a
time interval[t1, t2] traces a path inM characterized in local coordinates by a map
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q(t) : [t1, t2] 7→ M. At any pointq ∈ M the generalized velocitẏq belongs to the
tangent spaceto M at q denoted byTqM. The state space for the dynamical system
is the 2m dimensional manifoldTM =

⋃

q∈M TqM, called thetangent bundle.

A virtual displacementof the system at a configurationq ∈ M is an infinitesimal
displacementδq that takes the system to an admissible configurationq′ ∈ M,q′ =
q+ δq. Clearly, δq is a virtual displacement if and only if it is infinitesimal and
satisfiesδq ∈ TqM. If a system in configurationq is acted upon by ageneralized
force, Q, then thevirtual work performed by the force under a virtual displacement
δq is δW = QTδq.

Let M be them-dimensional configuration manifold for a Lagrangian system and
supposev1, . . . ,vm constitute a system ofm linearly independent vector fields onM.
Then each commutator or Lie bracket can be expressed

[vi ,v j ] =
m

∑
k=1

ck
i j (q)vk (6.3)

Indeed, the coefficients are easily computed in local coordinates.2 Define

V := [v1 v2 · · ·vm], U =








u1

u2
...

um








:=V−1, χi j = [c1
i j c2

i j . . .cm
i j ]

t . (6.4)

Then (6.3) yields
χi j =U [vi ,v j ] or ck

i j = uk[vi ,v j ]. (6.5)

Supposeq(t) : [t1, t2] 7→M is a smooth path, then ˙q(t) denotes the tangent vector to
the path at the pointq(t) ∈M. Thus, we can always express ˙q(t) as a linear combi-
nation of the tangent vectorsvi , i = 1, . . . ,m:

q̇=
m

∑
i=1

vi(q)p

or:
q̇=V(q)p (6.6)

where
p=U(q)q̇ (6.7)

The variables p are calledquasi-velocities. Since these quantities are “velocities” we
might try to associate them with a set of coordinatesπ, in the sense thaṫπ= p. This
is not always possible because in view of (6.7) we must have

δπ=U(q)dq

but, in fact, the right hand side (of eachδπi) may not be an exact differential.

2In local coordinates, vector fields on a manifold of dimension m may be thought of as
column vectors of lengthm and covector fields as row vectors of lengthm. We will use this
device often to do calculations.
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6.2.2 Poincaŕe’s Form of Lagrange’s Equations

First, let us review some elementary variational constructions that will be used in the
drivation of Poincaré’s eqauations. Iff : M 7→ R is a smooth function, thenvi( f ) is
the derivative off in the direction of the vector fieldvi . The rate of change off along
the path is given by

ḟ =
∂ f
∂q

q̇=
m

∑
i=1

vi( f )pi (6.8)

where the variablespi are the quasi–velocities defined above.

Once again, consider the smooth path and suppose the end points areq1, andq2,
i.e., q(t1) = q1,q(t2) = q2. A variation ofq(t) is a smooth mapq(ε, t) : (−ε0,ε0)×
[t1, t2]→M such thatq(0, t) = q(t). For every variation, we can define

w(t) =
∂q
∂ε

(0, t) (6.9)

w(t) may be thought of as a vector field defined onM alongq(t). Conversely, letw(t)
be any smooth vector field defined onM alongq(t) with w(t1) = 0 andw(t2) = 0. For
any such vector field, there is a variation such that (6.9) is satisfied. The implication
of this is that we can define variations ofq(t) in the form

q(ε, t) = q(t)+ εw(t). (6.10)

It is always possible to write the Lagrangian in terms ofq andp. SetL̃(p,q)= L(q̇,q).
In terms ofL̃ Lagrange’s equations are attainable in the form given by thefollowing
lemma.

Proposition 6.1.Hamilton’s principle leads to the equations of motion in terms of
the coordinates q, p

d
dt

∂ L̃
∂ pk
−

m

∑
i; j=1

ci
jk

∂ L̃
∂ pi

p j − vk(L̃) = Qtvk, k= 1, . . . ,m (6.11)

or, in local coordinates,

d
dt

∂ L̃
∂ p
−

m

∑
j=1

p j
∂ L̃
∂ p

UX j −
∂ L̃
∂q

V = QtV (6.12)

where V= [v1 v2 · · ·vm] andX j = [[v j ,v1][v j ,v2] · · · [v j ,vm]].

Proof: (following Arnold et al [5]). Letq(ε, t) be a variation of the pathq(t). Then
we can set

∂ f (q(ε, t))
∂ t

=∑
i

vi( f )pi (6.13)
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∂ f (q(ε, t))
∂ε

=∑
j

v j( f )wj (6.14)

Among other things, this associates with each fixedt along the pathq(t), a virtual
displacementδq= ∑

k
vkwk =Vw. Differentiating (6.13) with respect toε and using

the fact that differentiation with respect toq andε commute we obtain:

∂2 f (q(ε, t))
∂ε∂ t

=∑
i

vi(
∂ f
∂ε

)pi + vi( f )
∂ pi

∂ε
=∑

i, j
vi(v j( f ))wj pi +∑

i
vi( f )

∂ pi

∂ε

Similarly, differentiating (6.14) with respect tot results in

∂2 f (q(ε, t))
∂ t∂ε

=∑
j ,i

v j(vi( f ))piwj +∑
j

v j( f )
∂wj

∂ t

Equating these expressions, we obtain

∑
i

vi( f )
∂ pi

∂ε
=∑

j ,i

(v j(vi( f ))− vi(v j( f ))piwj +∑
j

v j( f )
∂wj

∂ t

∑
i

vi( f )
∂ pi

∂ε
=∑

j ,i

[vi ,v j ]( f )piwj +∑
j

v j( f )
∂wj

∂ t

∑
i

vi( f )
∂ pi

∂ε
=∑

j ,i
∑
k

ck
i j vk( f )piwj +∑

j

v j( f )
∂wj

∂ t

Now, renaming some summation indices

∑
k

vk( f )
∂ pk

∂ε
=∑

k

vk( f )∑
j ,i

ck
i j piwj +∑

k

vk( f )
∂wk

∂ t

In view of the fact that this relation must hold for anyf and any variationq(ε, t) , we
have:

∂ pk

∂ε
=∑

j ,i
ck

i j piwj +
∂wk

∂ t

We can use this formula to calculate the variation of the action integral

δ
t2∫

t1

L̃(p,q)dt = lim
ε→0

d
dε

t2∫

t1

L̃(p(ε, t),q(ε, t))dt
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d
dε

t2∫

t1
L̃(p(ε, t),q(ε, t))dt =

t2∫

t1

{

L̃p
∂ p
∂ε + L̃q

∂q
∂ε

}

dt

=
t2∫

t1

{

∑
k

L̃pk

(

∑
j ,i

ck
i j piwj +

∂wk
∂ t

)

+ L̃q
∂q
∂ε

}

dt

Integrating by parts the second term of the integral

δ
t2∫

t1

L̃(p,q)dt =∑
k

∂ L̃
∂ pk

wk

∣
∣
∣
∣

t2

t1
+

t2∫

t1

∑
k

[

− d
dt

∂ L̃
∂ pk

+∑
i, j

c j
ik

∂ L̃
∂ p j

pi + vk(L̃)

]

wkdt

Now, we use the fact that
QTδq=∑

k

QTvkwk

to obtain

t2∫

t1

{
δL̃(p,q)+QTδq

}
dt = ∑

k

∂ L̃
∂ pk

wk

∣
∣
∣
∣

t2

t1

+
t2∫

t1
∑
k

[

− d
dt

∂ L̃
∂ pk

+∑
i, j

c j
ik

∂ L̃
∂ p j

pi + vk(L̃)+QTvk

]

wkdt
(6.15)

Since the variationswk are independent in the intervalt1 < t < t2 and vanish at its
end points, we have the desired result.

Remark 6.2 (Remarks on Poincaré’s Equations).We will make a few general obser-
vations about Equations (6.11) and (6.12):

1. These equations are referred to as Poincaré’s equationsArnold et al [5], Chetaev
[6, 7] and Lagrange’s equations in quasi-coordinates by Meirovitch [8] and
Neimark and Fufaev [9]. They are related to Caplygin’s equations and to the
Boltzman-Hamel equations [9] and also to the generalized Lagrange equations
of Noble (see Kwatny et al [64]).

2. Poincaré’s equation (6.11) or (6.12) along with (6.6) form a closed system of
first order differential equations which may be written in the form

q̇=V(q)p (6.16)

ṗt ∂2L̃
∂ p2 + ptVt ∂2L̃

∂qt∂ p
−

m

∑
j=1

p j
∂ L̃
∂ p

UX j −
∂ L̃
∂q

V = QtV (6.17)

3. If M is a Lie groupG andvi , i = 1, . . . ,m are independent right-invariant vector
fields onG, thenck

i j = constant, i.e., they are independent ofq. If, in addition,
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L̃ is invariant under right translations onG, thenvk(L̃) ≡ 0 andL̃ depends only
on the quasi-velocitiesp. Thus, the Poincaré equations form a closed system of
differential equations on the Lie algebrag of the Lie groupG, i.e., in the quasi-
velocitiesp.

4. Notice thatL(q̇,q) = L̃(U(q)q̇,q). Thus, Lagrange’s equations can be written

d
dt

∂L
∂ q̇
− ∂L

∂q
=

d
dt

(
∂ L̃
∂ p

U(q)

)

− ∂ L̃
∂ p

∂U(q)q̇
∂q

− ∂ L̃
∂q

= Qt

from which we can derive:

d
dt

∂ L̃
∂ p
−

m

∑
j=1

p j
∂ L̃
∂ p

UX j −
∂ L̃
∂q

V = QtV

Thus, formally, we can derive Poincare’s equations from lagrange’s equations.

Example 6.3 (Rotating Rigid Body).A classic example of the application of Poincaré’s
equations is a rigid body with one pointO fixed in space so that the body is free to
rotate aboutO. The configuration of the body at any timet can be associated with
the rotation matrixL(t) ∈ SO(3) which characterizes the relative angular orientation
of a body fixed frame with origin atO with respect to a space fixed frame with ori-
gin also atO. The velocity of rotatioṅL(t) may be thought of as a tangent vector
to the groupSO(3) at the pointL(t). It is commonplace to translate this vector to
the tangent space to the group at the identity, therby associating the velocity with an
element of the Lie algebraso(3). As described in the previous chapter, we do this
with left translations so that the skew symmetric matrixω̃b = L−1(t)L̇(t) represents
the angular velocity of the the body in the body frame. Recallthat the matrixω̃b can
be associated with the vectorωb via the relation

ω̃b =





0 −ωb3 ωb2
ωb3 0 −ωb1

−ωb2 ωb1 0





The mappingf : L−1L̇ 7→ω defines an isomorphism of the Lie algebraso(3) to R3.

Notice also that a basis for the tangent space toSO(3) at the identity is

A1 =





0 0 0
0 0 −1
0 1 0



 , A2 =





0 0 1
0 0 0
−1 0 0



 , A3 =





0 −1 0
1 0 0
0 0 0



 (6.18)

We can regard these as a basis for the Lie algebraso(3).

If R(t) is the position vector, in the space frame, of a point fixed in the body, then
R(t) = L(t)R(0). Thus,

V(t) = Ṙ(t) = L̇(t)R(0) = L(t)ω̃(t)R(t) = ωs×R(t) (6.19)



138 6 Dynamics

whereωs is the angular velocity vector represented in the space frame. Thus the
abstract characterization of the rotational velocity of a rigid body does indeed co-
incide with the conventional notion of angular velocity. Similarly, if r(t) is the in-
ertial position vector of the body fixed point, represented in the body frame, then
r(t) = L−1(t)R(t), and

v(t) = L−1(t)V(t) = L−1ωs×R(t) = L−1(t)ωs×L(t)r(t) = ω̃b(t)r(t) = ωb(t)× r(t)

which is the body frame equivalent of (6.19).

Suppose thatIb = diag(I1, I2, I3) is the inertia tensor in principle (orthogonal) body
coordinates and supposee1,e2,e3 denote unit vectors of the principle axes, indexed in
the usual way to provide a right hand system:e1×e2 = e3, e2×e3 = e1, e3×e1 = e2.
Letv1,v2,v3 denote the preimages ofe1,e2,e3 under the isomorphismf : so(3)→R3.
Thenv1,v2,v3 are left-invariant vector fields onSO(3) and they satisfy.3

[v1,v2] = v3, [v2,v3] = v1, [v3,v1] = v2 (6.20)

Thus, we can define quasi-velocities in terms of these vectorfields as in (6.6) and
(6.7). Let

ωb = ωb1e1+ωb2e2+ωb3e3 (6.21)

so that the kinetic energy can be written

T(ωb) =
1
2

{
I1ω2

b1+ I2ω2
b2+ I3ω2

b3

}
= 1

2ωT
b Ibωb (6.22)

The potential energy is zero, so we haveL̃ = T(ωb). SinceL̃ is independent of the
coordinates and in the absence of external forces Poincaré’s equations reduce to

d
dt

∂ L̃
∂ωb
−

3

∑
j=1

ωb j
∂ L̃
∂ωb

UXj = 0 (6.23)

Recall that (think local)Xj = [[v j ,v1] [v j ,v2] [v j ,v3]], from which we compute

X1 = [0 v3 − v2], X2 = [−v3 0 v1], X3 = [v2 − v1 0]

which can be expressed

X1 = [v1 v2 v3]





0 0 0
0 0 −1
0 1 0



 (6.24)

X2 = [v1 v2 v3]





0 0 1
0 0 0
−1 0 0



 (6.25)

3This can also be verified by computing the commutators of the basis elements (6.18) via
AB-BA
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X3 = [v1 v2 v3]





0 −1 0
1 0 0
0 0 0



 (6.26)

SinceU = [v1 v2 v3]
−1 we have

3
∑
j=1

ωb j
∂ L̃

∂ωb
UXj = ωT

b Ib






ωb1





0 0 0
0 0 −1
0 1 0





+ωb2





0 0 1
0 0 0
−1 0 0



+ ωb3





0 −1 0
1 0 0
0 0 0











= ωT
b Ibω̃T

b

and finally,
Ibω̇b+ ω̃bIbωb = 0 (6.27)

These are recognized as Euler’s equations.

Example 6.4 (Submerged Rigid Body).Consider a rigid body free to
translate and rotate in an fricitionless, incompressible fluid of densityρ and infi-
nite extent. The configuration manifold is the group of rotations and translations of
R3, SE(3). As discussed in the previous chapter, the rigid body configuration may be
regarded as the matrix

X =

[
LT R
0 1

]

and the corresponding velocity is an element in the corresponding Lie algebrase(3),

p= X−1Ẋ =

[
ω̃b vb

0 0

]

↔
[

ωb

vb

]

Recall thatSE(3) is the product of the rotation groupSO(3) and the translation group
R3. Its Lie algebrase(3) has basis vectors:

A1 =






0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0




 , A4 =






0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0






A2 =






0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0




 , A5 =






0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0





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A3 =






0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




 , A6 =






0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0






Let v1,v2,v3,v4,v5,v6 denote the corresponding left-invariant vector fields. Then we
easily compute the commutator relations. The nontrivial ones are:

[v1,v2] = v3, [v1,v3] =−v2, [v1,v5] = v6, [v1,v6] =−v5, [v2,v3] = v1,

[v2,v4] =−v6, [v2,v6] = v4, [v3,v4] = v5, [v3,v5] =−v4

Thus, we can express each of theXj in the form

Xj = [v1v2v3v4v5v6]Λ j =VΛ j

where eachΛ j is a 6×6 column ‘reordering’ matrix. These are

Λ1 =










0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0










, Λ2 =










0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0










Λ3 =










0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0










, Λ4 =










0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0










Λ5 =










0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0










, Λ6 =










0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0










Any motion of an ideal fluid can be characterized by avelocity potentialφ that
satisfies the partial differential equation∇ 2φ= 0 in the coordinates(x,y,z) of a body
fixed frame. The velocity of at any point within the fluid or on the body surface is
given byu=−∇ φ and the pressure byP= ρφ. Khirchoff showed that the if the fluid
is at rest at infinity (∇ φ = 0 at infinity), the potential function is a linear function of
the rigid body velocity, i.e.,

φ(x,y,z) = a(x,y,z)p

the coefficient row vector can be explicitly computed for simple rigid body shapes,
such as an elipsoid, or it can be computed via finite element approximaton for shapes
of arbitrary complexity.
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The kinetic energy of the fluid can be expressed as the integral of the fluid pressure
times the normal velocity over the surface of the body. The result is that the fluid
kinetic energy is a quadratic function of the body velocity

Tf =
1
2 pTM f p, MT

f = M f =

[
M f 11 M f 12

MT
f 12 M f 22

]

For convenience, we fix the origin of the body frame at the center of buoyancy and
suppose that in this frame the center of mass is located atrcom. If the body has mass
mb and inertia matrixJb (about the center of mass) the the body kinetic energy is

Tb =
1
2 pTMbp, Mb =

[
mbI −mbr̃com

mbr̃com Jb

]

Thus, we have
T(p) = 1

2 pTMp, M = M f +Mb

The system potential energy arises from the gravitational field. If we assume that the
body has neutral buoyancy (displace fluid mass is the same as the vehicle mass) and
that the center of buoyancy and center of mass coincide, thenthe potential energy
function is identically zero. The Lagrangian, then, isL̃ = T(p). Now, we compute

6

∑
j=1

p j
∂ L̃
∂ p

UXj =
(
pTM

) 6

∑
j=1

p jΛ j = pTM

[
ω̃T

b ṽT
b

0 ω̃T
b

]

and, finally

M

[
ω̇b

v̇b

]

+

[
ω̃b ṽb

0 ω̃b

]

M

[
ωb

vb

]

= 0

Notice that if we define the momentum
[

Π
P

]

= M

[
ωb

vb

]

Then the equations can be expressed (recall, ˜ab= a×b, a,b∈ R3)

Π̇ +ωb×Π + vb×P= 0

Ṗ+ωb×P= 0

These can be compared with those given by Leonard [72].

6.3 Chain and Tree Configurations

In general a multibody system can be viewed in terms of an underlying tree struc-
ture upon which is imposed additional algebraic and/or differential constraints. In
this section we describe the assembly of dynamical equations for the tree. In later
sections we show how these equations are modified to accommodate any additional
constraints. A tree can be defined in terms of a set of chains, each beginning at the
root body. We describe in some detail the process of modelinga chain. Extending
the process to a tree requires is merely a book keeping process.
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6.3.1 Kinetic Energy and Poincaŕe’s Equations

The key issue in developing Lagrange’s or Poincaré’s equations is the formulation
of the kinetic energy function and we focus on that construction. It is necessary to
define a spatial inertia tensor. Recall the recursive velocity relation from the previous
Chapter.

Vk(k) = φ(k,k−1)Vk−1(k−1)+ Hk(k)βk(k), k = 1, ... , K, V0(0) = 0 (6.28)

Consider thekth rigid link and letIcm(k) denote the inertia tensor about the center of
mass in coordinatesFk, m(k) denote the mass, anda(k) denote the position vector
from the center of mass to an arbitrary pointO. The spatial inertia about the center
of mass,Mcm, and aboutO, Mo, are

Mcm(k) =

[
Icm 0
0 mI

]

Mo(k) = φ∗(a)Mcm(k)φ(a) =
[

Io mã
−mã mI

]

(6.29)

whereIo is the inertia tensor aboutO.

The spatial velocity and spatial inertia matrix and, hence,the kinetic energy function
for the entire chain can now be conveniently constructed. Let us define the chain
spatial velocity and joint quasi-velocity

V = [VT(1), . . . ,VT(K)]T , β = [βT(1), . . . ,βT(k)]T (6.30)

so that we can write
V = ΦH β (6.31)

where

Φ =






I 0 ... 0
φ(2,1) I ... 0

: : : :
φ(K,1) φ(K,2) ... I






H =






H(1) 0 ... 0
0 H(2) ... 0
: : : :
0 0 ... H(K)




 (6.32)

φ(i, j) = φ(i, i−1)...φ( j +1, j), i = 2, ..,K and j = 1, ..,K−1

The following result is easily verified.

Proposition 6.5.The kinetic energy function for the chain consisting of links 1
through K is

K.E.chain=
1
2βT

M β (6.33)

where the chain inertia matrix is

M = H
TΦTMΦH , M = diag{Mo(1), . . . ,Mo(K)} (6.34)
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Remark 6.6 (The Structure of Poincaré’s Equations).The above definitions and con-
structions provide the kinetic energy function in the form

T̃(q, p) = (1
/

2)pTM(q)p

Hence, we reduce Poincaré’s Equations to the form:

M(q)ṗ+C(q, p)p+F(q) = Qp (6.35)

where

C(q, p) =−
[

∂M(q)p
∂q

V(q)

]

+
1
2

[
∂M(q)p

∂q
V(q)

]T

+

[
m

∑
j=1

p jX
T
j

]

V−T (6.36)

F(q) =VT(q)
∂U (q)

∂qT , Qp =VT(q)Q (6.37)

U (q) is the potential energy function. Notice thatQp denotes the generalized forces
represented in thep-coordinate frame whereasQ denotes the generalized forces in
theq̇-coordinate frame (aligned withq).

Remark 6.7 (Remark on Computations).The key point to be noted is that the matrix
Φ (and hence the productΦH ) can be recursively computed. Thus, we can com-
pute the spatial velocity of any or all of the bodies via (6.30) and the inertia matrix
using (6.34). Once this is done, we computeC(q, p), F(q), andQp explicitly using
equations (6.36) and (6.37), assuming that the potential energy functionP(q) and
the generalized force vectorQ are available. In general, bothP andQ are defined
in terms of coordinates and velocities (in the case ofQ) other than the configuration
coordinatesq and the quasi–velocitiesp. Thus, it is necessary to develop any trans-
formations required to obtainP andQ in terms ofq and p. We will illustrate this
process below. For now, we note that velocity transformations are recursively con-
structed using relations like (6.28) or (6.31), and coordinate transformations are built
up from the usual sequential multiplications of configuration matrices. Assembly of
the system gravitational potential energy and end effectorposition and orientation,
needed below, require constructions of this type.

Remark 6.8 (Poincaré vs. Lagrange Equations).Notice that the kinetic energy can
be expressed in terms of ˙q rather thanp,

T(q, p) = (1
/

2)q̇T {V−T(q)M(q)V(q)−1} q̇,

and hence we have the essential data to construct Lagrange’sequations rather than
Poincaré’s equations. However, Poincaré’s equations may have important advan-
tages. An obvious and practical one is the relative simplicity of the inertia matrix.
However, there is an important theoretical consideration as well. Lagrange’s equa-
tions fundamentally constitute a local representation whenever local coordinates are
introduced, whereas Poincaré’s equations may still admita global description of the
dynamics. This is easily seen by comparing the Lagrange and Poincaré formulations
for the dynamics of a rotating rigid body. We do this below.
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Example 6.9 (Double Pendulum).As a simple example we consider the double pen-
dulum.

Define Joint Data

In[47]:= r1={1};H1={{1},{0},{0},{0},{0},{0}};
q1={a1x};p1={w1x};

r2={1};H2={{1},{0},{0},{0},{0},{0}};
q2={a2x};p2={w2x};

JointLst={{r1,H1,q1,p1},{r2,H2,q2,p2}};

Define Body Data

In[48]:= com1={0,0,-l}; mass1=m; out1={2,{0,0,-l}};
Inertia1=DiagonalMatrix[{0,0,0}];

com2={0,0,-l}; mass2=m; out2={3,{0,0,-l}};
Inertia2=DiagonalMatrix[{0,0,0}];

BodyLst={{com1,{out1},mass1,Inertia1},{com2,{out2}, mass2,Inertia2}};

Define Interconnection Structure

In[49]:= TreeLst={{{1,1},{2,2}}};

Define Potential Energy

In this case only gravity contributes to the potential energy. The only generalized
forces are external torques acting at the two joints.

In[50]:= g=gc; PE=0; Q={T1,T2};

In[51]:= {V,X,H,M,Cp,Fp,p,q}=CreateModel[JointLst,BodyLst,Tr eeLst,g,PE,Q];

We can look at some results.

In[52]:= V

Out[52]= {{{1}},{{1}}}

Recall that V returns as a list of kinematic matrices - one foreach joint. Hence in this
case we get two 1×1 matrices. This can be assembled into a single block diagonal
matrix but it is more efficient to retain the list form.

In[53]:= M

Out[53]= {{2 l2 m+ l2 m Cos[a2x]+

l Cos[a2x] (l m+ l m Cos[a2x])+ l2 m Sin[a2x]2, l2 m+ l2 m Cos[a2x]},
{l2 m+ l2 m Cos[a2x], l2 m}}

In[54]:= Fp//MatrixForm

Out[54]=
(−T1−gc l m (−2 Sin[a1x]−Sin[a1x+a2x])

−T2+gc l m Sin[a1x+a2x]

)

We will return to this example below.
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Example 6.10 (Thin Disk).As another example of the application of these functions
let us consider a thin disk free to rotate about its center of mass in space without any
external or gravitational forces. The single joint definingrelative motion between the
space frame and the body frame is considered as a simple spherical joint.

In[55]:= r1= {3};
H1= Join [IdentityMatrix [3],DiagonalMatrix [{0,0,0}]];
q= {q1,q2,q3}; p= {w1,w2,w3};
JointLst= {{r1,H1,q,p}};
m1= 5;R1= 2; I1=

DiagonalMatrix [{(1/4)∗m1∗R1ˆ2,(1/4)∗m1∗R1ˆ2,(1/2)∗m1∗R1ˆ2}];
cm1= {0,0,0};oc1= {2,{1,0,0}};
BodyLst= {{cm1,{oc1},m1, I1}};
TreeLst= {{{1,1}}};Q = {0,0,0};
{V,X,H,M,Csys,Fsys,psys,qsys}=

CreateModel [JointLst,BodyLst,TreeLst,g,0,Q];

We summarize the results as follows. The Euclidean configuration matrix X(q) is
given in Example (5.6). The kinematic equations are

q̇=V(q)p

V(q) =





1 sinq1tanq2 cosq1tanq2
0 cosq1 −sinq1
0 secq2sinq1 cosq1secq2



 ,

and the dynamic equations

M(q)ṗ+F(q, p) = 0

M(q) =





5 0 0
0 5 0
0 0 10



 , F(t,w) =C(q, p)p=





5w1w2
−5w1w2

0





Poincaré’s equations are recognizable as Euler’s equations.

It is interesting to repeat this calculation with the simplespherical joint replaced by a
compound 3 dof universal joint. The only change required in the aboveMathematica
code is to replace the definition ofr1= {3} by r1= {1,1,1 }. As noted above, the
parameterization of the configuration of the rigid body is the same as that of the
simple joint, i.e.,X(q) is unchanged andV(q) = I3. The other relevant results are as
follows

M(q) =





5 0 −5sinq2
0 5/2(3−cosq1) −5/2cosq2sin2q1

−5sinq2 −5/2cosq2sin2q1 10cosq12 cosq22+5cosq22 sinq12+5sinq2




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F1(q,w) = w3(−5w2cos2q1cosq2−5w3cosq22 sin2q1)/2+w2(5u3cosq2
+ (−5w3cos2q1cosq2+5w2sin 2q1)/2)

F2(q,w) = 1(−5w3cosq2/2+5w3cos 2q1cosq2−5w2sin 2q1)
− 5w2w3sin2q1sinq2/4
+ (w3(−5w1cosq2+5w2sin 2q1sinq2/2−5w3cosq12 sin2q2))/2

F3(q,w) = w1(5w2cos2q1cosq2+5w3cosq22 sin2q1)
+ w2(5w1cosq2−5w2sin 2q1sinq2/2+5w3cosq12 sin2q2)

These equations are, of course, Lagrange’s equations – a consequence of the fact that
the joint formulation commits us to velocity coordinates alligned with the configu-
ration coordinates. The simplicity of the kinematic matrixis more than offset by the
complexity of the dynamical equations. Notice also that thedynamical equations in
the previous case are independent of the configuration parameters. They are globally
valid equations, whereas the latter are not.

6.3.2 Generalized Force Calculations

Building models not only requires the construction of the kinematic relations and
kinetic energy function but it is also necessary to characterize the forces that act
on the system. This is normally accomplished through the definition of a potential
energy function, a dissipation function and/or the specification of generalized forces.
The ProPac functionCreateModel accepts each of these as arguments. Several
computational tools are provided inProPac to assist in the development of these
quantities.

Potential Energy Constructions

The potential energy functionU (q) is typically used to characterize forces due to
gravity and elastic storage elements. The associated generalized force is

F(q) =−∂U (q)
∂q

or

F(q) =−V(q)T ∂U (q)
∂q

in the p-frame. Computing the gravitational potential energy for amultibody me-
chanical system is a straightforward but tedious task, since it is necessary to locate
the center of mass for each body in space. For convenience, this calculation is au-
tomated inCreateModel for a uniform gravitational field acting in the negative
z-direction. To use a coordinate system withz-axis pointing downward requires spec-
ification of the gravitational constant as−g.

The potential energy associated with elastic components can also involve compli-
cated geometry. Two functions inProPaccan be helpful in performing these cal-
culations.SpringPotential computes the potential energy expression in terms
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of the configuration coordinates for a spring connected between two nodes located
anywhere in the system. It is assumed that the spring potential energy is known as a
function of the spring length.

LeafPotential is designed to facilitate computing the potential energy ofcom-
ponents (such as tires) that interact elastically with the space frame. The potential
energy function is presumed known in terms of the spatial location of a contact
node. The potential energy function is computed as a function of the generalized
coordinates.

Dissipation Functions

Dissipation functions are generally specified in terms of the configuration coordi-
nates and velocities in the form of the Rayleigh dissipationpotential

R(q̇,q) = q̇TA(q)q̇+aT(q)q̇ (6.38)

or in the more general more general Lur’e form (see [92])

D(q, p) =∑
i

fi(q)vi(p) (6.39)

where p denotes the quasi-velocities. The generalized force associated with the
Rayleigh dissipation function (in thep-frame) is

F(p,q) =−VT(q)
∂R
∂ q̇

(V(q)p,q)

The generalized force associated with the Lur’e potential is

F(p,q) =−∂D(p,q)
∂ p

The functionCreateModel accepts Lur’e type dissipation potential as an argu-
ment and computes the generalized force. The calculation required for the Rayleigh
function is performed by the functionRayleighDissipationForce .

A ProPacfunction,DamperPotential , can be used to construct the dissipation
potential associated with a damper connected between two nodes in the system. The
function is analogous toSpringPotential . It requires that the damper can be
characterized in terms of a dissipation function dependingon the relative velocity
across the damper. Then a Lur’e type potential function is constructed as a function
of the system coordinates and quasi-velocities.

Applied Force

One way to construct the generalized force associated with an external force applied
at a specific node in the system is to view the node as an energy port. Suppose a force
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FA ∈R6, composed of three torques and three forces, acts at a nodeA in a multibody
system. LetVA denote the spatial velocity atA. BothFA andVA are represented in the
coordinates of a body fixed frame at nodeA. The instantaneous power flowing into
the system isP =FT

A VA. In general, the application of Equations (5.66) and (5.72)of
the last chapter, as in the derivation of Equation (6.31), leads to the representation of
the spatial velocity at nodeA in terms of the system coordinates and quasi-velocities.
If FA is defined as a function of system coordinates and quasi-velocities, thenP can
be expressed in terms of these variables. OnceP(p,q) is constructed we obtain

Qp =
∂P(p,q)

∂ p
(6.40)

To facilitate computingQp ProPac provides several computational tools. One of
these,GeneralizedForce , is based on the construction described above. The
force FA is assumed to be given as an expression involving the spatialvelocity
components of a body fixed frame at the node of force application. The function
GeneralizedForce then computes the generalized force.

Impact

The Hertz model of impact incorporates a simple characterization of the force in-
teraction between two elastic bodies during the contact phase of a collision. During
a collision the two actual colliding bodies deform. However, Hertz introduces a pa-
rameter that defines the relative position of two nondeforming virtual bodies (labeled
A andB), x (see Figure (6.1)). Then a force (on bodyA) displacement relationship
that applies during the contact phase is introduced:

f (x) =−K−3/2x3/2

whereK is a constant that depends on the material properties and (local) geometry
of the colliding bodies:

K = 4
3

{

q/
(

Q1+Q2
√

a+b
)}

As an example, consider a sphere of radiusr colliding with a plane surface. In this
case,

A= B= 1
/

2r, q= π1/3, Q1 = (1− µ2
1)
/

E1π, Q2 = (1− µ2
2)
/

E2π

whereEi andµi denote Young’s modulus and Poisson’s ratio for the respective bod-
ies.

Notice that the force interaction can be completely characterized by a potential en-
ergy function, e.g. for the interaction described above, ithas the form:

V (x) =

{
(2/5)K−3/2x5/2 x> 0

0 x≤ 0
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Fig. 6.1: During the contact phase of a collision the two actual bodies deform. The relative
position (sometimes called relative approach) of the two bodies is an indicator of the relative
location of two (virtual) undeformed bodies.

The interaction force is then recovered byf (x) = −∂V
/

∂x. In summary, a Hertz
impact model consists of: a potential functionV (x) = π(x)u(x), where π is a
differentiable mapπ : R→ R with π(0) = 0, and an associated force function
f (x) =−Vx(x) =−πx(x)u(x), whereu(x) is the unit step function.

Backlash

Suppose that a symmetric backlash element with dead zone parameterε has a smooth
force functionf (x) during the contact phase defined by a potential energy function
V (x). Then the backlash mechanism can be characterized by a potential function:

Vb = V (|x|− ε) = π(|x|− ε)u(|x|− ε)

so that the backlash force is given by

fb(x) =







f (x− ε) x> ε
0 −ε ≤ x≤ ε

− f (−x+ ε) x<−ε

Working with backlash is facilitated by two functions inProPac

BacklashPotential ,

andBacklashForce .

The former constructs the backlash potential given a Hertz impact potential func-
tion and a backlash parameter. The latter returns the associated force. Note that the
backlash potential can be included as part of the potential energy function.

Friction

Friction, particularly in joints, is an important factor inmany situations. A basic
characterization of friction as a static function of contact velocity should include
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viscous, coulomb and static (Stribeck) effects. In order todo this efficiently with
large scale multibody models we can use a dissipation potential of Lur’e type (6.39).

Suppose the friction depends on a single velocity variable,v, that can ultimately
be expressed as a function of the system coordinates and quasi-velocities. Potential
functions giving rise to viscous, coulomb and static effects are:

• viscous:12cvv2

• coulomb:ccvsgn(v)

• static: 1
2csvs

√
πerf

(
v/

vs

)

sgn(v)

The friction parameters used above are:

cv, viscous friction coefficient

cc, coulomb friction coefficient

cs, static friction coefficient

vs, Stribeck velocity

The dissipation potential associated with a joint can be assembled with the function
JointFrictionPotential .

Example 6.11 (Two masses with backlash and friction).Consider the
system illustrated in Figure (6.2). The system is composed of two bodies and two
joints. Body one translates relative to the space frame and body two translates relative
to body one. Thus, the joint definitions are as follows.

In[56]:= r1= {1};H1= Transpose [{{0,0,0,1,0,0}}];
q1= {x1};p1= {v1};
r2= {1};H2= Transpose [{{0,0,0,1,0,0}}];
q2= {x2};p2= {v2};
JointLst= {{r1,H1,q1,p1},{r2,H2,q2,p2}};

Now, we define the body data. The masses can be treated as pointmasses so we
define the inertia matrices to be zero.

In[57]:= com1= {0,0,0};mass1= m1;out1= {2,{0,0,0}};
Inertia1= {{0,0,0},{0,0,0},{0,0,0}};
com2= {0,0,0};mass2= m2;out2= {3,{0,0,0}};
Inertia2= {{0,0,0},{0,0,0},{0,0,0}};
BodyLst=

{{com1,{out1},mass1, Inertia1},{com2,{out2},mass2, Inertia2}};
TreeLst= {{{1,1},{2,2}}};
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Fig. 6.2: Two masses interact through a ‘loose’ joint exhibiting backlash.

Bodies one and two interact through a backlash potential function constructued as
follows. A simple linear material compliance is assumed. The backlash parameter is
d/2.

In[58]:= PEBack[x ] := (k1∗xˆ2)/2;

PE1= BacklashPotential [PEBack,d/2,x2]

Out[58]=
1
2

k1
(
− d

2
+Abs[x2]

)2
UnitStep

[
− d

2
+Abs[x2]

]

The spring is assumed linear so a simple quadratic potentialenergy function is used.

In[59]:= PE2= (1/2)∗k∗ (x1+x2)ˆ2;

PE= PE1+PE2;

The sliding friction of body one is assumed to be significant so a dissipation potential
function is constructed.

In[60]:= DissPot1= JointFrictionPotential [v1,cv,cc,cs,vs]

Out[60]=
cv v12

2
+cc Abs[v1]+

1
2

(−cc+cs)
√

π vs Erf
[v1

vs

]
Sign[v1]

Allowing for forcesFF1 andFF2 to act on bodies one and two, respctively, the model
is assembled as follows.

In[61]:= Q= {FF1,FF2};
{JV,JX,JH,MM ,Cp,Fp,pp,qq}=

CreateModel [JointLst,BodyLst,TreeLst,−g,PE,DissPot1,Q];
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Computing Joint Kinematics

Computing joint 1 kinematics

Computing joint 2 kinematics

Computing Potential Functions

Computing Inertia Matrix

Computing Poincare Function

Let us examine theFp function.

In[62]:= Fp
Out[62]=
{
−FF1+cv v1+k (x1+x2)+(−cc+cs) e−

v12

vs2 Sign[v1]+

cc (−UnitStep[−v1]+UnitStep[v1]),−FF2+k (x1+x2)+k1
(
− d

2
+Abs[x2]

)
(−UnitStep[−x2]+UnitStep[x2]) UnitStep

[
− d

2
+Abs[x2]

]}

The expression is mixed in sign and unit step functions. It may be convert to all sign
functions.

In[63]:= UnitStep2Sign [Fp]
Out[63]=
{
−FF1+cv v1+k x1+k x2+e−

v12

vs2

(

cs+cc

(

−1+e
v12

vs2

))

Sign[v1],

−FF2+k x1+k x2+
k1 x2

2
− 1

4
d k1 Sign[x2]+

1
2

k1 x2 Sign
[
− d

2
+Abs[x2]

]
−

1
4

d k1 Sign[x2] Sign
[
− d

2
+Abs[x2]

]}

Example 6.12 (Automobile directional stability).As a somewhat more complex ex-
ample we consider building a simplified automobile model often used as a basis for
investigating directional stability (Figure 6.3 and Figure 6.4).

For simplicity of the resulting equations, we neglect the rotational energy of each
wheel around its axle, that isIyy<< 1. Also, we will assume thats, t, andδ are suffi-
ciently small that linear approximation in these variablesis adequate. None of these
assumptions are necessary, by any means, but are useful for expository purposes. For
tire cornering force and alignment torque constitutive equations we take:

Fcorner= κβ , Talign = 0

These are applied at the tire contact point.
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Fig. 6.3: These figures define the dimensions and variables ofan automobile that moves in the
X−Y plane. Thex−y frame denotes a reference frame fixed in the body.κ f ,κr are the front
and rear tire coefficients, respectively.The system is composed of the vehicle body and its four
wheels. The front wheels are used for steering with spindlesaligned to provide small amounts
of caster and camber.
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Fig. 6.4: The tire rotation involves a revolute joint with rotation axis defined by the caster and
camber angles. Tire cornering force and alignment torque are functions of the sideslip angle.

Joint definitions

There are three joints. The 3 dof main body joint between the space frame and the
automobile body and the two front wheel spindles

In[64]:= r1= {3};q1= {θ ,x,y};p1= {ω,vx,vy};(∗ main body ∗)
H1= {{0,0,0},{0,0,0},{1,0,0},{0,1,0},{0,0,1},{0,0,0}};
r2= {1};q2= {delta2};p2= {wdel2};(∗ right spindle ∗)
H2= Transpose [{{−sr,−tr,1,0,0,0}}];
r3= {1};q3= {delta3};p3= {wdel3};(∗ left spindle ∗)
H3= Transpose [{{−sl, tl,1,0,0,0}}];
JointLst= {{r1,H1,q1,p1},{r2,H2,q2,p2},{r3,H3,q3,p3}};

We compute the joint parameters with

In[65]:= {V,X,H}= Joints [JointLst];
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Body data

The body data includes body inertial properties including center of mass locaton in
the body frame and outboard node locations.

In[66]:= cm1= {0,0,0};
out1= {{2,{a,−ℓ/2,0}},(∗ front left tire spindle∗)
{3,{a, ℓ/2,0}},(∗ front right tire spindle∗)
{4,{−b,−ℓ/2,−R}},(∗ rear left tire ground contact point∗)
{5,{−b, ℓ/2,−R}}};(∗ rear right tire ground contact point∗)

I1 = {{Jxx,0,Jxz},{0,Jyy,0},{Jxz,0,Jzz}};
cm2= {0,0,0};out2= {{6,{sr R, tr R,−R}}};
I2 = DiagonalMatrix [{Ixx, Iyy, Izz}];
cm3= {0,0,0};out3= {{7,{sl R,−tl R,−R}}};
I3 = DiagonalMatrix [{Ixx, Iyy, Izz}];

In[67]:= BodyLst= {{cm1,out1,m1, I1},{cm2,out2,m2, I2},{cm3,out3,m2, I3}};
TreeLst= {{{1,1},{2,2}},{{1,1},{3,3}}};
q= {θ ,x,y,delta2,delta3};
p= {ω,vx,vy,wdel2,wdel3};

Notice that the system has a tree structure. The tree is composed of two chains: 1)
main body and right tire, 2) main body and left tire.

Tire forces

We need to compute the tire generalized forces. This requires four similar, and some-
what complicated, calculations. To do this we use the function

GeneralizedForce .

Furthermore, to reduce computation time (by a factor of ten in this case), we use
the function

KinematicReplacements .

GeneralizedForce computes the generalized force associated with a force ap-
plied at any defined node in the system. It is usually the case that the applied force is
characterized in the reference frame of the body in which thenode is specified. The
simplest usage is:

GeneralizedForce[TerminalNode,TreeLst,BodyLst,
X,H,q,p,Force,VelNames]
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TerminalNode is the node number at which the force is applied.F is a list
of 6 expressions which defines the external torques (first three) and forces (last
three) in terms of body velocities (velocities of a body fixedframe at the termi-
nal node). VelNames is a list of (6) names of the velocities used in the expres-
sionsF. There must be six names - the first 3 corresponding to the angular veloc-
ity and the last 3 to the linear velocity.KinematicReplacements[V,X,H]
returns{Vnew,Xnew,Hnew,rules } where repeated groups of expressions in
V,X,H are replaced by temporary variables to produceVnew,Xnew,Hnew . The
original forms are recovered by applying the rule list “rules”. It is often conve-
nient to use the syntaxKinematicReplacements[V,X,H,q] , which returns
{Vnew,Xnew,Hnew,rules1,rules2 }. In this usage, rules is divided into two
sets. The set “rules1” depends on the coordinatesq. The set “rules2” do not. rules2 in-
volves expressions that depend only on system parameters. The application of rules1
must occur before usingCreateModel but rules2 can be applied at any time.

In[68]:= {V,X,H, rules1, rules2}= KinematicReplacements [V,X,H,q];

Force=
{

0,0,0,0,−kappaf ArcTan
[v6y
v6x

]
,0
}

;(∗ right front ∗)

VelNames= {w6x,w6y,w6z,v6x,v6y,v6z};
TerminalNode= 6;

Q1= GeneralizedForce[

TerminalNode,TreeLst,BodyLst,X,H,q,p,Force,VelNames];

Similar calculations yield the remaining three tire forces. Then we proceed to assem-
ble the model.

In[69]:= Q= Q1+Q2+Q3+Q4;

{V,X,H,Q}= Chop[{V,X,H,Q}/.rules1,0.001];

{V,X,H,M,Csys,Fsys,psys,qsys}=
CreateModel [JointLst,BodyLst,TreeLst,g,0,Q,V,X,H];

{V,X,H,M,Csys,Fsys,psys,qsys}=
{V,X,H,M,Csys,Fsys,psys,qsys}/.rules2;

For analysis purposes we create a model with the following two features. First, we
assume that delta2 and delta3 are inputs rather than coordinates determined by the
dynamics. Thus, we eliminate two degrees of freedom. Second, we choose to ignore
any steering imperfections and assume delta2 and delta3 areequal and call them both
δ.
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In[70]:= qred= qsys[[{1,2,3}]];
pred= psys[[{1,2,3}]];
Mred=

M[[{1,2,3},{1,2,3}]]/.Inner [Rule,{delta2,delta3},{0,0},List];

Cred=

Csys[[{1,2,3},{1,2,3}]]/.Inner [Rule,{delta2,delta3},{0,0},List];

Fred= Simplify[

(Fsys[[{1,2,3}]]/.Inner [Rule,{delta2,delta3},{δ,δ},List])

/.{sl−> s,sr−> s, tl−> t, tr−> t,kappaf−> κ ,kappar−> κ}];
Fred= Truncate [Fred,{s, t},1];
Vred= V[[{1}]];

The results are summarized below.




θ̇
ẋ
ẏ



=





1 0 0
0 cosθ −sinθ
0 sinθ cosθ









ω
vx

vy








Jzz+2Izz+2a2m2+m2ℓ

2/

2 0 2am2

0 m1+2m2 0
2am2 0 m+2m2









ω̇
v̇x

v̇y





+





2am2vxω
−(m1+2m2)vyω−2am2ω2

(m1+2m2)vxω



+ f (ω,vx,vy,δ,F,δF) = 0

Because of its complexity, we displayf only up to second order invy,ω:

f =





2κ (−bvy+Rsvy+(a2+b2)ω+a(vy+2Rsω)
/

vx

0
2κ (2vy+(a−b+Rs)ω)

/
vx



+





0
2
0



F ‘

+





ℓ
0
0



δF +





−2(a+Rs)κ
−2κ (vy+aω+Rsω)

/
vx

−2κ



δ

6.4 Systems with Constraints

The above constructions apply to systems interconnected bysimple and compound
joints and which have a tree structure. Recall that simple and compound joints as we
have defined them impose holonomic constraints on the relative motion between two
bodies. We wish to generalize the class of systems to includethose with closed loops
and nonholonomic differential constraints.
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6.4.1 Differential Constraints

Consider a system withm-dimensional configuration manifoldM and state space
TM. Suppose that additional (differential) constraints are imposed on the motion of
the system in the form:

F(q)q̇= 0 (6.41)

whereF is anr×m matrix of (constant) rankr, or equivalently

A(q)p= 0 (6.42)

whereA(q) = F(q)V(q). We will examine how the imposition of differential con-
straints affects the equations of motion. Differential constraints may beadjoinedto
the equations of motion via the introduction of Lagrange multipliers or embedded
which avoids the addition of any auxiliary variables [14]. We consider the latter ap-
proach.

Recall that a virtual displacement from an admissible configurationq was required
to belong to the tangent spaceTqM, that is the space to which velocities ˙q naturally
belong. When differential constraints such as (6.41) and (6.42) apply, velocities are
further constrained to lie in the subspace ofTqM,kerF(q). Accordingly, virtual dis-
placements are restricted by the same requirement:F(q)δq= 0.

Proposition 6.13.Suppose the Lagrangian system of Proposition (6.1) is subject to
the constraint A(q)p= 0, withdim kerA(q)=m−r (a constant). Then the dynamical
equations of motion are

q̇=V(q)T(q)p̂ (6.43)

{

ṗt ∂2L̃
∂ p2 + ptVt ∂2L̃

∂qt∂ p
−

m

∑
j=1

p j
∂ L̃
∂ p

UX j −
∂ L̃
∂q

V

}

T(q) = QtVT(q) (6.44)

p= T(q)p̂ (6.45)

where T(q) is an m× (m− r) matrix whose columns spankerA(q).

Proof: The calculations in the proof of Proposition (6.1) that leadto equation (6.15)
remain true even when the constraint (6.41) applies. However, in this event, the vari-
ationw is not arbitrary. When (6.41) obtains, it is necessary thatw satisfyA(q)w= 0
(recall thatδq=Vw), so that we can write

w= T(q)α (6.46)

where the columns ofT(q) span ker[A(q)] andα ∈ Rm−r is arbitrary. Rewrite (6.15)
as
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t2∫

t1

{
δL̃(p,q)+QTδq

}
dt =∑

k

∂ L̃
∂ pk

Tαk

∣
∣
∣
∣

t2

t1

+

t2∫

t1

∑
k

[

− d
dt

∂ L̃
∂ pk

+∑
i, j

c j
ik

∂ L̃
∂ p j

pi + vk(L̃)+QTvk

]

Tαkdt (6.47)

Now, we can invoke the independence of the variations to obtain the dynamical equa-
tions [

d
dt

∂ L̃
∂ pk
−

m

∑
i; j=1

ci
jk

∂ L̃
∂ pi

p j − vk(L̃)−Qtvk

]

T(q) = 0 (6.48)

Equation (6.48) is to be solved along with (6.42) and (6.16).

Remark 6.14 (Constrained dynamics).

1. In application, we use (6.45) to replacep after the expression in curly brackets
is evaluated. Then (6.43) and (6.44) form a closed system of equations in the
dependent variables(p̂,q) ∈ R2m−r .

2. Notice that when the unconstrained dynamical equations are of the form

M(q)ṗ+C(q, p)p+F(q) = Qp

then the constrained dynamics (6.44) are:
[
Tt(q)M(q)

]
ṗ+Tt(q)C(q, p)p+Tt(q)F(q) = Tt(q)Qp

or

[
Tt(q)M(q)T(q)

]
˙̂p+Tt(q)

[

C(q,T(q)p̂)T(q)+M(q)
∂T(q)p̂

∂q
V(q)

]

p̂

+Tt(q)F(q) = Tt(q)Qp (6.49)

First, let us examine a simple example.

Example 6.15 (Sleigh on a horizontal plane). Consider a sleigh that
moves on a horizontal plane as shown in Figure (6.5). Neimarkand Fufaev [86]
study the more general problem of a sleigh on an inclined plane (see also Problem
(6.24)). The knife edge does not admit sideslip. Thus it imposes a simple differential
constraint,vy = 0. First, we formulate the equations of motion without the differen-
tial constraint imposed by the knife edge. Define the single (main body) joint:

In[71]:= r1= {3};q1= {φ,x,y};p1= {ω,vx,vy};(∗ main body ∗)
H1= {{0,0,0},{0,0,0},{1,0,0},{0,1,0},{0,0,1},{0,0,0}};
JointLst= {{r1,H1,q1,p1}};
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Fig. 6.5: A sleigh on a horizontal plane.

Define the body data:

In[72]:= cm1= {d,0,0};out1= {{2,{d,0,0}}};
I1 = {{Jxx,0,Jxz},{0,Jyy,0},{Jxz,0,Jzz}};

BodyLst= {{cm1,out1,m1, I1}};
TreeLst= {{{1,1}}};
q= {φ,x,y};
p= {ω,vx,vy};

Suppose a drive forceF acts along the knife edge axis and a torqueT acts about the
z-axis. Now, set up the generalized force and obtain the (unconstrained) model:

In[73]:= Q= {T,F,0};
{V,X,H,M,Csys,Fsys,psys,qsys}=

CreateModel [JointLst,BodyLst,TreeLst,g,0,Q];

*** Dynamics successfully loaded ***

Computing Joint Kinematics

Computing joint 1 kinematics

Computing Potential Functions

Computing Inertia Matrix

Computing Poincare Function

Finally, add the constraint.
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In[74]:= {Mm,Cm,Fm,Vm,Trans,phat}=
DifferentialConstraints [M,Csys,Fsys,V,{vy},p,q,{3}];

Vm

Mm

Cm

Fm

In[75]:= Vm
Out[75]= {{1,0},{0,Cos[φ]},{0,Sin[φ]}}

In[76]:= Mm
Out[76]= {{Jzz+d2 m1,0},{0,m1}}

In[77]:= Cm
Out[77]= {{d m1 vx,0},{−d m1 ω,0}}

In[78]:= Fm
Out[78]= {−T,−F}

Thus, the dynamical equations of motion are

d
dt





φ
x
y



=





1 0
0 cosφ
0 sinφ





[
ω
vx

]

[
Jzz+d2m1 0

0 m1

]
d
dt

[
ω
vx

]

+

[
0 d m1ω

−d m1ω 0

][
ω
vx

]

+

[
−T
−F

]

= 0

Here is another example, only slightly more complicated.

Example 6.16 (Driven Planar Vehicle).Consider the 3-wheeled planar vehicle shown
in Figure (6.6). It illustrates the calculations required to assemble a model involving
multiple differential constraints. This system is also useful for illustrating basic prop-
erties of nonlinear system controllability.

The system is assumed to be composed of a main body with two rear wheels and one
front wheel. The front wheel is both the steering and drive wheel. The rear wheels
rotate freely about an axle fixed in the body. The assumption of pure rolling imposes a
sideslip constraint, but they play no other essential role in the system behavior. Thus,
we consider them to have no mass or inertia. The front wheel, on the other hand is
assumed to have nontrivial inertia properties and both steering and drive torques are
applied to it. It is also assumed to undergo pure rolling.

In summary, the model is composed of two bodies: (1) the main vehicle body includ-
ing the rear wheels and (2) the and the front wheel. The model has two joints: (1)
the main body joint – a three degree of freedom (two displacements and a rotation)
joint characterizing the motion of the body in a space fixed frame, and (2) the main
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body/front wheel joint – a two degree of freedom (steering column and front axle
rotations) joint that characterizes the relative motion ofthe front wheel relative to
the main body.

x
b


y
b


φ


(
x,y
)


v


θ


x


y


steering & drive wheel


body fixed frame


space frame


Fig. 6.6: This simple vehicle can be driven around the plane using steering and drive torques,
Ts andTd, respectively, that are applied to the front wheel. The wheelbase is denotedd and the
front wheel radiusR.

Joint data

In[79]:= r1= {3};q1= {φ,x,y};p1= {ωb,vx,vy};
H1= {{0,0,0},{0,0,0},{1,0,0},{0,1,0},{0,0,1},{0,0,0}};

In[80]:= r2= {1,1};q2= {θ f,θ};p2= {ωf,ω};
H2= {{0,0},{1,0},{0,1},{0,0},{0,0},{0,0},{0,0}};

In[81]:= JointLst= {{r1,H1,q1,p1},{r2,H2,q2,p2}};

Body data

In[82]:= cm1= {−d/2,0,0};out1= {{2,{0,0,0}},{3,{−d,0,−R}}};
I1 = {{Jxx,0,Jxz},{0,Jyy,0},{Jxz,0,Jzz}};
cm2= {0,0,0};out2= {{4,{0,RSin[θ f],−RCos[θ f]}}};
I2 = DiagonalMatrix [{Ix,J, Ix}];

In[83]:= BodyLst= {{cm1,out1,m1, I1},{cm2,out2,m2, I2}};
TreeLst= {{{1,1},{2,2}}};
q= Flatten [{q1,q2}]
p= Flatten [{p1,p2}]

Out[83]= {φ,x,y,θ f,θ}
Out[83]= {ωb,vx,vy,ωf,ω}
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Unconstrained Model Assembly

In[84]:= Q= {0,0,0,Ts,Td};

{V,X,H,M,Csys,Fsys,psys,qsys}=
CreateModel [JointLst,BodyLst,TreeLst,g,0,Q];

Computing Joint Kinematics

Computing joint 1 kinematics

Computing joint 2 kinematics

Computing Potential Functions

Computing Inertia Matrix

Computing Poincare Function

Adding Constraints

The rolling assumption implies that the wheel contact pointvelocity is zero. We
compute the velocities for the unconstrained model at each contact point using the
functionNodeVelocity . Because of our assumptions, some components are iden-
tically zero but the remaining velocity constraints must beenforced. In the case of
the rear wheels we need to enforce a single sideslip constraint (localy-direction), and
for the front wheel we need to enforce the sideslip and tangential constraints (localx
andy-directions). To do this we use the functionDifferentialConstraints .

In[85]:= Vrear= NodeVelocity [3,TreeLst,BodyLst,X,H,q,p];
Vfront = NodeVelocity [4,TreeLst,BodyLst,X,H,q,p];
c1= Vrear [[5]]
c2= FullSimplify [Vfront [[5]]/.{θ f→ 0}]
c3= FullSimplify [Vfront [[4]]/.{θ f→ 0}]

Out[85]= vy−dωb

Out[85]= vy Cos[θ ]−vx Sin[θ ]
Out[85]= −Rωf+vx Cos[θ ]+vySin[θ ]

In[86]:= {Mm,Cm,Fm,Vm,Trans,phat}=
Simplify [DifferentialConstraints[

M,Csys,Fsys,V,{c1,c2,c3},p,q,{1,2,3}]];
Vm

Mm

Cm

Fm
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In[87]:= Vm//MatrixForm

Out[87]=










RSin[θ ]
d

0

RCos[θ +φ] 0
RSin[θ +φ] 0

1 0
0 1










In[88]:= q

Out[88]= {φ,x,y,θ f,θ}

In[89]:= Simplify [Mm]

Out[89]=
{{4(Ix +Jzz)R2+d2 (8J+(5m1+8m2)R2)

8d2

− (4 Ix+4Jzz−3d2 m1)R2 Cos[2θ ]
8d2 ,

Ix RSin[θ ]
d

}
,
{ Ix RSin[θ ]

d
, Ix
}}

In[90]:= (Cm.phat+Fm)//MatrixForm

Out[90]=






−Ts+

(
4 Ix+4Jzz−3d2 m1

)
R2 ω ωf Cos[θ ]Sin[θ ]

4d2

−Td+
Ix Rω ωf Cos[θ ]

d






Suppose now, that the two control torques can be used to precisely regulate the two
remaining quasi-velocitiesω, the steering angle rate, andωf , the drive wheel angular
velocity. Then the problem of moving the vehicle around the plane becomes purely a
kinematic one in which these two quasi-velocities can be specified to steer the vehicle
along a desired path. Normally, the drive wheel rotation angle is not a coordinate of
interest, and since it does not entire into any of the elements of Vm, we can ignore
it. Accordingly, eliminating thėθ f equation from the kinematics and reordering the
states for convenience we obtain:

In[91]:= Vm[[{2,3,1,5}]]//MatrixForm

Out[91]=








RCos[θ +φ] 0
RSin[θ +φ] 0

RSin[θ ]
d

0

0 1








Now, introduce the drive velocityv= Rωf to replaceωf and taked = 1 to obtain the
kinematic equations in the final form:

d
dt






x
y
φ
θ




=






cos(θ +φ) 0
sin(θ +φ) 0

sinθ 0
0 1






[
v
ω

]

We will use this model in the next chapter (Example (7.10)) toillustrate certain
important aspects of the controllability of nonlinear systems.
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Here is a more complex example.

Example 6.17 (Rolling Disk).As an illustration we take another example from Neimark
and Fufaev [9]. Consider a disk that rolls without slipping on the x-y plane (z is up
as in Figure (6.7)). Assume that the disk is of mass m and radius R. One approach
is to ignore the rolling constraints and formulate the equations of motion for the free
disk in space, and then add the required constraints.

X

Y


Z


y


x


z


θ


φ
ψ


R


Fig. 6.7: The rolling disk.

A body frame is established with origin at the center of the disk. The six degree of
freedom, simple joint is defined by:

In[92]:= r={6};
H=IdentityMatrix[6];
q={psi,theta,phi,x,y,z};
p={wx,wy,wz,vx,vy,vz};
JointList={{r,H,q,p}};

In this setup thex,y,zcoordinates locate the center of the disk in the space frame and
ψ,θ,φ are Euler angles in thez− y− x (or 3-2-1) convention. The body data is:

In[93]:= Mass=m; CenterOfMass={0,0,0};
OutboardNode={2,{0,-R * Sin[psi],-R * Cos[psi]}};
InertiaMatrix=DiagonalMatrix[{J,Iy,Iy}];
BodyList={{CenterOfMass,{OutboardNode},Mass,Inertia Matrix}};

and the remaining data:

In[94]:= TreeList={{{1,1}}};
PE=0; Q={0,0,0,0,0,0};

The unconstrained disk model is obtained with

In[95]:= {V,X,H,M,Cp,Fp,p,q}=CreateModel[JointList,BodyList, TreeList,g,PE,Q];
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Now, we formulate the differential constraints. Rolling without slipping implies that
the velocity of the disk contact point must be zero. An expression for the (angu-
lar and translational) velocity at the outboard node as a function of the configura-
tion variables is easily obtained using the functionEndEffectorVelocity or
NodeVelocity .

In[96]:= {ChainList}=TreeList;
VCont=NodeVelocity[ChainList,BodyList,X,H,p]

Out[96]= {wx,wy,wz,vx−R wy Cos[psi]+R wz Sin[psi],vy+R wx Cos[psi],

vz−R wx Sin[psi]}
In[97]:= {Mm,Cm,Fm,Vm,T,phat}=

DifferentialConstraints[M,Cp,Fp,V,VCont[[Range[4,6] ]],p,q,{4,5,6}];

The dynamics are reduced to three dimensions and the original six quasi-velocities
are reduced to three, in fact, we have:phat= {wx,wy,wz }. The set of configura-
tion coordinates is not reduced by the functionDifferentialConstraints .
In general, a set of differential constraints may not admit any such reduction. Such
would be the case if the constraints were completely nonholonomic. In the present
case, however, the constraints are ‘partially’ integrableand from basic geometry one
can see that heightcom= R(1− cosθ). Using this relationship, the coordinatez can
be eliminated from the equations. Because the translation parametersx,y,z are, in
fact, the space coordinates,z is precisely the height of the center of mass. Inspection
shows that only Mm and Vm depend onzso we define:

In[98]:= {Sols}=Solve[{X[[1]][[3,4]]==R * (Cos[theta]-1)},{z}];
Mmo=Simplify[Mm/.Sols];
Vmo=Simplify[Vm[[ {1,2,3,4,5} ]]/.Sols];

Now, we assemble the governing equations.

In[99]:= Eqns=MakeODEs[phat,q[[{1,2,3,4,5}]],Vmo,Mmo,Cm,Fm,t ]

Consider the equations of motion as given by the list Eqns. Careful inspection of the
equations suggests that representation of the angular velocity in a frame that does
not rotate about the body-x axis may simplify them. Thus, we transform the angular
velocity coordinates, wy, wz, via the relations:

In[100]:= Trans= {wy[t]→ Cos[psi[t]] wyy[t]+Sin[psi[t]] wzz[t]

wz[t]→−Sin[psi[t]] wyy[t]+Cos[psi[t]] wzz[t]};

The transformed equations are obtained with the functionStateTransformation :

In[101]:= StateVars={psi,theta,phi,x,y,wx,wy,wz};
TrEqns=StateTransformation[Eqns,StateVars,Trans,{wy y,wzz},t]

to obtain:

θ̇ = wyy

φ̇ = sec(θ)wzz
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ψ̇ = wx+ tan(θ)wzz

ẋ= R(sin(φ)wx+ cos(φ)cos(θ)wyy)

ẏ=−Rcos(φ)wx+Rcos(θ)sin(φ)wyy

ẇx =
mR2wyywzz

J+mR2

ẇzz=
wyy(Jwx+ Iy tan(θ)wzz)

Iy

ẇyy =
gmRsin(θ)− (J+mR2)wxwzz− Iy tan(θ)w2

zz

Iy+mR2

These equations are obviously equivalent to the disk equations given by Neimark and
Fufaev [9].

Another derivation is given by Meirovitch [8]. To compare our equations with his, it
is necessary to reduce them to second order form by eliminating the quasi-velocities
(thus, we get Lagrange’s equations), and to perform a minor transformation of angu-
lar coordinates:

In[102]:= Rules1=Flatten[Solve[TrEqns[[{1,2,8}]],{wx[t],wyy[t ],wzz[t]}]];

In[103]:= Rules2={wx’[t]->D[wx[t]/.Rules1,t],
wyy’[t]->D[wyy[t]/.Rules1,t],
wzz’[t]->D[wzz[t]/.Rules1,t]};

In[104]:= Rules3={theta[t]->th[t]-Pi/2,
theta’[t]->th’[t],
theta’’[t]->th’’[t]};

In[105]:= Rules4={phi[t]->-pi/2+ph[t],
phi’[t]->ph’[t],
phi’’[t]->ph’’[t]}

In[106]:= LagEqns=Simplify[TrEqns[[{5,6,7}]]/.Rules1/.Rules2/ .Rules3/.Rules4]

Out[106]=
{

Cos[th[t]]ph′′[t]+psi′′[t] ==
(J+2mR2)Sin[th[t]]ph′[t] th′[t]

J+mR2 ,

(2 Iy−J)Cos[th[t]]ph′[t] th′[t]−Jpsi′[t] th′[t]+ IySin[th[t]]ph′′[t]
Iy

== 0,

th′′[t] ==
1

Iy+mR2 (−gmRCos[th[t]]+ IyCos[th[t]]Sin[th[t]]ph′[t]2−

(J+mR2)Sin[th[t]]ph′[t] (Cos[th[t]]ph′[t]+psi′[t]))
}

These equations are easily confirmed to be equivalent to those given by Meirovitch
[8], p. 163.
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6.4.2 Holonomy and Integrability

If the distribution∆ = KerF(q) is completely integrable (in the sense of Frobenius)
then any motion of the constrained system is confined to an integral manifold of
a submanifold ofM. Thus, the differential constraint (6.41) can be replaced by a
configuration constraint of the form

f (q) = 0 (6.50)

Such differential constraints are calledholonomic. Of course, an integrable distribu-
tion will have an infinity of integral manifolds and the one onwhich motion takes
place is determined by the initial conditions of the system.Since the distribution
is nonsingular and of dimensionr all of the integral manifolds are of dimensionr.
Thus, in principle, it is possible to reduce the configuration space byr coordinates.
If ∆ is not completely integrable, then the constraint is said tobe nonholonomic. A
nonholonomic constraint may be ‘partially integrable.’ Recall that the distribution∆
is completely integrable if and only if it is involutive. Suppose this is not the case.
Then construct the smallest involutive distribution that contains∆ . Denote this distri-
bution∆∗. Now letG(q) be a matrix whose columns{g1(q), . . . ,gm−r(q)}span∆(q).
Then (6.41) is satisfied if and only ifq(t) satisfies the differential equation:

q̇= G(q)v(t) (6.51)

wherev(t) is arbitrary (except for any conditions necessary to achieve smoothness
requirements onq(t)). By considering (6.51) to be a control system, we can apply
known results on nonlinear system controllability to reachthe following conclusion.
If ∆∗ is nonsingular with dimensionm− r∗, 0≤ r∗ ≤ r, then there is anm− r∗-
dimensional integral manifold of∆∗ passing through any pointq0 ∈M, saySq0, and
all points reachable fromq0 via an admissible motion (one that satisfies (6.41) or,
equivalently, (6.51)) belong toSq0.

Consequently, the differential constraints restrict the motion to anm− r∗ dimensional
submanifold of the spaceM. If r∗= r , then we have the holonomic case which yields
the maximally restricted configuration space. Ifr∗ = 0, the configuration space is the
entire spaceM, there is no restriction of the accessible configurations. In this case
the constraints are said to be completely nonholonomic.

A standard procedure that can be used to construct∆∗ is described in Chapter 2,
Algorithm (3.54). Define

∆0 = ∆
∆k+1 = ∆k+[∆ ,∆k]

and terminate atk= k∗ when∆k∗+1 = ∆k∗ . The integerk∗ is sometimes referred to as
the ‘degree of nonholonomy’ [12]. It represents the number of Lie bracket operations
necessary to achieve integrability by expansion of the distribution.
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6.4.3 Configuration Constraints

Suppose that a set of constraints of the form of (6.50) are imposed on a Lagrangian
system with configuration manifoldM. Assume further that

rank[∂ f/∂q] = r onS= {q | f (q) = 0}

Then,S is a regular submanifold ofM of dimensionn− r andS is the configuration
manifold for the constrained system. There are a number of ways to formulate the
equations of motion for the constrained system. The two mostcommonly used are:

• If (6.50) can be solved forr coordinates in terms of the remaining coordinates,
then these relations can be used to eliminater coordinates from the unconstrained
equations of motion.

• It is always possible to differentiate (6.50) to obtain

J(q)q̇= 0, J(q) :=
∂ f
∂q

(6.52)

Now proceed to use the procedure described above for differential constraints. The
resulting equations describe the motion in terms of the original n coordinates but the
manifoldScan be shown to be an invariant manifold so that if the initialconditions
satisfy

f (q0) = 0, J(q0)q̇0 = J(q0)V(q0)p0 = 0 (6.53)

then the resultant motion evolves inS.

Example 6.18 (Two bar linkage).Consider a planar two bar linkage in
which the lower end of bar 1 is constrained by a revolute jointon they-axis aty= 0
and the upper end of bar two slides on thez-axis. The upper end of bar 1 and the lower
end of bar 2 are connected by a revolute joint. Figure (6.8) illustrates the system.

In[107]:= r1={1};
H1=Transpose[{{1,0,0,0,0,0}}];
q1={theta1};p1={omega};

r2={1};
H2=Transpose[{{1,0,0,0,0,0}}];
q2={theta2};p2={omega2};

JointList={{r1,H1,q1,p1},{r2,H2,q2,p2}};

In[108]:= Mass1=m1; CenterOfMass1={0,0,L1/2};
OutboardNode1={2,{0,0,L1}};
InertiaMatrix1=DiagonalMatrix[{m1 * L1ˆ2/12,m1 * L1ˆ2/12,0}];

Mass2=m2; CenterOfMass2={0,0,L2/2};
OutboardNode2={3,{0,0,L2}};
InertiaMatrix2=DiagonalMatrix[{m2 * L2ˆ2/12,m2 * L2ˆ2/12,0}];

BodyList={{CenterOfMass1,{OutboardNode1},Mass1,Iner tiaMatrix1},

{CenterOfMass2,{OutboardNode2},Mass2,InertiaMatrix2 }};

In[109]:= TreeList={{{1,1},{2,2}}};
PE=0; Q={0,0};
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Fig. 6.8: A two bar assembly is illustrative of a closed chainconfiguration.

In[110]:= {V,X,H,M,Cp,Fp,p,q}=CreateModel[JointList,BodyList, TreeList,g,PE,Q];

We have the model for the unconstrained tree structure. Now,we formulate
the constraint.

In[111]:= ChnBodyList={{CenterOfMass1,{0,0,L1},Mass1,InertiaM atrix1},
{CenterOfMass2,{0,0,L2},Mass2,InertiaMatrix2}};

In[112]:= EndPos=EndEffector[ChnBodyList,X];

In[113]:= G=EndPos[[{2},4]]

Out[113]= {−L1 Sin[theta1]+

L2 (−Cos[theta2] Sin[theta1]−Cos[theta1] Sin[theta2])}
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The relationG= 0 is not solvable for either theta1 or theta2 for all values ofL1 and
L2 - although, as we will describe below, it can be solved for particular values of
these parameters. Thus, we will not try to eliminate any configuration coordinate.
The constrained dynamics are obtained with:

In[114]:= {Mm,Cm,Fm,Vm,phat,qhat}=AlgebraicConstraints[M,Cp,F p,V,G,p,q]

These parameters define the constrained system dynamics. Now, let’s consider the
special case: L1=L2=L. This is the only situation where G=0 can be solved for ei-
ther theta1 or theta2, so that either angle can be used to parameterize the system
configuration. For simplicity, also set m1=m2=m. Since L1=L2=L it is easy to show
that theta2=-2 theta1. Hence we can make this replacement. In this case the system
matrices are:

In[115]:= {Mm,Cm,Fm,Vm}=Simplify[{Mm,Cm,Fm,Vm}/.{L1->L,L2->L, m1->m,m2->m}]

It is convenient to assemble the corresponding differential equations.

In[116]:= SpEqns=
Simplify[MakeODEs[phat,qhat,Vm,Mm,Cm,Fm,t]/.theta2[ t]->-2 * theta1[t]]

The result is:
θ̇1 =−Lcosθ1w1

θ̇2 = 2Lcosθ1 w1

(7cosθ1−3cos3θ1)ẇ1 =−
12
L2 gsinθ1−L(2sin2θ1−3sin4θ1)w2

1

Notice that the last two equations consitute a closed systemof two first order differ-
ential equations inθ1 andw1. Let us define some replacement rules to replace these
by a single second order equation inθ1, i.e., Lagrange’s equation.

In[117]:= Rules= {w1[t]→ D[theta1 [t], t]/(−LCos[theta1 [t]]),

D[w1[t], t]→ D[D[theta1 [t], t]/(−LCos[theta1 [t]]), t]}
In[118]:= Simplify [SpEqns [[3]]/.Rules]

Out[118]= 0==
1
3

L2 mCos[theta1[t]] (−6gSin[theta1[t]]+

3LSin[2 theta1[t]] theta1′[t]2−L (−5+3Cos[2 theta1[t]]) theta1′′[t]

Simple trigonometric identities can be used to verify that these equations are equiv-
alent to those given by Ginsberg [30], p.275 for this example.

6.5 Systems with Flexible Bodies

6.6 Simulation

The equations developed above can be further manipulated symbolically, for exam-
ple, they can be put into state variable form or linearized ortransformed in other ways



6.6 Simulation 171

of interest to control systems engineers. However, it sometimes desired to perform
numerical computations or simulations with these models. It may be convenient to
perform simulations within Mathematica, or it may desirable to employ other stan-
dard simulation packages. We will describe and illustrate both approaches.

6.6.1 Computing withMathematica

It is easy to construct a simulation within Mathematica. First, assemble the sys-
tem parameter matrices as computed above into a system of ordinary differential
equations using theProPacfunctionMakeODEs. MakeODEs[p,q,V,M,C,F,t]
builds and returns a list of ordinary differential equations in Mathematicasyntax.
They can be integrated using the built in differential equaton solverNDSolve . The
process is illustrated with a simple example.

Example 6.19 (Double Pendulum Revisited).Let us revisit Example
6.9. All of the information required to invoke the functionMakeODEshas been
assembled.

In[119]:= Equations=MakeODEs[p,q,V,M,Cp,Fp,t];

Before numerical computation can proceed it is necessary toreplace parameter sym-
bols by numbers and set up initial conditions.

In[120]:= DataReplacements={m->1,l->1,gc->1,T1->0,T2->0};

In[121]:= Equations1=Simplify[Equations/.DataReplacements]
Out[121]= {a1x′[t] == w1x[t],

a2x′[t] == w2x[t],
2 Sin[a1x[t]]+Sin[a1x[t]+a2x[t]]−2 Sin[a2x[t]] w1x[t] w2x[t]−Sin[a2x[t]] w2x[t]2+

3 w1x′[t]+2 Cos[a2x[t]] w1x′[t]+w2x′[t]+Cos[a2x[t]] w2x′[t] == 0,
Sin[a1x[t]+a2x[t]]+Sin[a2x[t]] w1x[t]2+(1+Cos[a2x[t]]) w1x′[t]+w2x′[t] ==

0}

Set up and join the initial conditions:

In[122]:= InitialConditions={w1x[0] == 0, w2x[0] == 0, a1x[0] == .1,
a2x[0] == .2};
Equations2=Join[Equations1,InitialConditions];

Finally, we are ready to integrate the equations using theMathematicafunction
NDSolve and plot the results.

In[123]:= sols=NDSolve[Equations2,vars,{t,0,40}];

In[124]:= Plot [Evaluate [a1x[t]/.sols],{t,0,40},AxesLabel−> {t,a1x}]
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6.6.2 Computing with SIMULINK

It may be desirable to use the system model in an external program. Matlab/SIMULINK
is especially popular among control systems engineers. Simulink provides a con-
venient block diagram environment for building and runningsimulations.ProPac
provides functions to create C-Code that compiles as a MEX-File for use as an S-
function in SIMULINK. The code is computationally optimized. An S-function may
have inputs and outputs so that it can be interconnected withother subsystems within
SIMULINK and it can have parameters that can be defined from within SIMULINK.
The main tool for building MEX-files is the functionCreateModelMEX . It has the
calling syntax:

CreateModelMEX[p,q,Inputs,Outputs,PassedParameters,
PassedParametersDimensions,V,C,Fp,M,MEXFilename]

Example 6.20 (Double Pendulum Revisited).In this example, we define the joint
torques as inputs and the(y,z) coordinates of mass 2 as the outputs. Parameters
include the two masses, the two lengths and the gravitational constant.

TheProPacfunctionEndEffector is employed to define the output expressions.

In[125]:= ChainLst={{1,1},{2,2}};
TerminalNode=3;
Xout=EndEffector[ChainLst,TerminalNode,BodyLst,X];
yout={Xout[[2,4]],Xout[[3,4]]}

Out[125]= {l Sin[a1x]− l (−Cos[a2x] Sin[a1x]−Cos[a1x] Sin[a2x]),

−l Cos[a1x]− l (Cos[a1x] Cos[a2x]−Sin[a1x] Sin[a2x])}

Now, the data forCreateModelMEX is set up and the function is executed.
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In[126]:= Inputs = Q;
Outputs = yout;
MEXFilename = "dbl {}pend.c";
paramvec = {m1,l1,m2,l2,gc };
PassedParams = {"X0","m1","l1","m2","l2","gc" };
PassedParamsDimensions =
{{2* Length[p],1 }, {1,1 }, {1,1 }, {1,1 }, {1,1 }, {1,1 }};

CreateModelMEX[p,q,Inputs,Outputs,PassedParams,Pass edParamsDimensions,
V,Cp,Fp,M,MEXFilename];

...Generating Header Code

...Generating Initial Condition Function Code

...Generating State Derivative Function Code

...Collecting all function terms

...Generating temp variable declarations

...Converting Expressions to C form

...Generating Output Function Code

MEX File created with name: dbl pend.c

Detailed information on compiling and using MEX files with Matlab/SIMULINK
can be found in the appropriate MATLAB references. CreateModelMEX (and also
CreateControllerMEX) assemble C source code that needs to be compiled. During
the compilation process the compiled code will be linked with additional code seg-
ments and libraries provided withProPacor MATLAB or the compiler. It is neces-
sary that this code be available at the time of compilation. The easiest way to proceed
is to perform the compilation from within MATLAB using scripts provided with
MATLAB (either cmex with MATLAB 4 or mex with MATLAB 5). This should
automatically define the locations of all required MATLAB orcompiler code seg-
ments. In addition to the file created byProPac(e.g, dblpend.c) you will need the
files linsolv.c, f2c.h and trigfun.h - all provided withProPac.

One way to compile dblpend.c is to place the files dblpend.c, linsolv.c, f2c.h and
trigfun.h in a common directory, for example C:\DoublePend. Then in the MATLAB
command window set the current directory to C:\DoublePend to insure that the four
required files are in the search path:

cd C:\DoublePend

then use the command

mex dblpend.c linsolv.c

in MATLAB 5, or

!cmex dblpend.c linsolv.c

in MATLAB 4.2.
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If you have followed the MATLAB installation instructions as appropriate for your
compiler this should work fine. Otherwise, you can reinstallMATLAB 5 and follow
the instructions (which setsup the appropriate paths in mex), or in MATLAB 4.2 you
can edit cmex as described therein.

6.7 Problems

Problem 6.21 (Reconaissance robot, continued).Reconsider the robot of Problem
(5.10). Suppose the vehicle has massm and inertiaJzz about the verticle axis, at its
center of mass. The radar is mounted at the vehicle center of mass. It has massmr

and it rotates about its center of mass with body fixed inertias, Izz, andIyy. The drive
forceT and steering angleδ are inputs to the system. Assume perfect rolling without
side slip and derive the equations of the motion for the system.

Problem 6.22 (Overhead crane, continued).Consider the overhead crane of Prob-
lem (5.11). Assume the cable is massless and treat the payload as a point mass. As-
sign inertial parameters and dimensions as required and assemble the equations of
motion for this system. Consider the three following controllable inputs to be applied
to the system: a drive force,F, applied to the cart, a joint torque,Ta, applied to the
revolute upper arm joint, and a cable tension force,Tc.

Problem 6.23 (Synchronous motor). Consider a three phase synchronous motor
with the variables and parameters defined in Table (6.1). Theload torqueTL is an
exogenous disturbance and the voltagesv1,v2,v3,vf are control inputs. The general-
ized coordinates areq= [θ q1 q2 q3 qf ]. Define the Blondel transformation
matrix

B=
√

2
3





cosθ cos
(
θ− 2π

3

)
cos
(
θ + 2π

3

)

sinθ sin
(
θ− 2π

3

)
sin
(
θ + 2π

3

)

1√
2

1√
2

1√
2





Note thatB−1 = BT . Define the quasi-velocities,pT = [ω id iq i0 i f ], via q̇=
V(q)p, in this case








θ̇
q̇1

q̇2

q̇3

q̇f







=





1 0 0
0 BT 0
0 0 1












ω
id
iq
i0
i f








The currentsid, iq, i0 are called the Blondel currents. It is also convenient to define
the Blondel voltagesvd,vq,v0,





vd

vq

v0



= B





v1

v2

v3




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Symbol Definition
θ rotor angle relative inertial reference
ω motor speed
vf field winding voltage
vi , i = 1,2,3 stator winding voltages
i f field current
i i , i = 1,2,3 stator winding currents
qf field winding charge
qi , i = 1,2,3 stator winding charges
J rotor inertia
M inertia matrix in rotor (Blondel) frame
TL load torque
Iii = L1, i = 1,2,3 stator windings self inductances
Ii j =−L3, i 6= j , i = 1,2,3 stator windings mutual inductances
I f f = L4 field windings self inductances
I f1 = L5cosθ field/stator mutual inductances
I f2 = L5cos(θ−2π/3)
I f3 = L5cos(θ +2π/3)
r stator winding resistance
r f field winding resistance
R dissipation matrix

Table 6.1:AC motor nomenclature

The kinetic energy of the system can be expressed in terms of the quasivelocities, the
potential energy is trivial and the generalized force can beobtained from a (Lur’e)
potential function,Q= ∂D

/
∂ p

T (p,q) = 1
2 pTMp

U (q) = 0

D(p,q) = 1
2 pTRp+[−TL vd vq v0 vf ] p

M =










J 0 0 0 0
0 L1+L3 0 0

√
3
2L5

0 0 L1+L3 0 0
0 0 0 L1−2L3 0

0
√

3
2L5 0 0 L4










R= diag{0, r, r, r, r f }

Show that Poincaré’s equations are
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








J 0 0 0 0

0 L1+L3 0 0
√

3
2L5

0 0 L1+L3 0 0
0 0 0 L1−2L3 0

0
√

3
2L5 0 0 L4










d
dt








ω
id
iq
i0
i f








=−










0 0 −i f

√
3
2L5 0 0

0 r ω(L1+L3) 0 0

i f

√
3
2L5 −ω(L1+L3) r 0 0

0 0 0 r 0
0 0 0 0 r f

















ω
id
iq
i0
i f







+








−TL
vd
vq

v0
vf








Problem 6.24 (Sleigh on inclined plane).Consider the problem of a sleigh on an
inclined plane as described in [15] and illustrated in Figure (6.9). A single knife
edge along the centerline represents the runners. Assume that the center of mass lies
along a straight line forward of the knife edge a distanced, the sleigh has massmand
moment of inertiaJ about the center of mass. The sleigh is constrained by the knife
edge so that it can not side slip. Supose that a drive forceF acts along the centerline
and a turning torqueT acts about thez-axis.

(a) Derive the equatons of motion.

(b) Derive an expression for the total energy of the system.

(c) Supposed = 0 so that the center of mass is alligned with the knife edge contact
point,m= 1, F = 0, T = 0. Verify that the total energy is constant along trajec-
tories. Consider trajectories that begin with only an angular velocity and derive
expressions forx(t),y(t) using the fact that total energy is constant. Plot some
typical curves in the(x,y)-plane.

(d) Continue with the assumptions of (c) and supposeα = 0 so that the motion takes
place on a horizontal plane. Notice that the potential energy term now vanishes.
Show that the sleigh moves with constant angular velocity and constant forward
speed, i.e., it moves in a circle of constant radius. What is the radius?
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Fig. 6.9: Sleigh on incline.
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7

Control of Smooth Affine Systems

7.1 Introduction

This chapter is concerned with the analysis and design of controls for nonlinear sys-
tems that are linear in control. They take the form:

ẋ = f (x)+G(x)u
y = h(x)

(7.1)

wherex∈ Rn, y∈ Rp, u∈ Rm and f ,G andh are smooth functions. Systems of this
type are calledsmooth, affine systems. Consistent with the main theme of this book,
the discussion to follow emphasizes computations. We will summarize the theoretical
concepts that underlie the computations. More complete developments can be found
elsewhere, notably, in [46, 87].

In Chapter 3 we discussed some basic tools and computations involving vector fields
and distributions. This material is an essential prerequisite for what follows. Section
7.2 of this chapter deals with controllability and Section 7.3 deals with linearization
via feedback. Section 7.4 discusses input-output linearization and exact linearization
via state feedback. The related topic of dynamic inversion is examined in Section 7.4
and dynamic extension is considered in Section 7.5. In each instance, we summarize
the method, describe the relevant computations and give examples.

7.2 Controllability

The notions of reachability and controllability are fundamental to control system
design for nonlinear systems just as they are for linear systems. Perhaps more so,
because there are important nuances of nonlinear controllability whose counterparts
in the linear context are nonexistant or inconsequential. As we will see, these lead to
new paradigms for nonlinear control.
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Roughly speaking, reachability is the ability to reach any desired terminal state from
a given initial state in finite time and controllability is the ability to reach a given ter-
minal state from any initial state in finite time. For linear systems the two properties
are equivalent but this may not be the case for nonlinear systems. The controllability
of nonlinear systems has many subtleties that will not be explored here. We shall
provide only some basic definitions and results. For more information about the con-
trollability of affine systems along the lines of our discussion below see [46, 87].

The notion of controllability to be used herein is provided in the following definition.
Readers desiring a deeper motivation for these concepts should consult the pioneer-
ing paper [40].

Definition 7.1. 1. The state xf is U-reachable from x0 if given a neighborhood U
of x0 containing xf , there exists a time tf > 0 and a piecewise constant control
u(t), t ∈ [0, t f ] such that if the system (7.1) starts in the state x0 at time 0, it
reaches the state xf at time tf along a trajectory that remains entirely in U.

2. The control system (7.1) is said to be locally reachable from x0 if for each neigh-
borhood U of x0 the set of states U-reachable from x0 contains a neighborhood
of x0. If the reachable set contains merely an open set (not a neigborhood) the
system is said to be locally weakly reachable from x0

3. The control system (7.1) is said to be locally controllable on Rn if it is locally
reachable from every initial state x0 ∈Rn. It is locally weakly controllable on Rn

if it is locally weakly reachable from every initial state x0 ∈Rn.

Now, let us define two related distributions (sometimes referred to ascontrollability
distributions):

∆C = 〈 f ,g1 . . .gm|span{ f ,g1, . . . ,gm}〉 (7.2)

i.e., the smallest involutive distribution containing span{ f ,g1 . . .gm} and invariant
with respect tof ,g1 . . .gm, and

∆C0 = 〈 f ,g1 . . .gm|span{g1, . . . ,gm}〉 (7.3)

i.e., the smallest involutive distribution containing span{g1 . . .gm} and invariant with
respect tof ,g1 . . .gm. These distributions are clearly closely related. The mostim-
portant relationships are given by the following Lemma from[1].

Lemma 7.2.The distributions∆C and∆C0 satisfy

1. ∆C0 + span{ f} ⊆ ∆C

2. if x is a regular point of∆C0(x)+span{ f (x)}, then∆C0(x)+span{ f (x)}=∆C(x).
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3. if ∆C0 and∆C0 +span{ f} are of constant dimension, thendim∆C−dim∆C0 ≤ 1.

Proof: see[46], p. 61.

When the distribution∆C is of constant dimension on a neighborhood of a statex0

we can construct a local coordinate transformation that reveals the controllability
properties of the system. We summarize the main result in thefollowing Lemma.

Lemma 7.3.Suppose∆C and∆C0 are of constant dimension on some open set U of
Rn. Furthermore, suppose that∆C0 is properly contained in∆C, so thatdim∆C0 =
r − 1 anddim∆C = r. Then for each point x0 ∈U there exists a neighborhood U0

of x0 and a local coordinate transformation z= Φ(x) on U0 such that in the new
coordinates the system equations take the form:

ζ̇1 = f1(ζ1,ζ2)+G1(ζ1,ζ2)u

ζ̇2 = f2(ζ2)

whereζ1 = (z1, ..,zr−1), ζ2 = (zr , ..,zn)

f2(ζ2) =







fr(ζ2)
0
...
0







Moreover, if∆C = ∆C0 (so thatdim∆C0 = r − 1 and dim∆C = r −1) then the first
component of f2 vanishes so thaṫzr = 0.

Proof: Recall Lemma (3.50). It follows that there exists a local coordinate transfor-
mation (matched to∆C0) such that each of the vector fieldsf ,g1, . . . ,gm have the
form

f̄ (z) =










f1(zr−1, . . .zd,zr , . . . ,zn)
· · ·

fr−1(z1, . . .zr−1,zr , . . . ,zn)
fr(zr , . . . ,zn)
· · ·

fn(zr , . . . ,zn)










Furthermore, sinceg1, . . . ,gm belong to∆C0, their lastn− r + 1 coordinates must
vanish in the new coordinate system. Now, in view of the fact that∆C is of dimension
r and contains∆C0 as well asf , the lastn− r components off must vanish in the
new coordinate system. Finally, in the case∆C = ∆C0, the same arguments lead to
the stated conclusion.
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Remark 7.4.Suppose that dim∆C = r and consider the controlled motion from any
initial statex0 ∈U . Trajectories are resticted to ther-dimensional set

Sx0 = {x∈U0 |φr+1(x) = φr+1(x0), . . . ,φn(x) = φn(x0)}

by virtue of the fact that the derivatives ˙zr+1, . . . , żr all vanish. Thus a necessary
condition for local weak reachability fromx0 is that dim∆C = n.

Remark 7.5.Suppose that dim∆C = n and dim∆C0 = n− 1 on U . The controlled
motion from an initial statex0 ∈U is again in the setSx0 defined above, withr = n.
But we can still exploit the last equation which is

żr = fr(zn)

Now, f can not belong to∆C0 Since∆C is strictly larger than∆C0 (everywhere onU).
Thus, fn can not vanish anywhere onU . Supposezn(t) denotes the solution of this
differential equation which has the boundary conditionzn(0) = φn(x0). This relation
defines a diffeomorphism

µ : t 7→ zn

on a time interval(−ε,ε) to its image on thezn axis. Thus, we can take timet =
µ−1(zn) as the newnth coordinate. In terms of the transformed states(z−1, . . . ,zn−
1, t), the points reachable fromx0 at precisely timeT belong to the set

ST
x0
=
{

x∈U0
∣
∣µ−1(φn(x)) = T

}

It follows thatx0 is on the boundary of the reachable set, it can not be in its interior.
Consequently, the set of states reachable fromx0 is not a neighborhood ofx0. It
follows that dim∆C0 = n is a necessary condition for local reachability.

Example 7.6.Consider the following example (Isidori [46], Example 1.8.4), involv-
ing the system:

ẋ= f (x)+g(x)u=






x1x3+ x2ex2

x3

x4− x2x3

x2
3+ x2x4− x2

2x3




+






x1

1
0
x3




u

In[127]:= f = {x1 x3+x2 Exp[x2],x3,x4−x2 x3,x3ˆ2+x2 x4−x2ˆ2 x3};
g= {x1,1,0,x3};
var= {x1,x2,x3,x4};
del= Span[{g}]

Out[127]= {{x1,1,0,x3}}

First, compute the smallestf ,g invriant distribution containing span{g}.
In[128]:= Del0= SmallestInvariantDistribution [{f,g},del,var]
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Out[128]= {{1,0,0,0},{0,1,0,x3}}

Now, augment this distribution with two additional vector fields,

In[129]:= Del= Join [Del0,{{0,0,1,0},{0,0,0,1}}]
Out[129]= {{1,0,0,0},{0,1,0,x3},{0,0,1,0},{0,0,0,1}}

and check that the distribution does spanR4.

In[130]:= Span[Del]
Out[130]= {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

Finally, we generate the transformation and the system equations in the new state
variables.

In[131]:= TriangularDecomposition [f+g∗u,Del,var,{0,0,0,0},∞]

Out[131]=
{
{z1,z2,z3,z2 z3+z4},{x1,x2,x3,−x2 x3+x4},
{

u z1+ez2 z2+z1 z3,u+z3,z4,0
}}

So, we obtain the system in triangular form as anticipated:

ż=






z1z3+ z2ez2

z3

z4

0




+






z1

1
0
0




u

Now, we are in a position to establish the main result.

Proposition 7.7.Suppose∆C and∆C0 are of constant dimension on Rn. Then

1. A necessary and sufficient condition for the control system (7.1) to be locally
weakly controllable on Rn is thatdim ∆C(x0) = n for all x0 ∈Rn.

2. A necessary and sufficient condition for the control system (7.1) to be locally
controllable on Rn is thatdim ∆C0(x0) = n for all x0 ∈ Rn.

Proof: Only a sketch of the central ideas will be given. The main argument follows
[46].

necessity: Necessity is a consequence of the remarks following Lemma (7.3).

sufficiency: We will summarize a constructive proof that thecondition dim∆C = n is
sufficient for local weak controllability. To do this we willshow that from any point
x0 ∈ Rn we can construct a piecewise continuous control that steersto an arbitrary
point in an open set contained in the sliceSx0. First, let us make several preliminary
observations.
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(a) Suppose that dim∆C = r ≤ n on a neighborhoodU0 of x0. All trajectories from
x0 are restricted to ther-dimensional sliceSx0. At any pointx we can steer the
trajectory in the direction

θi(x) = f (x)+g1(x)u
i
1+ · · ·+gm(x)u

i
m (7.4)

whereui
1, . . .u

i
m are real numbers. By choosingk≤m sets of constant controls

we can definek vector fieldsθi(x) of the form (7.4),i = 1, . . . ,k. Define the
mappingF : V = (−ε,ε)k→ Sx0 realized by

F(t1, . . . , tk) = φtk
k ◦ · · · ◦φt1

1 (x0) (7.5)

whereφti
i is the flow corresponding to the vector fieldθi . Suppose that the dif-

ferential atsi , . . . ,sk, 0< si < ε is of rankk, then forε sufficiently small,

M =
{

x∈ Sx0 |x= F(t1, . . . , tk), ti ∈ (si ,ε), i = 1, . . . ,k
}

is a regular submanifold ofSx0.

(b) For anyx ∈ M, TMx ⊂ ∆C(x). If k < r, it can not be true that for allx ∈ M,
f (x) ∈ TMx andgi(x) ∈ TMx, i = 1, . . . ,k. Because if it were true,TMx would
define an involutive distribution containingf ,g1, . . . ,gm that is smaller than∆C,
a contradiction. But if it is not true, then it is possible to find anx̄∈M and con-
stantsuk+1

1 , . . .uk+1
m such thatθk+1(x̄) /∈ TMx̄. In fact, x̄ can be found arbitrarily

close tox (becauseε can be taken arbitrarily small). Let ¯x=F(s̄1, . . . , s̄k), s̄i > si ,
i = 1, . . . ,k. Define the mappinḡF(t1, . . . , tk, tk+1) =φtk+1

k+1 ◦F(t1, . . . , tk). It can be
shown that this mapping has rankk+1 at the point(s̄1, . . . s̄k,0) (see [1], p66).

Now, let us turn to the main construction. We can choose constantsu1
1, . . . ,u

1
m to

define a vecor field

θ1 = f +
m

∑
i=1

giu
1
i

that is not zero atx0. Define the map

F1 : (0,ε)→ Sx0

F1(t1) = φt1
1 (x0)

and letM1 be the image ofF1.

Let x̄1 = F1(s1
1) be a point ofM1 andθ2 be a vector field

θ2 = f +
m

∑
i=1

giu
2
i

such thatθ2(x̄1) /∈ TM1
x̄1

. Define the mapping

F2 : (s1
1,ε)× (0,ε)→ Sx0
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F2(t1, t2) = φt2
2 ◦φt1

1 (x0)

By construction this mapping has rank 2 on its domain. Repeating this procedure,
at thekth step we choose a point ¯x= Fk−1(s

k−1
1 , . . . ,sk−1

k−1), with sk−1
i > sk−2

i for i =

1, . . . ,k−2, sk−1
k−1 > 0, and constantsuk

i such that the vector fieldθk /∈ TMk−1
x̄ . Then

construct the map

Fk : (sk−1
1 ,ε)×·· ·× (sk−1

k−1,ε)× (0,ε)→ Sx0

Fk(t1, . . . , tk) = φtk
k ◦ · · · ◦φt1

1 (x0)

The procedure stops withk= r.

Notice that any pointx = Fr(t1, . . . , tr) in the image ofMr can be reached fromx0

with the piecewise control

ui(t) = u1
i t ∈ [0, t1)

ui(t) = uk
i t ∈ [t1+ · · ·+ tk−1, t1+ · · ·+ tk)

Now, by construction, each mappingFk parametrically defines regular submanifolds
of Sx0 of dimensionk. Thus, the images underFr of open sets

Vr = (sr−1
1 ,ε)×·· ·× (sr−1

r−1,ε)× (0,ε)

are open sets ofSx0 of dimensionr.

Example 7.8 (Linear system controllability).Let us consider the controllability of a
linear system

ẋ= Ax+Bu, x∈Rn, u∈ Rm

by computing the distributions∆C and∆C0 using algorithm (3.54). In this case the
relevant vector fields aref (x) = Ax andgi(x) = bi , i = 1, . . . ,m. Notice that

[Ax,bi ] =−
∂Ax
∂x

bi =−Abi

and
[b j ,bi ] = 0, [Ax,Ax] = 0

To compute∆C0 begin with∆ = span{B} and apply the algorithm.

∆0 = span{B}
∆1 = span{B AB}

...
∆k = span{B AB · · · Ak−1B}

In view of the Caley-Hamilton theorem, we may as well stop atk= n. Thus, we find
that the linear system is locally controllable if and only if

rank[B AB · · · Ak−1B] = n (7.6)
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To compute∆C we begin the process with∆ = span{Ax,B} to obtain

∆C = span{Ax B AB · · · An−1B}

If rank∆C0 = n−1 it is possible that rank∆C = n at points other thanx= 0, so weak
local reachability around pointsx0 6= 0 is possible. However, controllability still re-
quires (7.6).

ProPacprovides functions that construct the distributions∆C and∆C0 and implement
the test for controllability. The following example exploits these calculations to il-
lustrate the distinction between local controllability and weak local controllability.

Example 7.9 (Bilinear System Controllability).Consider the following bilinear,
scalar input system (Example 7.35 in Vidyasagar [105]):

ẋ=





0 0 −14
0 0 0
0 0 −19



x+





1 2 4
0 2 0
0 0 3



xu

We use theProPacpackage to compute the control distributions. First, the distribu-
tion

〈 f ,g1 . . .gm| f ,g1 . . .gm〉
In[132]:= A = {{0,0,−14},{0,0,0},{0,0,−1}};

B = {{1,2,4},{0,2,0},{0,0,3}};
x = {x1,x2,x3};
f = A.x;

g= B.x;

ControlDistribution [f,g,x]//MatrixForm

Out[132]=





1 0 0
0 1 0
0 0 1





The control distribution has constant dimension 3 (=n) and thus the system isweakly
locally controllable.

It does not always make sense to rely on the drift term,f , to steer a system from one
state to another. So an option to compute the control distribution without the drift
term is made available, i.e.,

〈 f ,g1 . . .gm|g1 . . .gm〉
In[133]:= ControlDistribution [f,g,x, IncludeDrift−> False]//MatrixForm

Out[133]=

(
1 0 0
0 2 x2 3 x3

)

In this case the generic rank is 2. Thus without accounting for the drift term, the
bilinear system is not controllable, i.e., it is notlocally controllable.
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The following example illustrates another important and distinctive aspect of nonlin-
ear system controllability.

Example 7.10 (Parking).A classic problem in control system analysis is the ‘parking
problem’ [106]. The simplified equations of motion of the vehicle to be parked are
(see Example (6.16)):

d
dt






x
y
φ
θ




=






cos(φ+θ) 0
sin(φ+θ) 0

sin(θ) 0
0 1






[
v
w

]

wherex,y andφ represent the planar location and orientation of the centerof mass,
andθ represents the steering angle. The controlsv andw represent the drive velocity
and the angular velocity of the steering angle, respectively. The equations represent
the kinematics of the vehicle motion. It is assumed that the velocities can be changed
instantaneously. There are two control actions defined by the vector fields:

drive=






cos(φ+θ)
sin(φ+θ)

sin(θ)
0




 , steer=






0
0
0
1






First, let us compute the controllability distribution. Note that since the system is
drift free (f = 0), ∆C = ∆C0.

In[134]:= f = {0,0,0,0};
G= {{Cos[φ+θ ],Sin[φ+θ ],Sin[θ ],0},{0,0,0,1}};
var= {x,y,φ,θ};
ControlDistribution [f,Transpose [G],var]//MatrixForm

Out[134]=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







The control distribution has constant dimension 4 (=n) so that the system is locally
controllable. Thus, the vehicle can be moved from any position and orientation to
any other position and orientation in finite time. Notice, however, the linearization
of the system at any point is not controllable. To better appreciate the information
contained in the controllability distibution∆C (or ∆C0) let us consider the details
of its construction. Sincef = 0, we begin with span{drive,steer} and expand this
distribution by taking Lie brackets of its component vectorfields until we achieve a
distribution of maximum dimension.

As it turns out we need to add two vector fields to reach the maximum dimension of
4. These are calledwriggle andslide.
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In[135]:= drive= {Cos[φ+θ ],Sin[φ+θ ],Sin[θ ],0};
steer= {0,0,0,1};
wriggle= LieBracket [steer,drive,{x,y,φ,θ}];
wriggle //MatrixForm

Out[135]=







−Sin[θ +φ]
Cos[θ +φ]

Cos[θ ]
0







In[136]:= slide= Simplify [LieBracket [wriggle,G[[1]],{x,y,φ,θ}]];

slide //MatrixForm

Out[136]=







−Sin[φ]
Cos[φ]

0
0







These two new control vector fields enable complete configuration control of the
vehicle. Experienced drivers will recognize that maneuvering a vehicle in and out
of parking a space requires the control action generated by wriggle. The wriggle
vector is the Lie bracket of the steer and the drive vector fields. To actually move
the vehicle in the direction of this vector field, at least approximately, would require
infinitesimal excursions along the steer vector field, then the drive vector field, then
the reverse of the steer vector field, then the reverse of the drive vector field. Thus, the
name wriggle. Movement along higher order bracket directions (e.g. slide) involves
more complicated switching schemes.

The following example shows that, in contrast to linear systems, local controllability
does not imply asymptotic stabilizability via simple statefeedback control.

Example 7.11 (Sleigh on a horizontal plane, continued).Let us return to the sleigh
of Example (6.15). We will first show that the system is locally controllable. To do
this, we need to put the equations obtained previously into state space form.

In[137]:= f1 = Vm.phat;

f2 = Inverse [Mm].(−Cm.phat−Fm);

f = Join [f1, f2]/.{T→ 0,F→ 0}

Out[137]=
{

ω,vx Cos[φ],vx Sin[φ],− d m12 vx ω
Jzz m1+d2 m12 ,

d m1 (Jzz+d2 m1) ω2

Jzz m1+d2 m12

}

In[138]:= G=Simplify [Transpose [Map[Coefficient [Join [f1, f2],#]& ,{T,F}]]]
Out[138]=

{
{0,0},{0,0},{0,0},

{ 1
Jzz+d2 m1

,0
}
,
{

0,
1

m1

}}

In[139]:= var= Join [qsys,phat]
Out[139]= {φ,x,y,ω,vx}

In summary, the state equations are:
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d
dt








φ
x
y
ω
vx







=









ω
vxcosφ
vxsinφ

− d m1
Jzz+d2m1

vxω
dω2









+









0 0
0 0
0 0
1

Jzz+d2m1
0

0 1
m1









[
T
F

]

Now, we can apply the controllability test.

In[140]:= Controllability [f,G,var,LocalControllability→ True]

Out[140]= True

Thus we confirm that the system is locally controllable. We can obtain more details
about controllability by computing the controllability distribution∆C0. In the follow-
ing calculation we display intermediate results. That is, beginning with span{g1,g2},
each time the distribution is expanded by addition of a new vector field arising from
Lie bracket operations, the new distribution is displayed.

In[141]:= ControlDistribution [f,G,var, IntermediateResults→ True,

ControlDrift→ False]

Intermediate distribution is:

{{ω,vx cos[φ],vx sin[φ],0,0},{0,0,0,1,0},{0,0,0,0,1}}

Intermediate distribution is:

{{1,0,0,0,0},{0,1, tan[φ],0,0},{0,0,0,1,0},{0,0,0,0,1}}

Intermediate distribution is:

{
{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0},
{0,0,0,0,1} }

Out[141]= {{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0},
{0,0,0,0,1}}

Since the system is locally controllable consider the posibility of asymptotically sta-
bilizing the origin via smooth state feedback. Supposeu1(φ,x,y,ω,vx) andu2(φ,x,y,ω,vx)
are arbitrary feedback functions that have continuous firstderivatives andu1(0,0,0,0,0)=
u2(0,0,0,0,0) = 0. The closed loop dynamics are:

In[142]:= fcl = f+G.{u1 [φ,x,y,ω,vx],u2[φ,x,y,ω,vx]};

fcl //MatrixForm

Out[142]=













ω
vx Cos[φ]
vx Sin[φ]

− dm12 vx ω
Jzz m1+d2 m12 +

u1[φ,x,y,ω,vx]
Jzz+d2 m1

dm1
(
Jzz+d2 m1

)
ω2

Jzz m1+d2 m12 +
u2[φ,x,y,ω,vx]

m1












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Equilibria of the closed loop system occur whenfcl = 0. Clearly, the origin is an
equilibrium point. However, it is not an isolated equilibrium point. To see this, ob-
serve thatfcl = 0 if and only if ω = 0, vx = 0, andu(φ,x,y,0,0) = 0, i.e., all points
(φ,x,y) that satisfy the two equationsu(φ,x,y,0,0) = 0 are equilibrium points. No-
tice that

rank

[ ∂u1(0)
∂φ

∂u1(0)
∂x

∂u1(0)
∂y

∂u2(0)
∂φ

∂u2(0)
∂x

∂u2(0)
∂y

]

≤ 2

If the rank is 2, the Implicit Function Theorem establishes that there are explicit
smooth functions expressing two of the variables,φ,x,y, as functions of the third
and passing through the origin. Consequently, there is a onedimensional set of equi-
librium states in every neighborhood of the origin. If the rank is 1, then there is a two
dimensional set and if it is zero, there is a three dimensional set (all values ofφ,x,y
are equilibria).

Thus, the origin is certainly not an isolated equilibrium point. It follows from Lemma
(2.16) that the origin can not be asymptotically stable. We conclude that even though
the system is locally controllable it can not be asymptotically stabilized via smooth
state feedback.

In order to better appreciate the relationship of controllability for nonlinear and linear
systems we consider two additional distributions.

∆L = span{ f ,adk
f gi ,1≤ i ≤m,0≤ k≤ n−1} (7.7)

and

∆L0 = span{adk
f gi ,1≤ i ≤m,0≤ k≤ n−1} (7.8)

Note that∆L ⊆ ∆C and∆L0 ⊆ ∆C0. What is missing in these distributions, in relation
to ∆C and∆C0, are the Lie brackets among the control vector fields,gi. These new
distributions have obvious connections to the Kalman test for controllability of linear
systems.

Example 7.12 (Linear system controllability, revisited).For the linear system of Ex-
ample (7.8) we havef (x) = Ax, G= B, so it is easy to compute

∆C = ∆L = span
{

Ax,B,AB, . . . ,An−1B
}

∆C0 = ∆L0 = span
{

B,AB, . . . ,An−1B
}

With linear systems the control vector fields are constant sothat the missing Lie
brackets contribute nothing to the controllability distributions.

Now, let us state the following obvious results:
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Proposition 7.13. 1. A sufficient condition for the control system (1) to be locally
weakly reachable around x0 is thatdim ∆L(x0) = n.

2. A sufficient condition for the control system (1) to be locally weakly controllable
on Rn is thatdim ∆L(x0) = n for all x0 ∈ Rn.

The relationships between the various distributions, weaklocal controllability and
local controllability are summarized in the following diagram.

weak local controllability ⇔ dim∆C = n ⇐ dim∆L = n
⇑ ⇑ ⇑

local controllability ⇔ dim∆C0 = n ⇐ dim∆L0 = n

7.3 Input–Output Linearization

When confronted with a nonlinear control design problem, itis reasonable to ask if
it is transformable into a linear one. The earliest investigations of this question con-
sidered the possibility of using a state transformation to do this. Of course, the set
of transformable systems turns out to be quite limited. The idea of using feedback
to accomplish linearization is generally attributed to Brockett [17]. As a matter of
fact, many practical control system designs already used feedback to accomplish lin-
earization. We will consider a constructive process for linearizing the input-output
dynamics of a given nonlinear system using state transformations and feedback.
When this is possible, a reasonable approach for controllerdesign is a two level
strategy that implements first the linearizing control and then a linear feedback that
regulates the linearized system.ProPaccontains the constructions required to imple-
ment this process. We describe the essentials in the following paragraphs.

A system is exactly linearizable or input-state linearizable if the state equations are
linearizable by a combination of a state transformation andstate feedback. If a sys-
tem is not exactly feedback linearizable, it may still be linearizable in an input-output
sense. In this event, we can find a state transformation and a nonlinear state feedback
control such that the input-output behavior is described bya linear dynamical system.
However, in this case there remain residual nonlinear dynamics, called the internal
dynamics, which are decoupled from the output. Hence the input-output behavior
is linear even though the entire state dynamics are not. In this section we consider
input-output linearization and in the next section we consider input-state lineariza-
tion.

7.3.1 SISO Case

First, we consider the single-input single-output case:
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ẋ = f (x)+g(x)u
y = h(x)

(7.9)

wherex∈Rn, u∈Randy∈R. Now, let us differentiatey= h(x) with respect to time
to obtain

ẏ= L f h(x)+Lgh(x)u

If Lgh(x) 6= 0 we stop, ifLgh(x) = 0, we differentiate again to obtain

ÿ= L2
f h(x)+LgL f h(x)u

Again, the coefficient ofu vanishes or it does not. If not, we continue to differentiate
until afterr steps we have

y(r) = Lr
f h(x)+LgLr−1

f h(x)u (7.10)

with LgLr−1
f h(x) 6= 0 and the process is terminated. Assume that the process does

stop in a finite number of steps.

Definition 7.14.Consider the system (7.9). Let U be a neighborhood of x0 and sup-
pose there is a finite integer r such that

LgLk
f h(x) = 0, ∀x∈U, k= 0, . . . , r−2 LgLr−1

f h(x0) 6= 0 (7.11)

Then r is the relative degree of (7.9). If the sequence specified in (7.11) does not
terminate in finite steps the system relative degree is r= ∞.

Example 7.15 (Linear system relative degree).Consider a SISO linear system

ẋ= Ax+bu

y= cx

We make the associations with (7.9):f (x) = Ax, g(x) = b andh(x) = cx. It is easy
enough to verify thatLk

f h= cAkx andLgLk
f h= cAkb. Thus, the conditions expressed

in (7.11) for a system of finite relative degreer is

cb= 0, cAb= 0, . . . ,cAr−2b= 0, cAr−1b 6= 0

Define the functions
zi(x) = Li−1

f h(x) (7.12)

We intend to show, that these functions define a partial statetransformation that
reduces the system to an importantnormal formfrom which a linearizing feedback
control is obvious. To do this we need to establish two essential facts. First, if the
process terminates in finite steps, it does so withr ≤ n. Second, the functionszi(x)
are independent. Independence will be considered first. However, we will need the
following identity.
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Lemma 7.16.Suppose the system (7.9) has finite relative degree r. Then

Ladi
f gLk

f h=

{
0 i f i + k≤ r−1

(−1)iLgLr−1
f h i f i + k= r−1 (7.13)

Proof: Let us fixk and prove the claim by induction oni. First note that fori = 0, the
claim (7.13) reduces to the definition of relative degree (7.11). Now, assume that the
(7.13) is true fori = 0, . . . , p−1. We will prove that it is true fori = p. Recall that
adi

f g= [ f , adi−1
f g] and compute

Ladp
f gLk

f h= L f Ladp−1
f g

Lk
f h−L

adp−1
f g

L f L
k
f h

In view of the induction hypothesis this reduces to

Ladp
f gLk

f h=−L
adp−1

f g
L f Lk

f h=−L
adp−1

f g
Lk+1

f h

Now, p+k< r−1 implies(p−1)+(k+1)< r−1 so that by the induction hypoth-
esis

Ladp
f gLk

f h= 0, p+ k< r−1

If p+ k= r−1 the induction hypothesis allows the sequential reduction

Ladp
f gLk

f h=−L
adp−1

f g
Lk+1

f h= · · · (−1)pLgLr−1
f h

Lemma 7.17.Consider the system (7.9) and suppose it has finite relative degree r.
Then the covectors{dz1,dz2, . . . ,dzr} associated with the functions zi(x) defined in
(7.12) are independent and r≤ n.

Proof: We will show that the only set of constantsa1, . . . ,ar for which the relation

r

∑
i=1

aidzi(x0) = 0 (7.14)

is satisfied is the trivial setai = 0 for i = 1, . . . , r. To do this consider the scalar
function

α (x) =
r

∑
i=1

aizi(x) (7.15)

First we show thatar = 0. Suppose that (7.14) is true, which means thatdα (x0) = 0.
Then

Lgα (x0) = dα (x) ·g(x)|x=x0
= 0 (7.16)

Now,
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Lgα (x) =
r−1

∑
i=0

LgLi
f h(x) (7.17)

But, by assumptionLgLk
f h(x) = 0, k= 0, . . . , r−2, LgLr−1

f 6= 0, so we have

Lgα (x) = arLgLr−1
f h(x) (7.18)

Thus, we concludear = 0, so that

α (x) =
r−1

∑
i=1

aizi(x) (7.19)

Now, we show thatar−1 = 0. Note that

Ladf gα (x0) = 0 (7.20)

From the previous lemma, we have

Ladf gα (x) =
r−2

∑
i=0

Ladf gLi
f h(x) =−ar−1LgLr−1

f h(x) (7.21)

so that we must havear−1 = 0. Continuing in this way, we show that allai = 0.

If r < n we can always complete the mappingx 7→ z(x) to be a transformation by
specifyingn− r functionsξ (x) independent ofz(x) in the sense that the set of covec-
tors dξ1(x0), . . . ,dξn−r(x0),dz1(x0), . . . ,dzr(x0) are linearly independent. Then the
transformed equations are

ξ̇ = F(ξ ,z,u)

ż= Az+b[α (x(ξ ,z))+ρ (x(ξ ,z))u]

where

A=










0 1 0
0 0 1 0
...

...
.. .
. . . 1

0 0 0










, b=










0
...
...
0
1










and
α (x) = Lr

f h(x), ρ(x) = LgLr−1
f h(x)

However, we can actually do more that that. We seek functionsξ (x)with the property
thatLgξi(x) = 0 aroundx0. That is,dξ1(x), . . . ,dξn−r(x) ∈ G ⊥, whereG = span{g}.

Proposition 7.18.Suppose the system (7.9) has finite relative degree r at x0. Then
r ≤ n. Moreover, if r< n it is possible to find n− r functionsξ1(x), . . . ,ξn−r such that
the mapping
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Φ(x) =

[
ξ (x)
z(x)

]

is a local coordinate transformation on a neighborhood of x0. Moreover, it is always
possible to chooseξ1(x), . . . ,ξn−r(x) so that

Lgξi(x) = 0, 1≤ i ≤ n− r

The transformed equations are
ξ̇ = F(ξ ,z) (7.22)

ż= Az+b[α (x(ξ ,z))+ρ (x(ξ ,z))u] (7.23)

y= cz (7.24)

where

A=










0 1 0
0 0 1 0
...

. . .
. . .
. . . 1

0 0 0










, b=










0
...
...
0
1










c= [1 0 · · · · · · 0]

and
α (x) = Lr

f h(x), ρ(x) = LgLr−1
f h(x)

Proof: By the definition of relative degreeg(x0) is not zero. Thus, the distribu-
tion G = span{g} is nonsingular aroundx0. Since it is one dimensional it is also
involutive. Thus, the Frobenius theorem implies the existence of n− 1 functions
λ1, . . . ,λn−1 defined on a neighborhood ofx0 such that

span{dλ1, . . . ,dλn−1}= G
⊥ (7.25)

Now, it must be that

dim
(

G
⊥+ span

{

dh,dLf h, . . . ,dLr−1
f h

})

= n

at x0. Otherwise,

G (x0)∩ker
(

span
{

dh(x0),dLf h(x0), . . . ,dLr−1
f h(x0)

})

6= {} (7.26)

In other words, the vectorg(x0) is annihilated by all of the covectors in

span
{

dh(x0),dLf h(x0), . . . ,dLr−1
f h(x0)

}

But this is a contradiction because
〈

dLr−1
f h(x0),g(x0)

〉

= LgLr−1
f h(x0) is nonzero

by assumption. Since span
{

dh,dLf h, . . . ,dLr−1
f h

}

has dimensionr, it follows from
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(7.25) and (7.26) that there aren− r covectors inG⊥, say,dλ1, . . . ,dλn−r so that
dh,dLf h, . . . ,dLr−1

f h,dλ1, . . . ,dλ n− r are independent atx0. Furthermore, by con-
struction, we haveLgλ i(x) = 0, 1≤ i ≤ n− r. Finally, the form of the equations
follows from the construction of the functionsz(x)andξ (x) .

Remark 7.19.Equations (7.23) and (7.24) are called thelinearizable dynamicsbe-
cause we can introduce a new control variablev and defineα + ρu = v to reduce
(7.23) and (7.24) to the linear system

ż= Az+bv, y= cx

with input v and outputy. Equation (7.22) are called theinternal dynamicsbecause
they are decoupled from the (linearized) input-output dynamics. Moreover, since the
linear system is controllable (it is in controllable form) it can be stabilized by an
appropriate linear control of the formv= Kz. If this is done, then the overall system
is stabilized if and only if the system

ξ̇ = F(ξ ,0) (7.27)

The system of equations (7.27) are referred to as thezero dynamicsor zero output
dynamicsof (7.9) because they represent the residual dynamical behavior that can
take place under the constrainty(t)≡ 0.

The following is an important property of ‘relative degree’is that it is invariant under
state transformation and feedback

Lemma 7.20.Suppose the system (7.9) has finite relative degree r, then r is invariant
under state transformation and feedback.

Proof: Consider a transformationx 7→ z realized by the mappingz= Φ(x) and its
inversex= Φ−1(z). In the new state coordinates the system equations are

ż= dΦ
(
Φ−1(z)

)[
f
(
Φ−1(z)

)
+g
(
Φ−1(z)

)
u
]

= f̄ (z)+ ḡ(z)

and
y= h

(
Φ−1(z)

)
= h̄(z)

Now, let us computeLḡh̄(z):

Lḡh̄(z) =
∂h
∂x

∣
∣
∣
∣
x=Φ−1(z)

∂Φ−1

∂z
∂Φ
∂x

∣
∣
∣
∣
x=Φ−1(z)

g
(
Φ−1(z)

)

But, the relation
x= Φ−1(Φ(x))
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implies

I =
∂Φ−1

∂z
∂Φ
∂x

so that we conclude
Lḡh̄(z) = Lgh

(
Φ−1(z)

)

Identical calculations lead to the result

L f̄ h̄(z) = L f h
(
Φ−1(z)

)

and indeed,
LḡLk

f̄ h̄(z) = LgLk
f h
(
Φ−1(z)

)

Thus, in view of the definition of relative degree we have the result that relative
degree is invariant under state coordinate transformations.

Now, let is apply state feedbacku= κ (x)+ v so that the system equations become

ẋ= f (x)+g(x)κ (x)+g(x)u= f̄ (x)+g(x)u

y= h(x)

Now compute
L f̄ h(x) = L f h(x)+Lgκ h(x)

but notice that
Lgκ h(x) = Lgh(x)κ (x)

So we have
L f̄ h(x) = L f h(x)+Lgh(x)κ (x) = L f h(x)

sinceLgh(x) = 0. Similarly, we successively compute

Li
f̄ h(x) = Li

f h(x)+LgL
i−1
f h(x)κ (x) = Li

f h(x), 1≤ i ≤ r−1

using the fact thatLgLi−1
f h(x) = 0, 1≤ i ≤ r−1. Thus we have

LgLi
f̄ h(x) = LgLi

f h(x), 1≤ i ≤ r−1

so thatLgLi
f̄
h(x) = 0, 1≤ i ≤ r−2 andLgLr

f̄ h(x) 6= 0. Consequently, the system
system retains relative degree ‘r’ under feedback.

In the SISO case, the coordinate transformation can always be chosen such that the
decoupled (internal) dynamics are independent of the control, [46] Chapter 4.3. This
calculation has been implemented in theProPacfunctionSISONormalFormTrans .

Example 7.21 (I–O Linearization and normal forms).Consider the following exam-
ple (example 4.1.5 in Isidori [46]):
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




ẋ1

ẋ2

ẋ3

ẋ4




 =






x1x2− x3
1

x1

−x3

x2
1+ x2




+






0
2+2x3

1
0




u

y = x4

(7.28)

Below we perform the required computations. Notice that a control can be chosen
such that the outputy= x4 = z1 is identically equal to zero if and only ifz1 = 0 and
z2 = 0.

When this obtains, the internal dynamics reduce to the zero (output) dynamics .

In[143]:= f29= {x1 x2−x13,x1,−x3,x12+x2};
g29= {0,2+2 x3,1,0};h29= {x4};
var29= {x1,x2,x3,x4};newvar29= {z1,z2,z3,z4};
{T1,T2}= SISONormalFormTrans [f29,g29,h29,var29]

Out[143]= {{x4,x12+x2},{x1,x2−2 x3−x32}}

In[144]:= Trans= Join [T1,T2];
InvTrans= InverseTransformation [var29,newvar29,Trans];

In[145]:= {Newf,Newg}=
TransformSystem [f29,g29,var29,newvar29,Trans, InvTrans];

Newf//MatrixForm
Newg//MatrixForm

Out[145]=







z2
z3+2 z2 z32−4 z34

z3 (z2−2 z32)

2+2 z2+z3−2 z32+2
√

1+z2−z32−z4−2 z4







Out[145]=







0

−2
√

1+z2−z32−z4
0
0







In[146]:= ZeroDyn= Inner [Equal,∂t{z3 [t],z4 [t]},
(Newf[[{3,4}]]/.{z1→ 0,z2→ 0,z3→ z3 [t],z4→ z4 [t]}),List]//

MatrixForm

Out[146]=

(

z3′[t] ==−2 z3[t]3

z4′[t] == 2+z3[t]−2 z3[t]2+2
√

1−z3[t]2−z4[t]−2 z4[t]

)

7.3.2 MIMO Case

Consider the square MIMO case as described by Equation (7.1)with p= m. Recall
that thekth Lie derivative (directional derivative) of the scalar function φ(x) with
respect to the vector fieldf (x) is denotedLk

f (φ). Then by successive differentiation
of the elements of the output vectory we arrive at the following definitions.
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r i := inf{k|Lg j (L
k−1
f (hi)) 6= 0 for at least onej}

αi(x) := Lr i
f (hi), i = 1, ..,m

ρi j (x) := Lg j (L
r i−1
f (hi)), i, j = 1, ..,m

(7.29)

Definition 7.22.Suppose there exists a set of finite integers{r1, . . . , rm} as specified
in Equation (7.29) withdet{ρ(x0)} 6= 0, then[r1, .., rm] is called the vector relative
degree at x0.

An important result is the MIMO generalization of Lemma (7.17).

Lemma 7.23.Consider the system (7.1) and suppose it has finite vector relative de-
gree[r1, .., rm] at x0. Let r= r1+ ..+ rm and define the functions zi , i = 1, . . . , r,

z(x) =















z1

...

...

zm















:=


















h1
...

Lr1−1
f (h1)

...

...
hm
...

Lrm−1
f (hm)


















=

















y1
...

yr1−1
1
...
...

ym
...

yrm−1
m

















(7.30)

where zi ∈ Rr i . Then the covectors{dz1,dz2, . . . ,dzr} are independent and r≤ n on
some neighborhood of x0.

Proof: We need to show that ther n-dimensional row vectors
{

dLk
f hi(x0) |0≤ k≤ r i−1, 1≤ i ≤m

}

are linearly independent. Then it follows imediately thatr can not be greater thatn.

To establish independence, select real numbersaik, 0≤ k≤ r i −1, 1≤ i ≤m, such
that

m

∑
i=1

r i−1

∑
k=1

aikdLk
f hi(x0) = 0 (7.31)

We will show that the only set of such constants is the trivialset. Define

a(x) =
m

∑
i=1

r i−1

∑
k=1

aikdLk
f hi (7.32)

Now, the assumption of finite relative degree impliesLgi L
k
f hi(x) = 0 for k= . . . , r i−

2. Thus, compute
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Lg j a=
m

∑
i=1

ai,r i−1Lg j L
r i−1
f hi =

m

∑
i=1

ai,r i−1ρi j (7.33)

Now, using (7.31) we can compute

Lg j a(x0) = da·g j
∣
∣
x0
= 0

which implies
[
a1,r i−1, . . . ,am,rm−1

]
ρ(x0) = 0

Sinceρ(x0) is nonsingular we conclude that them numbersai,r i−1 = 0, for i =
1, . . .m. Thus,a(x) reduces to

a(x) =
m

∑
i=1

r i−2

∑
k=1

aikdLk
f hi (7.34)

Now computeLadf ga using (7.34) for eachj. An identical argument as above leads
to the conclusion thatai,r i−2 = 0, for i = 1, . . .m anda(x) reduces to

a(x) =
m

∑
i=1

r i−3

∑
k=1

aikdLk
f hi (7.35)

The argument is repeated to show that allai j = 0.

Now, we consider the partial state transformationx→ z∈Rr , r = r1+ ..+ rm≤ n as
defined in equation (7.30). It is a straightforward calculation to verify that

ż = Az+E[α (x)+ρ(x)u]
y = Cz

(7.36)

whereA,E, andC have the special structure:

• A is of the form

A= diag(A1, ...,Am), Ai =

[
0 Ir i−1

0 0

]

∈ Rr i×r i

• the only nonzero rows ofE are the m rowsr1, r1 + r2, . . . , r and these form the
identity Im

• the only nonzero columns ofC are them columns 1, r1+ 1, r1+ r2+ 1, . . . , r −
rm+1 and these form the identityIm

The remaining part of the transformation can be defined by arbitrarily choosing ad-
ditional independent coordinates. The condition detρ(x0) 6= 0 insures the existence
of a local (aroundx0) change of coordinatesx→ (ξ ,z),ξ ∈Rn−r ,z∈ Rr such that

ξ̇ = F̂(ξ ,z,u) (7.37)
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ż= Az+E[α (x(ξ ,z))+ρ(x(ξ ,z))u] (7.38)

It is common to call (7.37) the internal dynamics and (7.38) the linearizable dynam-
ics.

Notice that in view of (7.38), we can apply the control

u= ρ−1(x){−α (x)+ v} (7.39)

and reduce (7.38) to a linear system

ż = Az+Ev
y = Cz

(7.40)

This justifies the terminology of linearizable dynamics for(7.38). Notice that when
the control (7.39) is applied the internal dynamics (7.37) are decoupled from the out-
put (not necessarily the input, as is the case for SISO systems). It is a simple matter
to design a linear stabilizing controller for (7.40) – for example a state feedback law
of the formv=Kz that insuresz(t)→ 0 ast→∞. Such a control does not necessarily
stabilize the complete system (7.37) and (7.38), because weneed to account for the
decoupled internal dynamics (7.37).

Lemma 7.24.Suppose thatρ(x) has continuous first derivatives with

detρ(x) 6= 0 onM0 = {x|z(x) = 0}

Then∂z(x)/∂x is of maximum rank on the set M0.

Proof: The result follows directly from Lemma (7.23).

The Lemma is extremely important because it relates the invertibility of the decou-
pling matrix with the geometry of the setM0. With it, we can obtain several important
results, one of which we state here.

Proposition 7.25.Suppose thatρ(x) has continuous first derivatives with

detρ(x) 6= 0 onM0 = {x|z(x) = 0}

Then M0 is a regular, n−r dimensional submanifold of Rn and any trajectory segment
x(t), t ∈ T, T an open interval of R1, which satisfies h(x(t)) = 0 on T lies entirely in
M0. Moreover, the control that obtains on T is

u0(x) =−ρ−1(x)α (x) (7.41)

and every such trajectory segment with boundary condition x(t0)= x0, t0∈T satisfies

ẋ= f (x)−G(x)ρ−1(x)α (x), z(x(t0)) = 0. (7.42)
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Proof: In view of Lemmas (7.23) and (7.24), it follows from detρ(x) 6= 0 onM0 that

1. the covectors{dz1,dz2, . . . ,dzr} are independent around every pointx0 ∈M0,

2. ∂z(x)/∂x is of maximum rank on the setM0 = {x|z(x) = 0}.

This maximal rank condition insures thatM0 is a well defined regular manifold of
dimensionn− r. From the definition ofz(x), it follows thaty is identically zero on
an open time interval if and only ifz is zero on that interval. Thus, it follows from
(7.36) that the unique (provided detρ 6= 0) control which must obtain during any
motion constrained byh(x) = 0 is (7.41). With this control (7.1) reduces to (7.42).

The analysis above leads to the following observations:

• The manifoldM0 is invariant with respect to the dynamics (7.42).

• These equations are equivalent to the output constrained dynamics

ẋ = f (x)+G(x)u
0 = h(x)

(7.43)

hence they are called the zero dynamics.

• The proposition defines the zero dynamics in global form. An equivalent local
form is

ξ̇ = F(ξ ,0,0)
F(ξ ,z,v) = F̂(ξ ,z,ρ−1(x(ξ ,z)){−α (x(ξ ,z))+ v}) (7.44)

Let us collect these results in the following proposition that justifies the design pro-
cedure depicted in Figure (7.1).

Proposition 7.26.Suppose the conditions of (7.25) hold, and

1. x0 ∈M0 is an equilibrium point of (7.1) which implies x0→ (ξ0,z0) = (ξ0,0)

2. ξ0 is a stable equilibrium point of the zero dynamics, and

3. v= Kz is a stabilizing controller for (7.40).

Then
u= ρ−1(x){−α (x)+Kz(x)} (7.45)

is a stabilizing controller for the system (7.1).

Before proceeding with examples, let us consider the computation of the local zero
dynamics. One approach is to obtain the internal dynamics bycompleting the local
transformation and then to setz= 0,v= 0. We will describe an alternative in which
the local zero dynamics are computed directly. Note that thefunctionsz(x) can be
computed using (7.30). Once they are obtained, we are in a position to compute the
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& ( , , )ξ ξ= F z v

Fig. 7.1: The two level controller design process of Proposition (7.26) is depicted in this dia-
gram.

local form of the zero dynamics near any pointx0∈M0 in the following way. Without
loss of generality assumex0 = 0. Now, splitz(x) into its linear and nonlinear parts:

z(x) = Ax+N(x), A=
∂z
∂x

(0) (7.46)

We assume thatx0 = 0 is a regular point (ρ is nonsingular) so thatA is of full rank.
Let A∗ denote a right inverse ofA and defineK such that its columns span kerA.
Define new coordinatesv,w so that

x= A∗v+Kw (7.47)

Then on the zero dynamics manifold, we have

v+N(A∗v+Kw) = 0 (7.48)

Clearly, the Implicit Function Theorem guarantees the existence of a local solution
to (7.48),v∗(w), that is

v∗(w)+N(A∗v∗(w)+Kw) = 0 (7.49)
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on a neighborhood ofw = 0, andv∗(0) = 0. Furthermore,v∗(w) can be efficiently
estimated because the mapping

vi+1 =−N(A∗vi +Kw) (7.50)

is a contraction. In fact, we have the following result.

Proposition 7.27.Suppose z(x) is smooth, and A is of full rank. Then

1. there exists a smooth function v∗(w) = 0+O(‖w‖),
2. if vi(w) satisfies‖v∗− vi‖=O(‖w‖k), then vi+1(w), obtained via (7.50), satisfies
‖v∗− vi+1‖= O(‖w‖2k).

Proof: The first conclusion follows directly from the implicit function theorem and
the fact thatv∗(w) is smooth. To prove the second, first subtract (7.50) from to obtain

v∗− vi+1 =−N(A∗v∗+Kw)+N(A∗vi +Kw) (7.51)

Now, consider the functionNx(x) := ∂N(x)/∂x. SinceN is smooth, with∂N(0)/∂x=
0, we haveNx(0) = 0 and by continuity of the second derivative of N, we conclude
that ∂Nx(x)/∂x is bounded on a neigborhood ofx = 0. Let L be such a bound on
an appropriately defined neighborhood,U , so that the usual arguments based on the
Mean Value Theorem provide

‖Nx(x)−Nx(y)‖ ≤ L‖x− y‖ , ∀x,y∈U (7.52)

Thus, we can write

N(x)−N(x+δx) = Nx(x)δx+O(‖δx‖2) (7.53)

which in view of (7.52) gives

‖N(x)−N(x+δx)‖= O(‖δx‖2) (7.54)

for x,y= x+δx∈U . In order to apply this result to (7.51), takex= A∗v∗+Kw and
δx= A∗(v∗− vi). Then (7.51) and (7.54) yield

‖v∗− vi+1‖= O(‖A∗(v∗− vi)‖2) = O(‖w‖2k) (7.55)

which is the desired conclusion.

Recall the global form of the zero dynamics:

ẋ= f (x)−G(x)ρ−1(x)α (x) (7.56)

which defines the zero dynamics flow everywhere onM0. Nearx0 we simply project
the flow onto the tangent space toM0 at x0. K has a left inverseK∗ so that
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ẇ= K∗ f (x∗(w))−K∗G(x∗(w))ρ−1(x∗(w))α (x∗(w)) (7.57)

x∗(w) = A∗v∗(w)+Kw (7.58)

ProPacprovides the computations necessary to implement the abovecontrol design
method. The main functions

• IOLinearize

• NormalCoordinates

• LocalZeroDynamics

are illustrated in the following examples.

Example 7.28 (A basic example).Consider the following simple single-input single-
output example from [46]:

f (x) =





0
x1+ x2

2
x1− x2



 , G(x) =





ex2

ex2

0



 , h(x) = x3

Below, we compute the relative degree vector, the decoupling matrix and the feed-
back linearizing using the functionIOLinearize . Then to compute the zero dy-
namics, we obtain the partial state transformation, i.e,z(x) and the control with
vi(t) = 0, i = 1, . . . ,m, and finally we compute the local zero dynamics.

In[147]:= var2 := {x1,x2,x3}
f2 := {0, x1 + x2ˆ2, x1 − x2}
g2 := {Exp[x2],Exp[x2],0}
h2 := {x3}

In[148]:= {ρ,α , ro,control}= IOLinearize [f2,g2,h2,var2]

Computing Decoupling Matrix

Computing linearizing/decoupling control

Out[148]=
{
{{−ex2−2 ex2 x2}},{−2 x2 (x1+x22)},{3},

{ v1+2 x2 (x1+x22)

−ex2−2 ex2 x2

}}

In[149]:= z= NormalCoordinates [f2,g2,h2,var2, ro];

u0= control/.{v1→ 0};
LocalZeroDynamics [f2,g2,h2,var2,u0,z]

The system is completely linearizable.

There are no zero dynamics.

Out[149]= {}

The result should have been anticipated. Sincer = 3 = n, there are no decoupled
dynamics.
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Example 7.29 (Zero dynamics of a simple vehicle).Consider a simple
wheeled vehicle that moves in the plane as illustrated in theFigure (7.2). The model
incorporates two simplifications;m2 = 0,s<< 1, so that only first order terms ins
are included.

kinematics:







θ̇
ẋ
ẏ
δ̇






=







1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1













ωθ
vx

vy

ωδ







dynamics:







Izz+ Jzz 0 0 Izz

0 m1 0 0
0 0 m1 0
Izz 0 0 Izz













ω̇θ
v̇x

v̇y

ω̇δ







+







0
m1vyωθ
−m1vxωθ

0







+







f1
f2
f3
f4






= 0

The coordinatesx andy locate the center of mass of the main body, andθ its orienta-
tion. The front wheels rotate an amountδ about an axis of slopes (s= 0, results in a
vertical axis),s is assumed small as are the tire inertial parameters. The functions fi ,
which include a description of how the steering torqueT and the drive forceF enter
the model, are omitted for the sake of space.

θ


δ


m
J
,

I
m
,
2
a


b


θ


F


rotation axis

slope, s


combined tire

inertial parameters


Fig. 7.2: The essential parameters of the example are illustrated in this figure.

Our goal is to consider the problem of steering the vehicle along a path of constant
radius, and at constant speedVd. There are several ways of formulating this problem.
One common approach is to replace the constant radius condition by the requirement
that the angular velocityωθ is a constant, sayωd. This leads to a constant curvature
path of radius, withR=Vd/ωd.. Thus, we introduce two output relations

y1 = v2
x + v2

y−V2
d
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y2 = ωθ −ωd

We are interested in the zero dynamics relative to these two outputs and the two
controlsT, F. Notice that in this formulation it is not necessary to retain the kine-
matic equations which define the vehicle location and orientation in the plane, i.e.,
θ,x,y. Thus, the system equations include dynamics and only the last equation of the
kinematics.

We will compute the zero dynamics corresponding toVd =constant,ωd = 0. The
equilibrium point is(x1,x2,x3,x4,x5) = (0,Vd,0,0,0), so we compute the local zero
dynamics near this point. In order to exhibit a complete example without using ex-
cessive space we exhibit results for the cases= 0.

In[150]:= f27 := {−κ ∗ (aˆ2∗x1 + bˆ2∗x1 + a∗x3 −
b∗x3 − a∗x2∗x5)/(Jzz∗x2),

−(m1∗x1∗x3 − κ ∗ (a∗x1 + x3)∗x5/x2)/m1,

−(−(m1∗x1∗x2) +κ ∗ (a∗x1 − b∗x1 + 2∗x3 − x2∗x5)/x2)/m1,

−(κ ∗ (−(aˆ2∗x1) − bˆ2∗x1 − a∗x3 + b∗x3 +

a∗x2∗x5)/(Jzz∗x2)),

x4};
g27 := {{−1/Jzz,0},{0,1/m1},{0,0},{(1/Izz + 1/Jzz),0},{0,0}};
h27 := {x2ˆ2+x3ˆ2−Vdˆ2,x1−wd};
var27 := {x1,x2,x3,x4,x5};

In[151]:= {ρ,α , ro,control}= IOLinearize [f27,g27,h27,var27];

za= NormalCoordinates [f27,g27,h27,var27, ro]/.{wd−> 0};
{fa,ga,ha,controlsa,za}=
{f27,g27,h27,control,za}/.{x2−> x2+Vd};

u0= controlsa/.{v1−> 0,v2−> 0};
f0 = LocalZeroDynamics [fa,ga,ha,var27,u0,za,4];

Simplify [f0]//MatrixForm

Computing Decoupling Matrix

Computing linearizing/decoupling control

Out[151]=

(
w2

(
b w3

(
2 Vd2+w32

)
+a

(
2 Vd3 w1−2 Vd2 w3−w33

))
κ

2 Izz Vd3
(
Vd3 w1−2 Vd2 w3−w33

)
κ

m1 Vd3

)

We can test the stability of the equilibrium point, by examining the linearized zero
dynamics. The eigenvalues are readily obtained but they arelengthy functions of the
parameters. Some insight is obtained, however, by examining the special case,a= b,
in which case the eigenvalues simplify to those shown whereκ is the tire coefficient
that determines the cornering force. In this case, the zero dynamics are unstable.
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In[152]:= Anu= Jacobian [f0,{w1,w2,w3}]/.{w1−> 0,w2−> 0,w3−> 0,b−> a+η};
Eigenvalues [Anu/.{η− > 0}]

Out[152]=
{
−
√

a
√

κ√
Izz

,

√
a
√

κ√
Izz

,− 2 κ
m1 Vd

}

7.3.3 Exact (Input-State) Linearization

We begin consideration of the exact linearization problem by considering the single
input case,

ẋ= f (x)+g(x)u (7.59)

Definition 7.30.The single input control system (7.59) is locally exactly feedback
linearizable around x0 if there exists a state transformation z= φ(x) and nonlinear
feedback u= ϕ (x)+Φ(x)v, Φ(x0) 6= 0, all defined on a neighborhood X of x0 ∈Rn,
that transforms (7.59) into the controllable linear state space system

ż= Az+bv (7.60)

Thesingle input state space exact feedback linearization problem is is that of finding
the transformation and the feedback, if they exist, given the control system (7.59).

Recall that any linear controllable single input system is similar to the canonical
system

ż=










0 1 0 · · · 0

0 0 1
...

...
...

... 0
... 0

...
...

...
. . . 1

0 0 0 · · · 0










z+










0
...
...
0
1










u (7.61)

Thus, the exact linearization problem is equivalent to achieving the form (7.61) by
state transformation and feedback.

Proposition 7.31.The single input exact feedback linearization problem is solvable
if and only if there exists a function h(x) such the relative degree of the control system

ẋ= f (x)+g(x)u
y= h(x)

(7.62)

Proof: Sufficiency is obvious in view of the input-output linearization result. To
establish necessity, assume the the existence of a state transformation and feedback
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control that transforms (7.59) to (7.61). Then takey = z1, so that (7.61) with this
output has relative degreen. The corresponding output map,h(x), is h(x) = Φ−1

1 (x).
Now since relative degree is invarient under state transformation and feedback, we
conclude that (7.59) with outputy= h(x) has relative degreen.

This theorem implies thath(x) must satisfy the system of partial differential equa-
tions

LgLi
f h(x) = 0, 0≤ i ≤ n−2

and the boundary condition
LgLn−1

f h(x0) 6= 0

Using Lemma (7.16) it can be shown that these equations are equivalent to

Ladi
f gh(x) = 0, 0≤ i ≤ n−2 (7.63)

Ladn−1
f gh(x0) 6= 0 (7.64)

These relations lead to the following result, in which we employ the following nota-
tion:

Gi = span{g(x) adf g(x) · · · adi
f g(x)} (7.65)

Proposition 7.32.The SISO linear control system (7.62) is exactly feedback lineariz-
able around x0 if and only if

1. the distributionGn−2 is involutive on a neighborhood of x0.

2. rankGn−1(x0) = n

Proof: Notice that
Ladi

f gLk
f h(x) =

〈

dLk
f h(x),adi

f g
〉

so that Lemma (7.16) leads us to conclude, for a system of relative degreer, the
matrix








dh(x0)
dLf h(x0)

...
dLr−1

f h(x0)








(
g(x0) adf g(x0) · · · adr−1

f g(x0)
)
=










0 · · · 0
〈

dLr−1
f h(x0),adr−1

f g(x0)
〉

... • ∗
0 •

...〈

dLr−1
f h(x0),g(x0)

〉

∗ · · · ∗









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has rankr. Thus, if h(x) exists, producing relative degreen, we have necessity of
condition (2).

If (2) holds then the distributionGn−2(x) is nonsingular and of dimensionn−1 on a
neighborhood ofx0. Equations (7.63) can be written in the form

dh(x)
(

g(x) adf g(x) · · · adn−2
f g(x)

)
= 0

This implies that the covector fielddh(x) is a basis for the codistributionG ⊥n−2 (al-
ternatively, annGn−2). As a consequence, the Frobenius theorem implies thatGn−2 is
involutive, establishing the necessity of (1).

Conversely, if (2) holds the distributionGn−2 is nonsingular andn−1 dimensional
aroundx0. If (1) also holds, then the Frobenius theorem implies existence of the func-
tion h(x) on a neighborhood ofx0 such thatdh(x) solves (7.63). Moreover,dh(x0)
spans the one one dimensional linear subspaceGn−2(x0)

⊥. Thus, (7.64) is also satis-
fied because otherwisedh(x0) would annihilate a set ofn linear independent vectors,
a contradiction.

When a system is exactly linearizable several methods are available for constructing
the coordinate transformation and computing the required feedback control. One ap-
proach transforms the system into a normal form in which the linearizing control is
obvious. We consider a simple example.

Example 7.33 (Feedback linearization).The function

FeedbackLinearizable

implements the specified test. Consider the system:




ẋ1

ẋ2

ẋ3



=





θx3
1+ x2

x3

0



+





0
0
1



u

First check for linearizability

In[153]:= f30= {θ x13+x2,x3,0};
g30= {0,0,1};
var30= {x1,x2,x3};
FeedbackLinearizable [f30,g30,var30]

Out[153]= True

From these computations, we see that this system is linearizable. Thus, we can pro-
ceed to obtain the exact feedback linearizing state transformation with the function
SIExactFBL , which implements the feedback linearization algorithm described in
[46] Chapter 4.2.

In[154]:= Trans= SIExactFBL [f30,g30,var30,True]
Out[154]= {x1,θ x13+x2,3 θ x12 (θ x13+x2)+x3}
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To obtain the linearizable system in normal form coordinates, we need to first invert
the transformation using

InverseTransformation

and then use

TransformSystem

to obtain the system representation in the new coordinates.These computations are
illustrated below.

In[155]:= InvTrans= InverseTransformation [var30,{z1,z2,z3},Trans];

In[156]:= TransformSystem [f30,g30,var30,{z1,z2,z3},Trans, InvTrans]
Out[156]= {{z2,z3,3 θ z1 (2 z22+z1 z3)},{0,0,1}}

In these coordinates it is seen that the control:

u=−3θz1(2z2
2+ z1z3)+ v

reduces the system to




ż1

ż2

ż3



=





z2

z3

0



+





0
0
1



v

The control can be obtained as a function of the original state variables by using the
transformation equations.

Now, we turn to the MIMO case. Formally, the MIMO exact feedback linearization
problem is defined as follows. Consider the system

ẋ= f (x)+G(x)u (7.66)

wherex∈ Rn, u∈ Rm and f (x), G(x) are smooth.

Definition 7.34.Given a control system (7.66), it is said to be exactly feedback lin-
earizable if there exists a coordinate transformation x= φ(z) on a neighborhood X
of the origin of Rn and a feedback control u= ϕ (x)+Φ(x)v, also defined on X with
Φ(x) nonsingular on X such that the transformed system is of the form

ż= Az+Bv

with (A,B) controllable.

To determine if a system is feedback linearizable, we can usethe conditions estab-
lished in the following proposition that generalizes Proposition (6.196) to the MIMO
case.
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Proposition 7.35.Suppose the matrix G(x0) has rank m. Then the system (7.66) is
exactly feedback linearizable around x0 if and only if:

1. the distributions

G j = {adk
f gi : 0≤ k≤ j,1≤ i ≤m}, 0≤ j ≤ n−1,

where gi are the columns of G, have constant dimension near x0.

2. the distributionGn−1 has dimension n at x0,

3. for each j,0≤ j ≤ n−2, the distributionG j is involutive near x0.

Proof: [46], Chapter 5.

Notice thatGn−1 = ∆L0 so that local controllability is necessary for exact feedback
linearizability.

Example 7.36 (Feedback linearizability).
Another illustration of the functionFeedbackLinearizable is:





ẋ1

ẋ2

ẋ3



=





1+ x1+ x3

1+ x2

−x3



+





1+ x1+ x3 0
1+ x2 0

0 ex3 + x1x2



v

In[157]:= f33= {1+x1+x3,1+x2,−x3};
g33= {{1+x1+x3,0},{1+x2,0},{0,Exp[x3]+x1 x2}};
var33= {x1,x2,x3};

In[158]:= FeedbackLinearizable [f33,g33,var33]
Out[158]= False

We see that the system is not feedback linearizable. This fact is not remarkable, but
the way in which linearizability fails is interesting. First, we test controllability and
find that the system is controllable.

In[159]:= Controllability [f33,g33,var33]
Out[159]= True

Actually, we need a stronger version of controllability, i.e., rank∆L0 = n = 3. The
calculation is

In[160]:= Rank[{g1,g2,Ad[f33,g1,var33],Ad[f33,g2,var33],

Ad[f33,g1,var33,2],Ad[f33,g2,var33,2]}]
Out[160]= 3

The system satisfies this more restrictive controllabilitycondition. Now, let us test
for involutivity of the requisite distributions. There aretwo of them and one fails.

In[161]:= {g1,g2}= Transpose [g33];

Involutive [{g1,g2},var33]
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Out[161]= False

In[162]:= Involutive [{g1,g2,Ad[f33,g1,var33],Ad[f33,g2,var33]},var33]
Out[162]= True

7.4 Control via Dynamic Inversion

Control design based on input-output linearization breaksdown if the decoupling
matrix ρ(x) does not have an inverse. Nevertheless, the basic ideas can be extended
to a wider class of systems with some modification. The approach we take is from
the vantage point of system invertibility. Given a control system such as (7.1), with
initial state fixed, we can define both a right and a left inverse. Roughly speaking,
a right inverse generates a controlu that will produce a given outputy, and a left
inverse generates the control that produced an observed output.

Definition 7.37 (Invertible).

1. The system (7.1) isinvertibleat x0 ∈ Rn if whenever u1(t) and u2(t) are distinct
admissible (real, analytic) controls, y(·,u1,x0) 6= y(·,u2,x0).

2. The system (7.1) isstrongly invertibleat x0 ∈ Rn if there exists a neighborhood
V of x0 such that for all x∈V the system is ivertible at x.

3. The system (7.1) isstrongly invertibleif it is strongly invertible at x0 for all
x0 ∈ Rn.

First, observe that if the system (7.1) is square (p= m) and can be input–output lin-
earized as described above, that is if det{ρ(x)} 6= 0, then both right and left inverses
exist. Notice that the linearized input–output dynamics (7.40) can be written

y(r) = v

where r is the vector relative degree and

y(r) = (y(r1)
1 , . . . ,y(rm)

m )T

Consequently, in view of (7.37), (7.38) and (7.39), the inverse can be explicitly rep-
resented:

ξ̇ = F(ξ ,z,y(r)R )

ż= Az+Ey(r)R

u = ρ−1(x(ξ ,z)){−α (x(ξ ,z))+ y(r)R }
(7.67)

The system (7.67) can serve either as a right (y(r)R is a prescribed reference output)

or a left (y(r)R is an observed output) inverse. As a right inverse, we consider yR(t)



216 7 Control of Smooth Affine Systems

to be prescribed and sufficiently smooth so that all of its derivatives, including the

highest order derivatives which drive (7.67) are known,y(r)R =
[

y(r1)
R,1 , ..,y

(rm)
R,m

]

. As

a left inverse the required smoothness is automatic ifu(t) is piecewise continuous.
Note that (7.67) is equivalent to:

ẋ = f (x)+G(x)u

u = ρ−1(x)
{

−α (x)+ y(r)R

} or
ẋ = f (x)+G(x)u

y(r)R = α (x)+ρ(x)u
(7.68)

Equations (7.67) and (7.68) represent the same system described in different state
coordinates.

Equation (7.67) clearly displays the relationship betweeninput–output linearization
and inversion. We have seen above that if the decoupling matrix is nonsingular then
a system inverse exists. On the other hand, singularity of the decoupling matrix does
not imply that an inverse fails to exist. We seek a more general construction for an
inverse with the goal of identifying a larger class of control laws. The basic tool for
constructing a right inverse is thestructure algorithmintroduced by Hirshorn [42]
and Singh [95]. If the system (7.1) has an inverse, then application of the structure al-
gorithm leads to identification of a finite integerβ and matricesHβ(x), Cβ (x), Dβ(x)
such that

Hβ (x)Yβ (t) =Cβ (x)+Dβ(x)u (7.69)

where
Yβ(t) = [y(1)

T
,y(2)

T
, ..,y(β)

T
]T (7.70)

andDβ(x) is anp×mmatrix with rank min(m, p). Thus, (7.69) may be thought of as
a generalization of the second equation of (7.68). Supposep= min(m, p). It follows
thatDβ (x) has a right (matrix) inverseD†

β(x). Consequently, the right system inverse
is defined by:

ẋ = f (x)+G(x)u
u = D†

β(x)
{
−Cβ(x)+Hβ(x)Yβ(t)

} (7.71)

In this case, given a referenceyR(t), a controlu(t) is obtained that will reproduce
it when applied to the system (assuming the correct initial state). Whileu(t) is not
unique (if p< m), it does the job. On the other hand ifm= min(m, p), thenDβ(x)

has a left (matrix) inverseD†
β(x) and (7.71) defines a left system inverse. In this case

an observedy(t) drives the (left) inverse system which produces the unique control
that generatedy(t). However, there may be different observed outputs that result in
the same control.

The following summarizes the Structure algorithm.

Algorithm 7.38 (Structure Algorithm) Consider the system (7.1).

1. Step 1 Compute

ẏ=
∂h
∂x

[ f +Gu] =: L f h(x)+LGh(x)u (7.72)
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and define r1 := rankLGh(x)1. Permute the output components so that the first r1

rows of LGh are independent. Since the last p− r1 rows are linearly dependent
on the first r1 rows, combinations of the first rows can be used to zero out the
last rows. Let E11 and E2

1(x) be the permutation and row zeroing matrices. Then
define

z1 = E2
1(x)E

1
1 ẏ (7.73)

z1 = E2
1(x)E

1
1(L f h(x)+LGh(x)u) (7.74)

Now, write z1 = (z̄T
1 , ẑ

T
1 )

T , with z̄1 ∈ Rr1, ẑ1 ∈ Rp−r1. From the first r1 rows of
(7.74)

z̄1 = c̄1(x)+ D̄1(x)u, rankD̄1 = r1 (7.75)

and from the last p− r1 rows of

ẑ1 = ĉ1(x) (7.76)

Finally, defineSystem 1to be

ẋ= f (x)+G(x)u

z1 =

[
z̄1

ẑ1

]

= c1(x)+D1(x)u

where

c1(x) =

[
c̄1(x)
⌢c1(x)

]

, D1(x) =

[
D̄1(x)

0

]

2. Step 2 Differentiatêz1 to obtain

˙̂z1 =
∂ ẑ1

∂x
[ f +Gu]

which can be written as

˙̂z1 = L f ĉ1(x)+LGĉ1(x)u

Now, consider
[

z̄1
˙̂z1

]

=

[
c̄1(x)

L f ĉ1(x)

]

+D(x)u, D(x) :=

[
D̄1(x)

LGĉ1(x)

]

Let r2 = rankD. Then permute the rows of D to make the first r2 rows independent
and the zero out the last rows. Let E1

2 and E2
2(x) be the permutation and row

zeroing matrices. Define

z2 = E2
2(x)E

1
2

[
z̄1
˙̂z1

]

and divide z2 into z̄2 ∈Rr2 andẑ2 ∈ Rp−r2:

1By the notationLGh, we mean the matrix whose columns areLgi h.
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z̄2 = c̄2(x)+ D̄2(x)u

ẑ2 = ĉ2(x)

Finally, defineSystem 2to be

ẋ= f (x)+G(x)u

z2 =

[
z̄2

ẑ2

]

= c2(x)+D2(x)u

c2(x) =

[
c̄2(x)
⌢
c2(x)

]

, D2(x) =

[
D̄2(x)

0

]

3. Step k+1 Suppose that in steps 1 through k, the integers r1, . . . , rk and the func-
tionsz̄1 ∈ Rr1, . . . , z̄k ∈ Rrk, ẑk ∈ Rp− rk have been defined so that we haveSys-
temk:

ẋ= f (x)+G(x)u

zk =

[
z̄k

ẑk

]

= ck(x)+Dk(x)u

with

ck(x) =

[
c̄k(x)
⌢
ck(x)

]

, Dk(x) =

[
D̄k(x)

0

]

Then differentiatêzk

˙̂zk =
∂zk

∂x
[ f +Gu] (7.77)

which can be rewritten as

˙̂zk = L f ĉk(x)+LGĉk(x)u (7.78)

Now, consider
[

z̄k
˙̂zk

]

=

[
c̄k(x)

L f ĉk(x)

]

+D(x)u, D(x) :=

[
D̄k(x)

LGĉk(x)

]

Let rk+1 := rankD. Permute the rows of D to make the first rk+1 rows indepen-
dent. Use combinations of these rows to zero out the remaining (dependent) rows.
Denote the permutation matrix and row zeroing matrices E1

k+1 and E2
k+1(x), re-

spectively. Then define

zk+1 = E2
k+1(x)E

1
k+1

[
z̄k
˙̂zk

]

(7.79)

Finally, defineSystemk+1

ẋ= f (x)+G(x)u
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zk+1 =

[
z̄k+1
ẑk+1

]

= ck+1(x)+Dk+1(x)u

with

ck+1(x) =

[
c̄k+1(x)
⌢ck+1(x)

]

, Dk+1(x) =

[
D̄k+1(x)

0

]

4. Stop By construction the integers ri satisfy r1 ≤ r2 ≤ . . . ≤ rk. Moreover, there
is a smallest positive integer k∗ such that rk∗ ≤ min(m, p) is maximal. If the
procedure terminates in finite steps, it does so at step k∗ with rk∗ =min(m, p) and
an inverse can be constructed (a right inverse if p= min(m, p) and a left inverse
if m= min(m, p). Therelative orderβ is k∗ if the procedure terminates in finite
steps, otherwiseβ = ∞. The numberβ identifies the highest order derivative
required to drive the inverse. Thus, it can not be greater than the number of
states, n. Thus, the procedure should not proceed beyond n steps.

In ProPac, the structure algorithm is implemented in the function

StructureAlgorithm .

Example 7.39 (Inverse system, output restrictions).This first example is considered
in both Hirschorn [7] and Singh [9].

In[163]:= x = {x1,x2,x3};
f = {0,x3,0};G= {{x1,0},{−x3,0},{0,x1}};
h= {x1,x2};
{DD,CC,HH,ZZ}= StructureAlgorithm [f,G,h,x, t];

In[164]:= u= Simplify [RightInverse [DD].(−CC+ZZ)];

(f+G.u)//MatrixForm

Out[164]=









y1′[t]

x3− x3 y1′[t]
x1

−x3 y1′[t]2+x1 (x3 y1′′[t]+x1 y2′′[t])
x1 (x1−y1′[t])









It is to be anticipated that a complete discussion of system inverses would include
a characterization of the system input and output spaces. In[42], Hirschorn gives
sufficient conditions for the existence of an inverse and shows that they do not apply
in the case of this example. Modifying the arguments in [42],Singh in [95] derives
sufficient conditions for existence of a left system inversethat apply with restrictions
imposed on the system output space. These conditions, applied to this example, es-

tablish the existence of a left inverse providedy(1)1 6= x1. Clearly, if our inverse is to
be meaningful, this condition must be satisfied.

Example 7.40 (Inverse system).The following example is from Neijmeijer and Van
der Schaft [87].
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In[165]:= x = {x1,x2,x3,x4};
f = {0,x3,x4,0};G= {{1,0},{x4,0},{0,0},{0,1}};
h= {x1,x2};
{DD,CC,HH,ZZ}= StructureAlgorithm [f,G,h,x, t];

In[166]:= u= RightInverse [DD].(−CC+ZZ);

(f+G.u)//MatrixForm

Out[166]=









y1′[t]
x3+x4 y1′[t]

x4
−x4−x4 y1′′[t]+y2′′[t]

y1′[t]









7.4.1 Tracking Control

There are a number of ways in which the results of the structure algorithm can be
used to construct feedback controllers. It is an important fact that not all of the ele-
ments inYβ actually survive multiplication byHβ (x). Let us denote byni andNi the
lowest and highest order derivative ofyi appearing inHβ(x)Yβ . Then, we can write

Hβ(x)Yβ = H̃ỹ (7.80)

where
ỹ= [yn1

1 , ..yN1
1 , ..,ynl

l ..,y
Nl
l ]T (7.81)

so that (7.71) can be written as:

ẋ = f (x)+G(x)u
u = D†

β(x)
{
−Cβ(x)+ H̃(x)ỹ(t)

} (7.82)

One approach to tracking control is based on the concept of using the inverse system
to compute a feedforward control and then add a perturbationcontroller based on the
tracking error (see Figure (7.3)). For instance ifyR(t) is the reference trajectory, we
could implement the control

u= D†
β (x)

{
−Cβ(x)+ H̃(x)ỹR(t)+ v(t)

}
(7.83)

wherev(t) is the perturbation controller.

One choice for the perturbation controller is [95]:

vi = γi0

∫

(yRi− yi)dt+
ni−1

∑
j=0

pi j (y
( j)
Ri − y( j)

i ), i = 1, .., l (7.84)

Stability of the closed loop requires that the following polynomials are Hurwitz:
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system

regulator

inverse y

some

derivatives

+
y

some

derivatives

R

+

Fig. 7.3: A tracking control concept based on the system right inverse.

ni+1

∑
j=0

γi j ·sj = 0, i = 1, .., l (7.85)

with γi j = pi, j−1, j = 1, ..,ni +1.

A variant of this controller is given by Singh [96]. Here (7.83) is replaced by

u= D†
β(x){−Cβ(x)+M(x)ỹ0+N(x)v(t)} (7.86)

where
Hβ(x)Yβ = M(x)ỹ0+N(x)y(n) (7.87)

ỹ0 = [y(n1+1)
1 , . . . ,y(N1)

1 , . . . ,y(nl+1)
l , . . . ,y(Nl )

l ]T and y(n) = [yn1
1 , . . . ,y(nl )

l ]T (7.88)

andN(x) is an invertible matrix. It is easily verified, by substituting (7.86) and (7.87)
into (7.69), that this is a decoupling controller that reduces the input–output equa-
tions to

y(ni)
i = vi , i = 1, . . . , l (7.89)

The perturbation controller is

vi = γi,0

∫

(yRi− yi)dt+
ni−1

∑
j=0

pi j (y
( j)
Ri − y( j)

i )+ y
(n j)
Ri . (7.90)

Substituting the perturbation control yields the closed loop error dynamics

ε(ni+1)
i + γi,ni ε

(ni)
i + γi,ni−1ε(ni−1)

i + . . .+ γi,0 = 0

whereεi := yi − yRi. Implementation of this controller requires measurement of the

statex and output derivatives up toy(Ni)
i , and knowledge of the reference trajectory

and its derivatives up toy(ni)
Ri . While output derivatives up to ordery(ni−1)

i are indeed
necessary to implement a perfect tracking controller, the higher order derivatives
are not. The need to measure or compute the higher order derivatives of the output,
specificallyỹ0 can be a serious problem, because they may be noncausal in thesense
that computing them may require computing derivatives of the inputu. But this can
be remedied as follows in the next section.
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7.4.2 Dynamic Decoupling Control

Let us rewrite (7.82) in the form

u= D†
β(x)

{

−Cβ(x)+ H̃1(x)ỹ1(t)+ H̃2(x)y
(N)
}

(7.91)

ỹ1 = [yn1
1 , ..yN1−1

1 , ..,ynl
l ..,y

Nl−1
l ]T and y(N) = [y(N1)

1 , ..,y(Nl )
l ]T (7.92)

so that we have pulled out the highest order derivative ofy. Now, letηi ∈ RNi−ni , i =
1, . . . , l , setv= y(N) and consider the dynamical systems

η̇i = Aiηi +Biνi , i = 1, . . . , l (7.93)

with (Ai ,Bi) in Brunovsky canonical form. Notice thaty(Ni− j)
i = η j

i , j = 1, . . . ,Ni−
ni . The control (7.86) can be written

u= D†
β(x){−Cβ(x)+ H̃1(x)η + H̃2(x)v}. (7.94)

The dynamic compensator defined by (7.93) and (7.94) is a decoupling, input–output
linearizing controller. Its application results in the input–output dynamics:

y(Ni)
i = vi , i = 1, . . . , l (7.95)

Thus, we can apply the controller

vi = γi,0

∫

(yRi− yi)dt+
Ni−1

∑
j=0

pi j (y
( j)
Ri − y( j)

i )+ y(Ni)
Ri .

to obtain the closed loop error dynamics

ε(Ni+1)
i + γi,Ni ε

(Ni )
i + γi,Ni−1ε(Ni−1)

i + . . .+ γi,0 = 0

whereεi := yi− yRi.

Implementation of this controller requires measurement ofthe statex, and ei-

ther computation or measurement of the output derivativesyi ,y
(1)
i , . . . ,y(ni−1)

i , for
i = 1, . . . , l . Such an implementation is illustrated in Figure (7.4).

7.5 Dynamic Extension

Another way of dealing with the singularity of the decoupling matrix is a process
known as dynamic extension [22, 46]. Dynamic extension entails augmenting the
dynamical equations with integrators added at the input channels. The algorithm
of Descusse and Moog [22] converges in a finite number of stepsif the original
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Fig. 7.4: This figure illustrates the implementation of a tracking controller using dynamic
decoupling.

system is strongly invertible. It has been implemented inProPac as the function
DynamicExtension .

To motivate the procedure, consider the simple linear system shown in Figure (7.5):

ẋ1 = x2+u1

ẋ2 = u2

ẋ3 = 2x2+u1

y1 = x1

y2 = x3

Let us try to decouple the system by following the input–output linearization pro-

x
1


x
2

x
3


u
1


u
2


y
1


y
2


1


s


1


s


1


s


Fig. 7.5: This simple linear system illustrates the delayedappearance of the second control
input.

cedure of Section 6.5. To do this, successively differentiatey1 andy2 until a control
appears,

ẏ1 = x2+u1

ẏ2 = 2x2+u1

Thus, we see that

ρ =

[
1 0
1 0

]
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It is singular and the system does not have a well-defined relative degree vector. But
the second control has not had an influence because of the premature appearance of
u1 simultaneously in both outputs. Let us delay the appearanceof u1 by placing an
integrator before the first input. Thus, the new state equations are

ẋ1 = x2+u1

ẋ2 = u2

ẋ3 = 2x2+u1

u̇1 = v

Now attempt to decouple the augmented system. Successive differentiation leads to

ÿ1 = u2+ v
ÿ2 = 2u2+ v

So

ρ =

[
1 1
2 1

]

The augmented system decoupling matrix is nonsingular and the relative degree
is well definedr = {2,2}. A systematic procedure for attempting to achieve well-
defined relative degree by integrator augmentation of the input channels is given in
the following Algorithm.

Algorithm 7.41 (Dynamic Extension) Consider the system (7.1) with p= m (a
square system).

1. Compute the matrixρ(x). If rankρ = m Stop!

2. if rankρ = s< m, perform elementary column operations to make the first s
columns independent and the last m−s columns zero. Let E(x) denote the square,
nonsingular matrix that does this:ρ1(x) = ρ(x)E(x).

3. Suppose there are q columns (say, i1, . . . , iq) each having two or more elements
that are not identically zero around x0. If q= 0, Stop! The process fails.

4. If q 6= 0, define the index setα = {i1, . . . , iq} and let ᾱ denote its complment.
Put an integrator in series with the q corresponding controls to obtain a new
augmented system

[
ẋ

u̇α

]

=

[
f (x)+∑i∈α gi(x)ui

0

]

+

[

∑i∈ᾱ gi(x)ui

vα

]

5. Go to step 1 and repeat the process with the new augmented system.

Example 7.42 (Dynamic inversion revisited).Let us reconsider Examples (7.39) and
(7.40). First, Example (7.39). Recall thatD[f, {x,n }] is the Mathematica function
for thenth partial derivative with respect tox.
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In[167]:= {fnew,Gnew,hnew,xnew}= DynamicExtension [f,G,h,x];

In[168]:= {ρ,α , r0,u}= IOLinearize [fnew,Gnew,hnew,xnew];

u= (u/.{v1−> D[y1 [t],{t, r0 [[1]]}],v2−> D[y2 [t],{t, r0 [[2]]}]});
Simplify [(fnew+Gnew.u)]//MatrixForm

Computing Decoupling Matrix

Computing linearizing/decoupling control

Out[168]=










x1 z1
x3−x3 z1

x1 x3 z12−x3 y1′′[t]−x1 y2′′[t]
x1 (−1+z1)

−z12+
y1′′[t]

x1










Now, let us turn to the system from Example (7.40). Dynamic extension can also be
used to construct the inverse.

In[169]:= IOLinearize [f,G,h,x]
{fnew,Gnew,hnew,xnew}= DynamicExtension [f,G,h,x];

Computing Decoupling Matrix

Decoupling matrix is singular!

Dynamic extension completed

In[170]:= {ρ,α , r0,u}= IOLinearize [fnew,Gnew,hnew,xnew];

u= (u/.{v1−> D[y1 [t],{t, r0 [[1]]}],v2−> D[y2 [t],{t, r0 [[2]]}]});
(fnew+Gnew.u)//MatrixForm

Computing Decoupling Matrix

Computing linearizing/decoupling control

Out[170]=










z1
x3+x4 z1

x4

−x4 y1′′[t]
z1

+
−x4+y2′′[t]

z1
y1′′[t]










Example 7.43 (Dynamic extension).Here is another example for which the decou-
pling matrix is singular and thus feedback linearization can not be employed directly:





ẋ1

ẋ2

ẋ3



=





cos(x3) 0
sin(x3) 0

0 1





[
u1

u2

]

[
y1

y2

]

=

[
x1

x2

]
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In[171]:= f12 := {0,0,0};
g12 := Transpose [{{Cos[x3],Sin[x3],0},{0,0,1}}];
h12 := {x1,x2};var12 := {x1,x2,x3}
{fnew,Gnew,hnew,xnew}= DynamicExtension [f12,g12,h12,var12]

Dynamic extension completed

Out[171]= {{z1 Cos[x3],z1 Sin[x3],0,0},{{0,0},{0,0},{0,1},{1,0}},
{x1,x2},{x1,x2,x3,z1}}

Thus, we find that the extended state vector is(x1,x2,x3,z1) and f , G andh are
modified to:

f =







z1cos(x3)
z1sin(x3)

0
0






, G=







0 0
0 0
0 1
1 0






, h=

[
x1

x2

]

The extended system has a nonsingular decoupling matrix.

7.6 Problems

7.6.1 Controllability

Problem 7.44.Check controllability for the system:

ẋ1 = u1x3+u2

ẋ2 = u1x1

ẋ3 = u1x2

Problem 7.45.Consider the control systems given below. Compute and describe the
maximal integral manifolds of the controllability distributions∆C and∆C0.

(a) the linear system

ẋ=





1 0 0
0 −1 0
0 0 1



x+





1
0
0



u

(b) the bilinear system

ẋ=





0 1 0
−1 0 0
0 0 0



x+u





0 0 1
0 0 0
−1 0 0



x

Problem 7.46.Investigate the controllability properties of the nonlinear system

ẋ=





x2+ x2
2+ x2

3
x3+ sin(x1− x3)

x2
3



+





1
0
1



u
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Problem 7.47.Consider the (angular) velocity control of a sattelite in space using
gas jets. The dynamical equations are:

Jω̇ = ω× (Jω)+ τ

whereω is the angular velocity,τ is the control torque vector, andJ=Diag{Jx,Jy,Jz}
is the inertia matrix, all in principal axis body coordinates.

(a) Show that the system is not (locally) controllable if anyone actuator is used.

(b) SupposeJx > Jy > Jz. Show that the system is controllable if any two of the
actuators are used.

(c) SupposeJx = Jy > Jz. Show that the system is controllable ifτ1 andτ3 are used
or if τ2 andτ3, but not controllable ifτ1 andτ2 are used.

(d) SupposeJx = Jy = Jz. Show that the system is not controllable unless all three
actuators are used.

Problem 7.48.A simplied model for the configuration of a vehicle moving in aplane
is 



ẋ
ẏ
θ̇



=





sinθ
cosθ

0



u1+





0
0
1



u2

Herex,y denote the planar location of the vehicle andθ denotes its orientation. The
model is purely kinematic. It is assumed that the forward velocity u1 and angular
velocityu2 are control inputs. Show that the system is controllable.

Problem 7.49.A purely kinematic model for the rolling penny is

d
dt






φ
ψ
x
y




=






1
0
0
0




u1+






0
1

cosφ
sinφ




u2

Is it controllable?

Problem 7.50 (Sleigh, continued).Consider the sleigh of Problem (6.24) in Chapter
5 (consider the caseα = 0).

(a) Show that the sleigh is locally controllable.

(b) Show that the origin is an equilibrium point with controls ,F = 0, T = 0 but
that it can not be asymptotically stabilized by any smooth feeback control. Hint:
recall Lemma (2.16) of Chapter 2.



228 7 Control of Smooth Affine Systems

7.6.2 Feedback Linearization

Problem 7.51.Consider a linear system characterized by the SISO transferfunction

G(s) = K
sm+am−1sm−1+ · · ·+a0

sn+bn−1sn−1+ · · ·+b0
, n≥m

Determine a state space realization for this system. Show that the definition of rel-
ative degree given in Definition (7.14) is consistent with the traditional concept of
relative degree in SISO linear systems. Compute the zero dynamics.

Problem 7.52.Consider the simplified vehicle model

(a) Vehicle dynamics:
mẍ= F−ρẋ2sgn(ẋ)−dm

(b) Engine:

ξ̇ =
ξ

τ (ẋ)
+

u
mτ (ẋ)

, F = mξ

m,ρ,dm are constants, andu is the throttle input. Write these equations in state space
form and examine the linearizability of the system from input u to outputx. Deter-
mine the relative degree and zero dynamics of the system.

Problem 7.53.Find a feedback linearizing and stabilizing control such that the
closed loop poles are -1,-2,-3, for the system:

ẋ1 = sinx2

ẋ2 = sinx3

ẋ3 = u

Taylor linearize the system and find a linear perturbation control that places the poles
at -1,-2,-3. Compare the two controllers.

Problem 7.54.Consider the bilinear system

ẋ=





0 0 3
0 0 6
0 0 −2



x+





1 2 4
2 2 0
0 0 3



xu

(a) Determine if this system is locally controllable aroundthe origin.

(b) Consider the Taylor linearization of this system and determine if it is control-
lable.

(c) Determine if the system is exactly feedback linearizable around the origin.
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(d) Design an asymptotically stabilizing state feedback controller.

Problem 7.55.(from [2]) Consider the system

ẋ = f (x)+G(x)u
y = h(x)

with f (x0) = 0. Denote its linearization aroundx= x0, u= 0 by χ̇ = Aχ +Bu with
A= ∂ f (x0)

/
∂x andB= G(x0). Suppose the system is exactly feedback linearizable

aroundx0. Show that the system can be transformed via state transformation and
feedback to the linear system ˙z= Az+Bvwith A, B as given above.

Problem 7.56.(from [87]) Consider the Hamiltonian control system

q̇i =
∂H(q, p)

∂ pi
, ṗi =−

∂H(q, p)
∂qi

+ui

wherei = 1, . . . ,n and the Hamiltonian is

H(q, p) = 1
2 pTG(q)p+V(q)

with G(q) a positive definite matrix for eachq and∂V(q0)
/

∂q= 0. Check feedback
linearizability about the point(q0,0).

Problem 7.57 (Overhead crane, continued).Consider the overhead crane of Prob-
lems (5.11) and (6.22).

(a) Design a feedback linearizing control that steers the payload to a specified loca-
tion,x= xd, z= zd, in the plane with the arm pointing straight down,φ= 0. Use
all three control inputs.

(b) Compute the zero dynamics.

(c) Specify numerical values for the parameters and simulate the closed loop behav-
ior.

Problem 7.58.([99], Example 6.14) Consider the system

ẋ1 = x2
1x2

ẋ2 = 3x2+u

(a) Taylor linearize the system at the originu= 0,x1 = 0,x2 = 0 and show that the
linear system is not controllable. Examine the controllability of the nonlinear
system and explain your findings.

(b) Test to see if the system is exactly feedback linearizable. If so, compute the nor-
mal form transformation and feedback linearizing control.What’s wrong with
this picture?
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(c) Consider the outputy = −2x1− x2. Find the input–output linearizing control.
Obtain the zero dynamics and evaluate their stability. Can the system be asymp-
totically stabilized?

Problem 7.59 (Stabilizing Nonminimum Phase Systems).Consider the following
system

ẋ1 =−x3
1x2

2+(2+ x2
1)u

ẋ2 = x3

ẋ3 =−x3
3+ x5

2− x1x2

(a) Transform the system to normal form and determine the feedback linearizing
control law. Show that the feedback linearized system is

ż1 = v
ż2 = z3

ż3 =−z1z2+ z5
2− z3

3

wherev is the new control.

(b) Determine if the zero dynamics have a stable origin.

(c) Now, stabilize the system using a two-step (backstepping) procedure:

(1) Considerz1 to be a psuedo-control and use it to stabilize the zero dynamics.
Hint: Consider the Lyapunov function (why this function?)

V0 =
1
2z2

3+
1
6z6

2

for the system
ż2 = z3

ż3 =−µz2+ z5
2− z3

3

and pickµ = µ(z2,z3) to insure stability.

(2) Choosev to stablize the full system using the Lyapunov function

V =V0+
1
2 (z1− µ(z2,z3))

2

(d) What is the final control,u(x1,x2,x3)?

Problem 7.60 (Issues with Decoupling).Consider the system

ẋ1 = x3
1+ x1x2+(1+ x2)u

ẋ2 =−x2+(1+2x2)
2x1

y= x1

(a) Put the system in normal form and show that the zero dynamics are globally
exponentially stable.
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(b) Use a feedback linearizing control law to stablize the linearizable part so that
y→ 0. Show, by simulation or other means, that if the initial value z1(0) (the
new first state) is large enough, then the trajectory is unbounded. Thus, even
though the linearized part and the zero dynamics are both globally exponentially
stable, the closed loop system is not globally stable.

Problem 7.61 (Tracking Contol).Consider a SISO system

ẋ= f (x)+g(x)u, y= h(x)

Assume the system has well-defined relative degreer, so that the feedback linearized
input-output dynamics are:

y(r) = v

SupposeyR(t) is a smooth (continuous derivatives up toy(r)R will suffice) reference
trajectory.

(a) Design a tracking controller based on stabilizing the error dynamics.

(b) Consider the following flexible joint robot:

I q̈1+mglsinq1+ k(q1−q2) = 0

Jq̈2− k(q1−q2) = u

Take I = 1, mgl = 1, J = 1, k = 10. Design a tracking controller so thatq1(t)
tracksyR(t) = 1−e−t/5.

(c) Add friction to the joint

I q̈1+mglsinq1+ k(q1−q2)+ c(q̇1− q̇2) = 0

Jq̈2− k(q1−q2)− c(q̇1− q̇2) = u

Takec= 0.05 and repeat the above design.

(d) Apply both controllers to the system with friction and discuss your results.
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Observability and Observer Design

8.1 Introduction

When nonlinearities are essential, observability and observer design present new
complexities and opportunities that are absent in linear problems. Unlike linear sys-
tems, a nonlinear system may be observable for some inputs and not so for others.
A positive consequence of this is that there are opportunities for state estimation
in nonlinear systems even when its linearization is not observable or there is some
other pathology associated with observability (see Section 8.2). There are important
practical implications because problems like this occur when operating around bifur-
cation points, such as an aircraft operating near stall, or apower network operating
near voltage limits. They also arise in problems involving fault detection and iden-
tification. However, to take advantage of these possibilities it is necessary to build
observers using new design paradigms, some of which have emerged in recent years.

This Chapter begins with an overview of observability and a summary of nonlinear
observer design methods is given in Section 8.2. An observability hierarchy is de-
fined that progresses, in weakening degree, from ‘linearly observable’ to ‘zero-input
observable’ to satisfaction of the ‘observability rank condition’ to ‘locally observ-
able.’ The tools we describe herein apply to all of these cases. A general observable
form for nonautonomous nonlinear systems, introduced in[62], as well as a multiple
output generalization of the observer form construction given in [37] are discussed
in Section 8.4. We also describe in detail the computations required to construct
the observable and observer forms. In Section 8.5.1 our implementation of them in
Mathematicais discussed. Examples that illustrate all of the observability types in
our hierarchy follow in Section 8.5.2.
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8.2 Observability

Like controllability, observability is a fundamental property of nonlinear control sys-
tems just as it is for linear systems. Our treatment will be similar in many ways to the
previous discussion of controllability. While observability does not have precisely
the dual structure to controllability as it has in linear system theory, there are in-
teresting parallels. Moreover, we will see that nonlinear observability has important
nuances that distinguish it from the linear counterpart.

8.2.1 Definitions and Tests

Consider the nonlinear affine system described by Equation (7.1) and rewritten here
as

ẋ = f (x)+
m
∑

i=1
gi(x)ui = fu(x)

y = h(x)
(8.1)

wherex ∈ M (a neighborhood ofx0 in Rn), u ∈ Rm, andy ∈ Rp. Assumex0 is an
equilibrium point corresponding to zero input and output, i.e., f (x0) = 0, h(x0) = 0.
The functionsf ,gi ,h are smooth. We write the right hand side of the differential
equation asfu(x) to emphasize the role ofu as a parameter of the vector field.

Denote byy(·;x0,u) the entire output responsey(t;x0,u), ∀t > 0 corresponding to
the initial statex0 and controlu(t), ∀t > 0.

Definition 8.1. 1. Let U be an open set in Rn. Two states x1,x2 ∈ U are said to
be U-distinguishable if there exists a control u(t), ∀t > 0, whose trajectories
from both x1,x2 remain in U, such that y(·;x1,u) 6= y(·;x2,u). Otherwise they are
U-indistinguishable.

2. The control system (7.1) is said to be strongly locally observable at x0 ∈Rn if for
every neighborhood U of x0, every state in U other than x0 is U-distinguishable
from x0. It is said to be locally observable at x0 ∈ Rn if there exists a neighbor-
hood W of x0 such that for every neighborhood U of x0 contained in W every
state in U other than x0 is U-distinguishable from x0.

3. The control system (7.1) is sad to be strongly locally observable if it is strongly
locally observable at x0 for every x0 ∈Rn. It is said to be locally observable if it
is locally at observable x0 for every x0 ∈ Rn.

In essence, local observability atx0 requires only thatx0 be distinguishable from its
immediate neighbors. More insight into the distinction between strong local observ-
ability and local observability can be found in [40] (where they are termed, respec-
tively, local observability and weak local observability ).
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We can establish an observability triangular decomposition similar to the controlla-
bility decomposition of Lemma (7.3). First, we define theobservability codistribu-
tion

ΩO =
〈

f ,g1, . . . ,gm| span
{

dh1, . . . ,dhp
}〉

(8.2)

and its kernel
∆O = Ω⊥O (8.3)

This distribution is invariant with respect tof ,g1, . . . ,gm and it is contained in the
kernel of span

{
dh1, . . . ,dhp

}
. If it is nonsingular, it is also involutive.

Proposition 8.2.Suppose∆O is of constant dimension r on some open set U of Rn.

(i) Then for each point x0 ∈ U there exists a neighborhood U0 of x0 and a local
coordinate transformation z= Φ(x) on U0 such that in the new coordinates the
system equations take the form:

ζ̇1 = f1(ζ1,ζ2)+G1(ζ1,ζ2)u

ζ̇2 = f2(ζ2)+G2(ζ2)u

y= h(ζ2)

whereζ1 = (z1, . . . ,zr) andζ2 = (zr+1, . . . ,zn).

(ii) Moreover,

a) any two initial states x1 and x2 in U0 such that

φi(x1) = φi(x2), i = r +1, . . . ,n

produce identical output functions for any input that keepsthe trajectory in
U0.

b) any initial state x∈ U0 that cannot be distinguished from x0 ∈ U0 under
piecewise constant input functions belongs to the slice

Sx0 = {x∈U0| φi(x) = φi(x0), i = r +1, . . . ,n}

Proof: For part (i), Again, recall Lemma (3.50) from which it follows that there
exists a local coordinate transformation (matched to∆O) such that each of the vector
fields f ,g1, . . . ,gm have the form

f̄ (z) =










f1(zr , . . .zd,zr+1, . . . ,zn)
· · ·

fr(z1, . . .zr ,zr+1, . . . ,zn)
fr+1(zr+1, . . . ,zn)

· · ·
fn(zr+1, . . . ,zn)









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In the new coordinates the covector fieldsdh1, . . . ,dh2 must belong toΩO = ∆⊥O , so
that

∂hi

∂zj
= 0

for all 0≤ j ≤ r and 1≤ i ≤ p. For part (ii), we provide a sketch of the proof, along
the lines of [1]. Consider the following points.

(a) Consider a piecewise constant control function (recallthe proof of Proposition
(7.7))

ui(t) = u1
i t ∈ [0, t1)

ui(t) = uk
i t ∈ [t1+ · · ·+ tk−1, t1+ · · ·+ tk), k> 1

for i = 1, . . . ,m, and define the vector field

θk = f +
m

∑
i=1

giu
k
i

Let φt
k denote its flow. The state reached at timetk from x0 at timet = 0 is given

by the composition
x(tk) = φtk

k ◦ · · · ◦φt1
1 (x0)

The output at timetk is
y(tk) = h(xtk)

Accordingly, we may define an output mapYx0 : (−ε,ε)k→Rp

Yx0(t1, . . . , tk) = h◦φtk
k ◦ · · · ◦φt1

1 (x0)

If two arbitrarily close initial statesx1 andx2 produce identical outputs for any
possible piecewise input, we have

Yx1(t1, . . . , tk) =Yx2(t1, . . . , tk)

for all possible(t1, . . . , tk), ti ∈ [0,ε). From this we can verify by direct compu-
tation that

Lθ1 . . .Lθkhi(x1) = Lθ1 . . .Lθkhi(x2)

(b) Sinceθ j , j = 1, . . . ,k depends on the constants(u j
1, . . . ,u

j
m), and the equality of

(a) must hold for all possible choices of(u j
1, . . . ,u

j
m) ∈Rm, it can be verified that

Lv1 . . .Lvkhi(x1) = Lv1 . . .Lvkhi(x2)

for any set of vector fields,v1, . . . ,vk belong to{ f ,g1, . . . ,gm}.
(c) Recall that the distribution∆O is invariant with respect tof ,g1, . . . ,gm and is

contained in the kernel of span
{

dh1, . . . ,dhp
}

. Consequently, in view of (b), we
can conclude thatx2 belongs to a set that is contained in the maximal integral
manifold of∆O that passes throughx1, i.e., it belongs toSx1.
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An immediate consequence of the above theorem is the following.

Corollary 8.3. If ΩO (equivalently,∆O) is of constant dimension on some open set
U then the system (7.1) is locally observable on U if and only if the observability
codistributionΩO has dimension n, or equivalently, its kernel∆O has dimension0.

As a first example of the necessary computations consider theobservability of a
linear system.

Example 8.4 (Linear System Observability).Let us consider the observability of a
linear system

ẋ= Ax+Bu

y=Cx

We will compute the codistributionΩO. To do this, we apply the algorithm (3.59) and
the formula for the directional derivative of a covector field as defined in (3.32). For
the linear system the necessary vector fields aref (x) =Axandgi(x) = bi , i = 1, . . .m.
Also, h(x) =Cx so that codistributiondh= spanC. Notice that for any constant cov-
ector field,c j , using (3.32),

LAxc j = c jA, andLbi c j = 0

Thus, compute

Ω0 = span{C}, Ω1 = span

{
C

CA

}

, . . . ,Ωk = span







C
CA
...

CAk−1







From the Caley-Hamilton theorem, we may as well stop atk= n. Consequently, the
observability necessary condition reduces to the familiar

rank







C
CA
...

CAn−1






= n

The following example illustrates the decomposition claimed in Proposition (8.2).

Example 8.5.We consider a modification of Example (7.6) in which a single output
equation is added:

y= x3

First, define the system
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In[172]:= f = {x1 x3+x2 Exp[x2],x3,x4−x2 x3,x3ˆ2+x2 x4−x2ˆ2 x3};
g= {x1,1,0,x3};
h= {x3};
var= {x1,x2,x3,x4};

Now, compute the distribution∆O:

In[173]:= DelO= LargestInvariantDistribution [{f,g},h,var]
Out[173]= {{0,1,0,x3},{1,0,0,0}}

Since∆O is not empty, the system is not observable. Proceed to obtainthe transfor-
mation by appending a set of independent vector fields to∆O to obtain a distribution
of rank 4.

In[174]:= Del= Join [DelO,{{0,0,1,0},{0,0,0,1}}]
Out[174]= {{0,1,0,x3},{1,0,0,0},{0,0,1,0},{0,0,0,1}}

Check the rank,

In[175]:= Span[Del]
Out[175]= {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

and compute the transformed system equations.

In[176]:= TriangularDecomposition [f+g∗u,h,Del,var,{0,0,0,0},
∞]

Out[176]=
{
{z2,z1,z3,z1 z3+z4},{x2,x1,x3,−x2 x3+x4},
{

u+z3,ez1 z1+z2 (u+z3),z4,0
}
,{z3}

}

Thus, the equations are in the anticipated form withζ1 = (z1 z2 ) and ζ2 =
(z3 z4 ).

ż=






z3

ez1z1+ z2z3

z4

0




+






1
z2

0
0




u

y= z3

The next example shows that nonlinear system observabilitydoes provide some new
twists not evident in linear systems.

Example 8.6.This example is from Vidyasagar [4] (Example 65, Section 7.3). Con-
sider the system





ẋ1

ẋ2

ẋ3



=





x2

x3

0



+





0
x1

0



u, y= x2

Based on linear system results it would be anticipated that this system is not observ-
able. However, let us computeΩ⊥O .
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In[2]:=

f={x2,x3,0}; g={0,x1,0}; h1=x1; h2=x2; var={x1,x2,x3};

In[177]:= f = {x2,x3,0};
g= {0,x1,0};
h= x2;

var= {x1,x2,x3};
In[178]:= LargestInvariantDistribution [{f,g},{h},var]
Out[178]= {}

Thus, we conclude that the system is indeed observable. The reason for this is that
the statex1 can be easily ascertained by observing the response to specified control
signals.

The question of observability can be answered directly withtheProPactestObservability ,
and the observability codistribution can be obtained with the functionObservabilityCodistribution .
Here are the calculations with and without the control input.

In[3]:=

Observability[f,g,h,var]

Out[3]= True

In[179]:= Observabiity [f,g,h2,var]
Out[179]= True

In[180]:= Observability [f,{{}},{h2},var]
Out[180]= False

In[181]:= ObservabilityCodistribution [f,Transpose [{g}],{h2},var]
Out[181]= {{1,0,0},{0,1,0},{0,0,1}}

In[182]:= ObservabilityCodistribution [f,{{}},{h2},var]
Out[182]= {{0,0,1},{0,1,0}}

Similarly to the case of controllability, it is of interest to introduce the codistribution

ΩL = span
{

Lk
f (dhi), 1≤ i ≤ p, 0≤ k≤ n−1

}

(8.4)

Clearly,ΩL is a subdistribution ofΩO. Thus, a sufficient condition for local observ-
ability aroundx0 is dimΩL(x0) = n. Moreover, for a linear system it is easy enough
to verify thatΩO = ΩL, so that in a crude sense dimΩL(x0) = n establishes an ob-
servability that is linear-like. Indeed, what is missing inΩL as compared toΩO are:
1) the Lie derivatives of the covector fieldsdhi with respect to the control input vec-
tor fields and 2) the higher order (> n−1) Lie derivatives. Thus, if dimΩL(x0) = n,
observability is achieved without the need to exploit the control input.
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8.2.2 The Observation Space

Definition 8.7. Observation Space. Theobservation spaceO of system (8.1) is the
linear space of functions M→R over the field R spanned by all functions of the form

Lvk · · ·Lv1(hi), k≥ 0, 1≤ i ≤ p, vk, · · · ,v1 ∈ { f ,g1, . . . ,gm} (8.5)

i.e.,

O = spanR
{

Lvk . . .Lv1(hi) |1≤ i ≤ p, k≥ 0, v1, . . . ,vk ∈ { f ,g1, . . .gm}
}

(8.6)

It is important to emphasize that the observation space consists of all linear com-
binations of the functions (8.5) with real constant coefficients – viz., ‘over the field
R’.

Another characterization of the observation space is givenby the following result.

Lemma 8.8.The observation spaceO is equivalent to the linear vector space of
functions M→ R over the field R

Õ = spanR
{

L fuk . . .L fu1 (hi)
∣
∣
∣1≤ i ≤ p, k≥ 0, u1, . . . ,uk ∈ {0,1}m

}

(8.7)

Proof: Obviously, each vector fieldfu, u∈ {0,1}m, is a linear combination overRof
the vector fields{ f ,g1, . . . ,gm}. We need to show the converse, i.e., that each vector
field in { f ,g1, . . . ,gm} is a linear combination of the vector fields in (8.7). To see this
first note thatf is of the form in (8.7) withu= 0. Now, anygi can be written

gi = ( f +gi)− f

We obtainfu = f +gi by takingu j = 0 j 6= i andui = 1. It follows that

spanR{ f ,g1, . . .gm}= spanR{ fu |u∈ {0,1}m} (8.8)

For any two vector fieldsv,w we have

Lv+whi = Lvhi +Lwhi

This relation can be used repeatedly, along with (8.8) to show that (8.6) and (8.7) are
equivalent. For example, supposeLvhi ∈O implying that

v∈ spanR{ f ,g1, . . .gm}

Then, by (8.8), there exists a set of vector fields{w1, . . . ,wr}, with

wi ∈ spanR{ fu |u∈ {0,1}m}

such that
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v= c1w1+ · · ·+ crwr

Consequently,

Lvhi = Lc1w1+···cr wr hi = c1Lw1hi + · · ·+ crLwr hi ∈ Õ

Similar calculations work the other way and with higher order Lie derivatives. In this
way we show that any function inO is in Õ and vice-versa.

Observability can be characterized in terms of the observation space.

Lemma 8.9.An analytic system (8.1) is observable on M if and only if the observa-
tion spaceO distinguishes the points of M, that is, for any x1,x2 ∈M, x1 6= x2, there
is a functionΦ ∈ O such thatΦ(x1) 6= Φ(x2).

Proof:

An analytic system (8.1) is observable onM if for any x1,x2 ∈M, x1 6= x2, there is a
functionΦ ∈O such thatΦ(x1) 6= Φ(x2).

Associated with the observation spaceO is it’s differentialdO, the codistribution

dO = span{dλ |λ ∈ O }

We can connect dO with the observability codistributionΩO.

Lemma 8.10.The kernel ofdO, dO⊥, is invariant with respect to the vector fields
{ f ,g1, . . . ,gm}. If dO is nonsingular, then it too is invariant with respect to the vector
fields{ f ,g1, . . . ,gm}.

Proof: To establish the first conclusion, letλ ∈ O and supposeτ is a vector field in
dO⊥. Then〈dλ ,τ 〉 = 0 by definition and

〈
dL f λ ,τ

〉
= 0 becauseL f λ also belongs

to dO. Consequently,

〈dλ , [ f ,τ ]〉= L f 〈dλ ,τ 〉−
〈
dL f λ ,τ

〉
= 0

This means that[ f ,τ ] annihilates all members ofλ ∈O so that[ f ,τ ] is a vector field
in dO⊥ establishing that dO⊥ is invariant with respect tof . Identical calculations
establish invariance with respect tog1, . . . ,gm.

The second conclusion now follows from the fact that if the distribution dO⊥ is
smooth – i.e., when the codistribution dO is nonsingular – then it’s annihilator, dO,
is also invariant with respect to the vector fieldsf ,g1, . . . ,gm.

This result leads to the following.
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Lemma 8.11.The differential of the observation spacedO and the observability
codistribution are related in the following way

1. dO⊥ ⊂ ∆O

2. if dO is nonsingular, thendO⊥ = ∆O, equivalently,dO = ΩO.

Proof: By definiton∆O is the largest distribution contained in the kernel of span{dh1, . . . ,dhp}
that is also invariant with respect tof ,g1, . . . ,gm. But dO⊥ is contained in the kernel
of span{dh1, . . . ,dhp} and it is invariant with respect tof ,g1, . . . ,gm. Consequently,
dO⊥ ⊂ ∆O.

By definitionΩO is the smallest codistribution that contains the covectors{dh1, . . . ,dhp}
and is invariant with respect to the vector fieldsf ,g1, . . . ,gm. But dO contains
{dh1, . . . ,dhp} and if it is regular, by Lemma (8.10) it is also invariant withrespect
to the vector fieldsf ,g1, . . . ,gm. Thus, it must be true thatΩO⊂ dO.

Now, it is easy to show thatΩO contains all of the covectors of dO. By definition of
ΩO, dhi ∈ΩO, 1≤ i ≤ p. Since it is invariant with respect tof ,g1, . . . ,gm, we have

Lvdhi ∈ΩO, 1≤ i ≤ p, v∈ { f ,g1, . . . ,gm}

Recursive application of the invariance property leads to

Lvk . . .Lv1dhi ∈ΩO, 1≤ i ≤ p, v1, . . . ,vk ∈ { f ,g1, . . . ,gm} , ∀k≥ 0

But these are all of the elements of dO so it must be thatΩO = dO.

Remark 8.12.Remarks on the Observability Codistributions. The system is locally
observable atx0 if the observability codistribution,ΩO has rankn atx0. This is called
theobservability rank condition. If x0 is a regular point ofΩO(x0), the observability
rank condition is necessary as well as sufficient. If the system has zero input, then
the observability codistribution reduces toΩL.

When dimΩO(x0)= n but dimΩL(x0)< n, the implication is that some states are dis-
tinguishable only under the action of control inputs. When this occurs, most control
inputs do distinguish the states. There are a fewsingular inputs, notablyu= 0, that
do not. Thus, when dimΩL(x0) = n we will use the terminologyobservable for zero
input at x0. It is also possible to test the linearization of (8.1) atx0 for observability.
That is, define

A0 =
∂ f
∂x

(x0), C0 =
∂h
∂x

(x0)

and test the pair(A0,C0). If the linearization is observable then we say that it is
linearly observable at x0. Linear observability implies zero-input observability.It is
easy to prove that a system is linearly observable atx0 if and only if dimΩL(x0) = n.
Thus, we have the following hierarchy
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dimΩO(x0) = n ⇒ locally observable
⇑ ⇑

dimΩL(x0) = n ⇒ zero input observable
m ⇑

dim







C0

C0A0
...

C0An−1
0






= n ⇔ linearly observable

Consider a time interval[0,T], divided intor subintervals of lengtht1, t2, . . . , tr . Now,
define a piecewise constant control input

û= uk, f or t ∈ [t1+ · · ·+ tk−1, t1+ · · ·+ tk), 1≤ k≤ r, uk ∈ Rm

Here we havet0 = 0 andt1+ · · ·+ tr = T. Let yi(x0, t1, . . . , tr) denote theith output
variable at timeT starting atx0 and under the action of the control ˆu. The following
result gives the joint sensitivity of the outputyi with respect to the timest1, . . . , tr in
the limit asT→ 0.

Lemma 8.13.Consider the output yi of the system (8.1), beginning at the state x0

and driven over the interval[0,T] by the piecewise continuous controlû. Then

∂ ryi

∂ t1 · · ·∂ tr

∣
∣
∣
∣
tk=0, 1≤k≤r

= dL f
uk . . .L fu1 hi(x0)

8.3 Local Decompositions

In linear system theory, theKalman decompositionutilizes a set of coordinates that
explicitly reveals the controllability/observability structure of a control system. Thus,
new state variables are identified such that the system equations are in the form






ż1

ż2

ż3

ż4




=






A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44











z1

z2

z3

z4




+






B1

B2

0
0




u

y= [0 C2 0 C4 ]






z1

z2

z3

z4




+Du

The coordinatesz1,z2 correspond to the controllable subspace and the coordinates
z2,z4 correspond to the observable subspace. A similar decomposition is achievable
for affine nonlinear systems.
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Proposition 8.14 (Local Decomposition).Consider the system (7.1). Suppose that
the controllability distribution∆C0 and the observability codistributionΩO as well
as ∆C0 +Ω⊥O are all of constant dimension on a neigborhood U of x0 ∈ Rn. Then
there exists a local diffeomorphismΨ on U such that the system equations in the
new coordinates are:






ζ̇1

ζ̇2

ζ̇3

ζ̇4




=






f1(ζ1,ζ2,ζ3,ζ4)
f2(ζ2,ζ4)
f3(ζ3,ζ4)

f4(ζ4)




+






G1(ζ1,ζ2,ζ3,ζ4)
G2(ζ2,ζ4)

0
0




u

y= h(ζ2,ζ4)

Moreover, the system restricted toζ3 = 0,ζ4 = 0 is locally controllable and the sys-
tem restricted toζ1 = 0,ζ3 = 0 is locally observable.

Proof: The theorem is proved in [2]. We outline a constructive proof, an implemen-
tation of which is described later. It proceeds as follows.

1. Compute the controllability distribution∆C0

2. Compute its complement∆C̄0

3. Compute the observability codistributionΩO and its annihilatorΩ⊥O
4. Compute the intersection∆CŌ of ∆C0 andΩ⊥O
5. Compute the complement∆CO of ∆CŌ in ∆C0

6. Compute the intersection∆C̄Ō of ∆C̄0
andΩ⊥O

7. Compute the complement∆C̄O of ∆C̄Ō in ∆C̄0

8. Compute and apply the transformation based on∆ = ∆CŌ+∆CO+∆C̄Ō+∆C̄O

Of course there are technical arguments required at variousstages in the process.

Example 8.15.Let us revisit Examples (7.6) and (8.5). In those instances we com-
puted the controllable and observable decompositions. Now, the ProPac function
LocalDecomposition is used to compute the complete local decomposition.

In[183]:= f = {x1 x3+x2 Exp[x2],x3,x4−x2 x3,x3ˆ2+x2 x4−x2ˆ2 x3};
G= Transpose [{{x1,1,0,x3}}];
h= {x3};
var= {x1,x2,x3,x4};

In[184]:= LocalDecomposition [f,G,h,var,{u},∞]

Out[184]=
{
{z2,z1,z3,z1 z3+z4},{x2,x1,x3,−x2 x3+x4},
{

z3,ez1 z1+z2 z3,z4,0
}
,{{1},{z2},{0},{0}},{z3}

}

Notice that the equations turn to be exactly those of Example(8.5).
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8.4 Observable Form

When (8.1) is locally observable, it is often convenient, asin linear theory, to trans-
form the system to either observable or observer form as a means to gaining insight
into the observability structure or even as a first step to observer design. In this and
the next section we describe these special forms and the computations needed to
obtain them.

8.4.1 Autonomous Systems

We will consider systems of the form

ẋ= f (x)
y= h(x)

(8.9)

wherex ∈ Rn, y ∈ Rp. For systems of this type we can easily generalize some im-
portant concepts that are well known for linear systems. Among these are the no-
tion of ‘observability indices’ and the ‘observable canonical form’ (see, for example,
Kailath [49]).

Recall the observability codistribution for the system (8.1)

ΩO =
〈

f ,g1, . . . ,gm
∣
∣span

{
dh1, . . . ,dhp

}〉

System (8.1) is locally obervable if it satisifies the observability rank condition
rankΩO = n. In the absence of inputs, i.e., system (8.14), we immediately obtain

ΩO = ΩL = span
{

Lk
f (dhi) , 1≤ i ≤ p, 0≤ k≤ n−1

}

Local observability requires that rankΩL = n.

We can get even better results because in general,ΩL is overspecified by then ·
p covectorsLk

f (dhi) indicated above. At most,n of these can be independent. By
identifyingn independent covectors the calculations are simplified and aconvenient
set of new coordinates is identified. Consider, first, the case of one output,p= 1. Let
us apply the standard algorithm to computeΩO:

Ω0 = span{dh1}
Ωk = Ωk−1+L f Ωk−1

Of course, there exists ak∗ ≤ n− 1, such thatΩk∗+1 = Ωk∗ . Thus, the algorithm
terminates with

ΩO = span
{

Lk
f (dhi) , 1≤ i ≤ p, 0≤ k≤ k∗

}

If k∗ = n−1, then new coordinates defined by
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z1 = h1(x), zi+1 = Li
f (h1) , i = 1, . . . ,n−1

lead to equations in theobservable form

d
dt








z1
...

zn−1

zn







=








z2
...
zn

f̃ (z1, . . . ,zn)








y= z1

Now, let us turn to the multiple output case. Applying the same procedure as above,
for eachi = 1, . . . , p we can generate a chain of independent covectors (one-forms),

dhi,L f (dhi), . . . ,L
k∗i
f (dhi). The tableau shown below illustrates thesep chains ar-

ranged in columns.

dh1 dh2 dh3 · · · dhp

L f (dh1) L f (dh2) L f (dh3) · · · L f (dhp)

L2
f (dh1) L2

f (dh2) L2
f (dh3) · · · L2

f (dhp)

L3
f (dh1) L3

f (dh2) L3
f (dh3) · · · L3

f (dhp)
...

...
...

...
... L

k∗2
f (dh2)

... L
k∗p
f (dhp)

L
k∗1
f (dh1) 0

... 0

0
... L

k∗3
f (dh3)

...
...

...
...

0 0 0 · · · 0

Now, we seek to identify the maximum number,κ = dimΩL ≤ n, of independent
covectors from this set. There are many ways to do this. Two systematic procedures
are based on a search by columns or a search by rows. The linearsystem counterparts
are well known, e.g., Kailath. With the column search, we begin with the left-most
column and proceed down the column retaining independent covectors and replacing
dependent covectors by zero. As we will see below, once a dependent element is
found in a column the remainder of the column is also dependent. In the row search
we begin with the first row and proceed from left to right accros the row. In this
process also, once a dependent element is identified the remainder of the column
consists of dependent elements. Let us illustrate these procedures with an example.

Example 8.16.Suppose we consider a system with state space of dimension 6 and
three outputs. Then we might generate three chains of row vectors of lengths 4, 6,
and 5 as illustrated below. From these we need to select 6 (assuming observability)
independent row vectors. We can do this by searching rows as shown on the left or
searching columns as shown on the right.
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










dh1 dh2 dh3

L f (dh1) L f (dh2) L f (dh3)

L2
f (dh1) L2

f (dh2) L2
f (dh3)

L3
f (h1) L3

f (h2) L3
f (h3)

0 L4
f (dh2) L4

f (dh3)

0 L5
f (dh2) 0












ւ ց













dh1 dh2 dh3

L f (dh1) L f (dh2) 0

0 L2
f (dh2)

...
... 0

...


























dh1 dh2 0
L f (dh1) L f (dh2) 0

L2
f (dh1) 0

...

L3
f (dh1)

...
0
0













Notice that in the row search we wind up with three chains of lengths{κ1,κ2,κ3}=
{2,3,1}. In the column search we obtain{κ1,κ2,κ3} = {4,2,0}. In each caseκ1+
κ2+ κ3 = 6

Remark 8.17 (Search for Observability indices).

1. In the column search, we retain the entire first column ifk∗1 ≤ κ . Then we begin
the second column. Should we encounter a dependent element then the remain-
der of the column is also dependent. Thus, we replace all remaining elements in
the column by zero and proceed to the next column. Let us establish this fact.
Clearly, the column lengths,κ i, i = 1, . . . , p will depend on the ordering of the
output mapshi(x).

2. In the row search, we work across the first row, and then the second and so forth.
When we encounter a dependent element we replace it and and all the elements
below it by zero. We can also establish that the set of column lengths resulting
from a row search are invariant with respect to the ordering of the output maps.

3. Now consider a row search that terminates with indicesκ i, i = 1, . . . , p and
κ1+ · · ·+ κp = n, i.e., the system is observable. Consider the coordinate trans-
formation

z1 = h1(x),z2 = L f (h1(x)) , . . .zκ1 = Lκ1−1
f (h1(x))

zκ1+1 = h2(x), . . .zκ1+κ2 = Lκ2−1
f (h2(x))

...

zκ1+···+κp−1+1 = hp(x), . . .zκ1+···+κp = L
κp−1
f (hp(x))

4. The equations in the new variables are in theobservable formwith observability
indicesκ1,κ2, . . . ,κp:
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d
dt




















z1
...

zκ1−1

zκ1
...

zκ1+···+κp−1+1
...

zn−1

zn




















=




















z2
...

zκ1

f̃1(z)
...

zκ1+···+κp−1+2
...
zn

f̃p(z)




















y1 = z1

y2 = zκ1+1
...

yp = zκ1+···+κp−1+1

8.4.2 Control Sequences

We now turn to the general, nonautonomous case of Eq. 8.1. It is assumed that the
system is locally observable, but not necessarily zero input observable. Lemma 8.8
motivates the following definitions. Define a sequence of codistributions

E0 := span{dh}
Ek = Ek−1+ span

{

dLfuk · · ·L fu1(h)
∣
∣ui ∈ {0,1}m, i = 1, . . . ,k

} (8.10)

We assume that, ‘almost everywhere’ on a neighborhood ofx0, (i) the codistributions
Ek are of constant dimension, and (ii) there exists a smallestp∗ such that

E0⊂ ·· · ⊂ Ep∗ = Ep∗+1 = dO (8.11)

Let nk denote the codimension ofEk−1 in Ek. Then there exist sets ofcontrol se-
quences[37]

I1 =
{
(ui1)

∣
∣ui1 ∈ {0,1}m

}
,

I2 =
{
(ui1,ui2)

∣
∣ui1 ∈ {0,1}m, ui2 ∈ {0,1}m

}
,

...

(8.12)

that satisfy

(a) If
(
ui1, . . . ,ui j

)
∈ I j then

(
ui1, . . . ,ui j−1

)
∈ I j−1, for j ≥ 2.

(b) The one-forms
⋃k

l=1

{

dLf
ul · · ·L fu1(h)

∣
∣
(
ui1, . . . ,ui l

)
∈ Il

}

∪{dh}

spanEk on a neighborhood ofx0. In the single output case these one-forms actu-
ally constitute a basis forEk and the cardinal number ofIk is nk.
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We obtain the control sequences,Ik, by direct, sequential construction of the codis-
tributionsEk. See [37] for more details about the single output case and Section 8.5.1
for our algorithm in the multiple output case.

Example 8.18.Consider the 5th order system

ẋ=









ex1+x2−1+ux2
1

−ex1+x2 +1+u
(
ex3−x2−e−x1−x2− x2

1

)

−ex1+x2 +1+ x3
1e
−x1−x3−ux2

1
x5

x1









, y=

[
x1

x4

]

This system is locally observable, but it is not observable for all inputs. In particular,
it is not observable withu≡ 0. We use theProPac functionControlSequences(see
Section 8.5.1) to compute

E0 = {d[x1],d[x4]}
E1 = {d[x1],d[x2],d[x4],d[x5]}
E2 = {d[x1],d[x2],d[x3],d[x4],d[x5]}

and
I1 = {0} , I2 = {0,1}

Now, direct computation leads to the four one-forms

α = d
[
L fu=0 (h1)

]
= ex1+x2 (d [x1]+d [x2])

β = d
[
L fu=0 (h2)

]
= d [x5]

γ = d
[
L fu=1L fu=0 (h1)

]
= ex1+x3 (d [x1]+d [x3])

δ = d
[
L fu=1L fu=0 (h2)

]
= d [x1]

and

span{d[x1],d[x4],α ,β}= span{d[x1],d[x2],d[x4],d[x5]}= E1

span{d[x1],d[x4],α ,β ,γ,δ}= span{d[x1],d[x2],d[x3],d[x4],d[x5]}= E2

8.4.3 Observability Indices

Recall the construction of the control sequencesIk and codistributionsEk in the pre-
vious Section8.4.2. In the subsequent discusion we use the notation

L fI j
(h) = L fuj . . .L fu1 (h) ,

(
u1, . . . ,u j) ∈ I j

Now, consider the collection of covectorsdLfIi
(h) for i = 0, . . . , p∗, which we can

arrange in the (block) tableau

dh1 dh2 · · · dhp

dLfI1
(h1) dLfI1

(h2) · · · dLfI1
(hp)

...
...

...
...

dLfIp∗
(h1) dLfIp∗

(h2) · · · dLfIp∗
(hp)
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From this set we seek to identify a maximal set of independentcovectors. We can
do this by searching down columns or across rows (recall the linear counterpart).
For a row search, begin with the first row and work from left to right, then move
to the next row. If the outputs are them selves independent, we identify p chains
of covectorsdhi ,dLfI1

(hi), · · · ,dLfIκi−1
(hi) of lengthκ i , i = 1, . . . , p. The integersκ i

are theobservability indices. For an observable systemκ1+ κ2+ · · ·+ κp = n. For
autonomous systems this definition of observability indices is equivalent to that in
[28] and [110].

8.4.4 Observable Form

If the system is observable, then we can define new state variablesz∈ Rn via the
transformationx→ z.

z=

















h1
...

L fIκ1−1
(h1)

...
hp
...

L fIκp−1
(hp)

















(8.13)

If the inverse is continuous and the the transformed equations produce unique solu-
tions we call the transformed equations anobservable form. This is consistent with
the usual terminology for linear systems and autonomous nonlinear systems. In the
latter case, the transformed equations are in the form ofp chains,

ż1 = z2 · · · żκ1+···+κp−1+1 = zκ1+···+κp−1+2
... · · ·

...
żκ1−1 = zκ1 · · · żκ1+···+κp−1 = zκ1+···+κp

żκ1 = ϕ1(z) · · · żκ1+···+κp = ϕp(z)
y1 = z1 · · · yp = zκ1+···+κp−1+1

Remark 8.19 (Xia and Zeitz).Note that if

rank

















dh1
...

dLfI1
(h1)

...
dhp

...
dLfIκi−1

(hp)

















(x0) = n
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the implicit function theorem guarantees the existence of asmooth (local) inverse of
the transformation (8.13) so that the transformation is a diffeomorphism. However,
an inverse may exist even if the rank condition fails. In thiscase, the inverse will only
be continuous. If the transformed differential equations have unique solutions on a
neighborhood ofx0, then this is still a useful transformation. This point is described
more fully in Xia and Zeitz [109].

Example 8.20 (Continuation of Example 8.18).Let us return to Example 8.18 and
compute the observable form. We find the observability indices to be 3,2. The trans-
formation to observable form is

z1 = x1, z2 =−1+ex1+x2, z3 =−1+ex1+x3, z4 = x4, z5 = x5

from which the observable form is obtained

d
dt









z1

z2

z3

z4

z5









=









z2+uz2
1

uz3

z3
1

z5

z1









, y=

[
z1

z4

]

In this example, we see the two-chain structure of the observable form equations.
Also, the role of the control input is displayed. We see clearly that the system is not
observable ifu≡ 0.

8.5 Observer Form

Observer design based on‘ linearization up to output injection’ was introduced in
[54] and [10] for the single output case without inputs and extended to the multiple
output case in [55]. In this approach the idea is to transformthe system (8.1) into the
form

ż= Az+ϕ (y), y=Cz (8.14)

whereA,C is an observable pair. When this is done, observer design is very easy. As
might be expected, systems that can be transformed into the form (8.14) are rare but
it is interesting to note that linear observability of (8.1)is not necessary if we do not
insist that the transformation be a diffeomorphism. An extension to the case where
(8.1) is not zero-input observable, is given by [34, 35]. This method begins with
reduction of (8.1) into the special form (time-varying linear up to output injection):

ż= A(u(t))z+ϕ (y,u(t))

y=
[

z1 · · · zp
]T

=Cz
(8.15)

In this form it is possible to use linear methods for observerdesign. Equation (8.15)
will be called anobserver formof which (8.14) is a special case. Not every locally
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observable nonlinear system (8.1) has an observer form. Theformulation we follow
is that of [34, 37, 35]. First, let us introduce some definitions. Consider a set ofp
vector fields,X =

{
X1, . . . ,Xp

}
. Sequentially define sets ofp+1-forms

ΩX
1 = spanR

{

dLfu (hi)∧p
j=1 dhj |i = 1, . . . , p; u∈ {0,1}m

}

ΩX
k+1 = spanR

{

dLfu(iXα )∧p
j=1 dhj

∣
∣α ∈ΩX

k , u∈ {0,1}m
}

ΩX = ∑k≥1 ΩX
k

Let i f (ω) denote the usual contraction of the formω with respect to the vector field
f . Then we use the notation

iX(ω) = iX1 ◦ · · · ◦ iXp(ω)

The following proposition, given in [35], generalizes the single output result in [34]
to multiple outputs.

Proposition 8.21.The system (8.1) is transformable into the observer form (8.15) if
and only if:

(1) dh1∧·· ·∧dhp(x0) 6= 0 (independent outputs)

(2) There exists a set of vector fields X1, . . . ,Xp that satisfies

(a) LXi h j = δi j

(b) dimΩX = n− p

(c) ∀ω ∈ΩX , diX(ω) = 0

(d) iX(ω1)∧·· ·∧ iX(ωn−p)∧dh1∧·· ·∧dhp(x0) 6= 0 whereωj j = 1, . . . ,n− p
is any basis forΩX .

If these conditions hold, then the transformation is given by

z1 = h1(x), . . . ,zp = hp(x)
dzj+p = iX(ωj), j = 1, . . . ,n− p

(8.16)

Proof: A sketch of the proof is given in [35]. However, it is useful here to provide a
more complete discussion of the sufficiency part in order to clarify the nature of later
computations. It is provided in Appendix 8.A.

Let us make a few comments about the stated conditions.

Remark 8.22 (Concerning item 2).

1. item (a) implies thep-tuple of vector fieldsX = [X1, . . . ,Xp] forms a right inverse
of the Jacobian∂h/∂x. The vector fieldXi is aligned with the direction ofyi = hi ,
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that is, it is orthogonal to the codimension-1 surfaceshi(x) = constant. As in the
single-output case [36] everyXi satisfying the conditions of Proposition 8.21 is
a constant vector field in the linearized coordinates, so it takes the form:

Xi =
∂

∂zi
+ ci

p+1
∂

∂zp+1
+ · · ·+ ci

n
∂

∂zn
, i = 1, . . . , p

Furthermore, a linear change of coordinates ˜z= Tz with z̃i = zi , i = 1, . . . , p
leaves the equations in TVLOI form and such a transformationcan be found so
that

Xi =
∂

∂ z̃i

SuchXi satisfy the conditions of Proposition 8.21 for a system in the observer
form (8.15), [34, 35].

2. in item (b) ΩX is considered a vector space over the reals. So dimΩX =
dimspanR ΩX , which is not the same as dimspanΩX . See item 5 below.

3. item (c) is an integrability condition for each of the 1-forms iX(ω). Recall that
any 1-form has the representation

ω =∑ai(x)dxi

Thus, we have the differential

dω =∑i
dai ∧dxi =∑i, j

∂ai

∂x j
dx j ∧dxi = 0

Since dx j ∧dxi =−dxi ∧dx j , this implies that the Jacobian∂a
/

∂x is symmetric
so that the 1-form dω is an exact differential.

4. item (d) implies that then coordinate functions

z1(x) = h1(x). . . . ,zp(x) = hp(x),zp(x), . . . ,zn(x)

are independent thereby defining a valid coordinate transformation.

5. item (b) and (d) together imply dimspanΩX = n− p. This follows from the fact
item (d) requiresiX(ω1)∧ ·· · ∧ iX(ωn−p) 6= 0 for every basis{ω1, . . . ,ωn−p}
of ΩX , i.e., the 1-formsiX(ω1), . . . , iX(ωn−p) are independent in the usual
sense (field of admissible functions). But this can be true only if the p-forms
ωi are independent. To see this, supposeX is a vector field onRn and sup-
poseω1, ω2 are p-forms. Define a thirdp-form that is dependent onω1 and
ω2, ω3 = γ1(x)ω1+γ2(x)ω2. TheniX(ω3) = γ1(x)iX(ω1)+γ2(x)iX(ω2). Conse-
quently,

iX(ω1)∧ iX(ω2)∧ iX(ω3)
= γ1(x)iX(ω1)∧ iX(ω2)∧ iX(ω1)+ γ2(x)iX(ω1)∧ iX(ω2)∧ iX(ω2)
= 0

This calculation extends to the general case in which there is a dependence
among any number ofp-forms.
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Now, we need to provide a construction for the set of vector fields X. First, obtain a
set of vector fieldsY1, . . . ,Yp that satisfy
















dh1
...

dLfI1
(h1)

...
dhp

...
dLfI1

(hp)
















[
Y1 · · · Yp

]
=

















0 · · · 0
...

...
...

1 0

0
...

0 · · ·
...

... · · · 0
0 · · · 1

















(8.17)

For any control sequenceu1,u2, . . . we can define the set of vector fields

Zi
u1···uκi−1 =

[
fuκi−1, [· · · [ fu1,Yi ] · · ·]

]
, i = 1, . . . , p

Now, identify the subset of control sequencesI ⊆ Ip∗ that satisfy

det

[

LZ1
u1···uκ1−1

(h) · · · LZp

u1···uκp−1
(h)

]

6= 0 (8.18)

and use any one of these sequences to obtain

[
X1 · · · Xp

]
=
[

LZ1
u1···uκ1−1

(h) · · · LZp

u1···uκp−1
(h)
]−1[

Z1
u1···uκ1−1 · · · Zp

u1···uκp−1

]

(8.19)
The following theorem summarizes the key result. It generalizes the single output
case proved in [37].

Proposition 8.23.The system (8.1) is transformable into the observer form (8.15) if
and only if:

1. I 6= /0, whereI ⊆ Ip∗ satsifies Eq. 8.18

2. ∀(u1, . . . ,up∗) ∈I , dLZ
u1···uκi−1 (hi) = 0, i = 1, . . . , p

3. The set of vector fields X1, . . . ,Xp is given by Equation (8.19), and the following
conditions hold:

(a) dimΩX = n− p

(b) ∀ω ∈ΩX , diX(ω) = 0

(c) iX(ω1)∧·· ·∧ iX(ωn−p)∧dh1∧·· ·∧dhp(x0) 6= 0 whereωj j = 1, . . . ,n− p
is any basis forΩX .

Proof: Sufficiencyfollows from Proposition 8.23.Necessityis proved in Appendix
8.B.
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8.5.1 Computational Tools

The computations described above and their implementationin aMathematicapack-
age were originally reported in [62]. In this section, we wish to summarize the key
elements of our implementation.

The package has three primary high level functions:

1. ObservabilityIndices , computes the observability indices.

2. ObservableTransform , computes the transformation to observable form.

3. LinearizeToOutputInjection , computes the transformation to observer
form.

These are supported by several utility functions that compute the control sequences,
solve the first order partial differential equations of Proposition (8.21), and others.
The most important of these are

1. ControlSequences

2. OmegaForms

3. SpanR

Underlying these calculations are basic tools for working with differential forms.
We have slightly extended the Exterior Differential Calculus package of [13]. These
three new tools have been incorporated into theProPacpackage described in [61].

A key construction isControlSequences which performs the computations out-
lined in Section 8.4.2. The algorithm proceeds as follows.

Algorithm : ControlSequences
Input : f ,h,x,u (ẋ= fu(x),y= h(x))
Output : list of indices, nk, list of sets of control sequences, Ik
begin

E0 = {dh} ; r = dimE0; k= 0;
while(dimE < n)&& (k< n) do

k++

Set upEk =
{

d
[

L fuk . . .L fu1 (h)
]

∪dh
}

with generic control sequence

nk:= dimEk−dimEk−1;
Enumerate all controlsuk ∈ {0,1}m that do not reduce dimEk =: Uk
Pick outnk control sequences of the form

sk =
{

sk−1,uk
}
, uk ∈Uk,sk−1 ∈ Ik−1 =: Ik

end

Once the control sequences are obtained, it is a simple matter to set up and solve
Equations (8.17) and (8.19). Once the vector fieldsX1, . . . ,Xp are obtained, we com-
puteΩX using the functionOmegaForms.
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Algorithm : OmegaForms
Input : f ,h,x,u,X1, . . . ,Xp

Output : a basis forΩX

begin

ΩX
1 = spanR

{

dL fu (hi)∧p
j=1 dhj

∣
∣
∣
∣

i = 1, . . . , p
u∈ {0,1}m

}

;

ΩX = ΩX
1 ;

k= 1;
while dimΩX < n− p do

k++

ΩX
k = spanR

{

dL fu (iX (α ))∧p
j=1 dhj

∣
∣
∣
∣

α ∈ ΩX
k−1

u∈ {0,1}m
}

ΩX := ΩX +ΩX
k

end

The central calculations in the above procedure are the summation in the last step
and the construction spanR. The summation is based on item (4) of Remark 8.22. We
successively check each(p+1)-form α ∈ΩX

k . If α ∈ spanΩX we drop it, otherwise
we join it to the set of(p+1)-forms that defineΩX .

Now, consider the procedure for computing spanR.

Algorithm : SpanR
Input : a list ofn forms of dimensionp, A= {α1, . . . ,αn}
Output : a set of basis forms for spanRA
begin

Basis= {α1} (assumingα1 is not trivial)
k= 2
while k≤ n do

k++
Check ifαk can be expressed as a linear combination, over the reals, of the
forms inBasis. If not addαk to Basis.

end

The test in the above algorithm is implemented using theMathematicafunction
Reduce . Suppose, at thekth step, we have

Basis=
{

β1, . . . ,βq
}

We want to determine if there exists real numbersk1, . . . ,kq such that

αk = k1β1+ · · ·+ kqβq

Reduce allows us to seek solutions of this equation with the unknowns k1, . . . ,kq

restricted to real numbers.

Remark 8.24.Remarks on Computation. The observability properties of nonlinear
systems have nuances that have no counterpart in linear theory. One consequence
of this is that there are opportunities for state estimationin nonlinear systems even
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when its linearization is not observable or there is some other pathology associ-
ated with observability (see Section 8.2). There are important practical implications
because problems like this occur when operating around bifurcation points and in
fault detection and identification. However, to take advantage of these possibilities
it is necessary to build observers using new design paradigms, some of which have
emerged in recent years. To do so requires development of newcomputational tools.

Above, we have described symbolic computations for reducing nonlinear smooth
affine systems to observable and observer forms, when possible, as the first step in
observer design. These tools can be applied to systems that are linearly observable,
locally observable with zero input or merely locally observable. Our approach in-
volves computations with differential forms, which experience shows to be extremely
efficient.

Our characterization has at its root the computation of sequences of constant controls
as formulated in [37]. This idea appears to have its origins in the pioneering work
of [40]. Using this construction, we introduce a local observable form for nonau-
tonomous systems that is consistent with prior work and complements the observer
form of [35]. Our approach to computing the observer form is based on a muliple-
output generalization (Proposition 8.23) of the method proposed in [37].

8.5.2 Examples

Several examples follow that illustrate the computations (these and other exam-
ples can be found worked out in theMathematicanotebook Examples.nb that can
be downloaded from http://www.pages.drexel.edu/˜ hgk22/notebook.htm). In each
case we compute both the observable and observer forms. First, Example (8.25) is
linearly observable (and therefore zero-input observable). Example (8.26) is zero-
input observable but not linearly observable. Example (8.27) is locally observable
but is not zero input observable and is, therefore, not the linearly observability. Ex-
ample (8.28) is linearly observable. Example (8.29) is not zero-input observable but
satisfies the observablity rank condition.

Example 8.25 (Krener & Respondek example 7.3).Consider the three state, nonau-
tonomous system from [55]

d
dt





x1

x2

x3



=





x2

x3+(1+ex1)u
3x2

1x2
2+ x3

1x3+(1+ x1+ x2)u



 , y= x1

This system is linearly observable. Notice that it is already in observable form. Ap-
plying the tools described above, we find that the system transforms to observer form
with the transformation

z1 = x1, z2 =
(
x4

1−4x2
)
/2, z3 =−x3

1x2+ x3



258 8 Observability and Observer Design

The observer form is

d
dt





z1

z2

z3



=





0 −1/2 0
0 0 −2
0 − 1

2u 0









z1

z2

z3



+





1
4y4

−2(1+ey)u
(
1+ y− (1+ey)y3+ y4/4

)
u





Example 8.26 (Xia & Zeitz example 2).Now, consider the simple two state, single
output, autonomous example from [109]. Although the transformation is smooth, its
inverse is only continuous.

d
dt

[
x1

x2

]

=

[
x1

x2

]

, y= x2
1+ x5

2

The system is observable with index 2, but it is not linearly observable. The transfor-
mation to observable form is smooth

z1 = x3
1+ x5

2, z2 = 3x3
1+5x5

2

But its inverse ia not
x1 =−

(
− 1

2

)1/3 (5z1− z2)
1/3

x2 =−
(
− 1

2

)1/5 (−3z1+ z2)
1/5

The observable form equations are

d
dt

[
z1

z2

]

=

[
z2

−15z1+8z2

]

, y= z1

The transformation to observer form is

z1 = x3
1+ x5

2, z2 = 5x3
1+3x5

2

and its inverse is
x1 =−

(
− 1

2

)1/3 (−3z1+ z2)
1/3

x2 =−
(
− 1

2

)1/5 (5z1− z2)
1/5

The observer form equations are

d
dt

[
z1

z2

]

=

[
8z1− z2

15z1

]

=

[
−z2

0

]

+

[
8
15

]

y

Example 8.27 (Xia & Zeitz example 3).Now consider a nonautonomous example,
from [109]. It is not zero-input observable. However, it is observable with observ-
ability index 2. As we will see, the observable and observer form are the same. The
transformation is smooth, but its inverse is merely continuous.

ẋ1 = x3
2

ẋ2 = x2u
y= x1
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The transformation to observable/observer form is

z1 = x1, z2 =−x3
2

and its inverse is
x1 = z1, x2 =−z1/3

2

The transformed equations are
ż1 =−z2

ż2 = 3z2u
y= z1

Example 8.28 (Hou and Pugh).This example is from [44]. They propose a method
for linearization to output injection for multiple output autonomous systems different
from that implemented here. To obtain the observer form we need to reorder the
outputs.

d
dt





x1

x2

x3



=





x2

x2x3

x2



 , y=

[
0 1
1 0

][
x1

x2

]

The system is observable with indices 2,1. The transformation to observable form is
simply a reordering of states

z1 = x3, z2 = x2, z3 = x1

leading to

d
dt





z1

z2

z3



=





z2

z1z2

z2





The transformation to observer form is

z1 = x3, z2 = x1, z3 =
1
2

(
−2x2+ x2

3

)

This transformation produces the observer form

d
dt





z1

z2

z3



=





1
2

(
z2
1−2z3

)

1
2

(
z2
1−2z3

)

0



=





0 0−1
0 0−1
0 0 0









z1

z2

z3



+
z2
1

2





1
1
0





y=

[
z1

z2

]

Example 8.29 (Continuation of Example 8.18).We return to Example 8.18 and com-
pute the observer form. The transformation to observer formis found to be

z1 = x1, z2 = x4, z3 =−ex1+x2, z4 =−x5, z5 = ex1+x3
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From this we find the observer form

d
dt









z1

z2

z3

z4

z5









=









−z3−1+uz2
1

−z4

u(1− z5)
−z1

z3
1









=









0 0−1 0 0
0 0 0 0 0
0 0 0 0−u
0 0 0 0 0
0 0 0 0 0

















z1

z2

z3

z4

z5









+









−1+ y2
1u

y2

u
−y1

y3
1









Remark 8.30.Remarks on Examples.

The above examples are chosen to illustrate a variety of circumstances. The following
cases are covered:

1. autonomous and nonautonomous,

2. linearly observable,

3. not linearly observable, but zero-input observable,

4. not zero-input observable, but satisfies the observability rank condition

There are further enhancements that need to be considered. Of course, not all locally
observable systems have an observer form. However, the class of systems that do can
be expanded if one allows for a transformation of the outputs. This was pointed out
in [54]. In the single-output case, necessary conditions for the output transformation
where obtained by [9] in the framework employed herein. In the multiple-output case
even output reordering helps (see Example 8.28 and [44]).

8.6 Approaches to Nonlinear Observer Design

An observer for the system (8.1) is a dynamical system with inputsy(τ ),u(τ ), 0≤
τ ≤ t and output ˆx(t) ∈ Rn such that ˆx(t) is an estimate ofx(t) in the sense that
‖x(t)− x̂(t)‖ → 0 ast → ∞. When (8.1) is linearly observable there are many ap-
proaches to observer design. On the other hand, if (8.1) is not linearly observable,
options are limited.

8.6.1 Design Based on the Observer Form

If the system 8.1 can be transformed into the observer form ofSection 8.5 then ob-
sever design is very straightforward. Unfortunately, thisproperty applies to a limited
class of systems. The idea is to transform the system into the‘time varying’ version
of (8.14), specifically the ‘observer form’ given in (8.15),repeated here.

ż= A(u(t))z+ϕ (y,u(t))

y=
[

z1 · · · zp
]T

=Cz
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A constructive approach to computing the transformation for single-output systems
is given in [37]. Recently, [100] present a different construction that applies to a
somewhat larger class of single-output systems in which thematrix A is allowed to
depend on bothu andy. That is in (8.15)A(u(t))→ A(u(t) ,y(t)).

For a system in the form of (8.15) a Kalman observer can be used

˙̂z= A(u(t)) ẑ+ϕ (u(t) ,y(t))+P(t)CT (y(t)−Cẑ)
Ṗ= PAT (u(t))+A(u(t))P−PCTCP+Q

This observer converges exponentially providedu(t) is such that the linear time-
varying system

ż= A(u(t))z, y=Cz

is completely observable [50]. This ‘passive approach’ relies on the natural occur-
rence of a suitably rich input.

8.6.2 Local Exponential Observers

Local exponential observers have been studied since the 1970’s, e.g., [53, 111, 101],
in an attempt to extend linear methods to nonlinear dynamical systems. For the most
part, existing methods are limited to linear-like systems,in the sense that they are
smooth and zero input observable1.

Consider the nonlinear system

ẋ= f (x,u), y= h(x) (8.20)

and suppose the system has an equilibrium point at(x∗,u∗), i.e. f (x∗,u∗) = 0. A local
observerfor (8.20) is another dynamical system, driven by inputsy(t) andu(t), that
produces an estimate ˆx(t) of x(t) such that the errore(t) = x(t)− x̂(t) converges to
zero as time tends to infinity:

‖x(t)− x̂(t)‖→ 0, as t→ ∞ (8.21)

providedx(t) remains sufficiently close tox∗.

One approach to observer design mimics the structure of fullstate observers for
linear systems. Namely, the measurement error (or residual) is used to drive a replica
of the system so that the observer equations are

˙̂x= f (x̂,u)+ κ (x̂,y−h(x̂)) (8.22)

The error dynamics can be computed

ė= ẋ(t)− ˙̂x(t) = f (x,u)− f (x−e,u)+ κ (x−e,h(x)−h(x−e)) (8.23)

1Actually, the system is only required to be detectable as defined below.
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Let us consider this as a differential equation that definese, the error response to an
exogenous inputx(t) (of course, it must be a solution of (8.20)). Notice thate= 0
does indeed correspond to an equilibrium point ( ˙e= 0) of (8.23) for arbitraryx(t)
providedκ (x,0) = 0. Hence, the system (8.22) is an observer ifκ (·, ·) can be chosen
so that this equilibrium point is asymptotically stable.

Definition 8.31.Exponential Detectability

A system is said to be exponentially detectable at(x∗,u∗) if there exists a function
γ(ξ ,y) defined on a neighborhood of(x∗,y∗ = h(x∗)) ∈ Rn+q that satisfies

(i) γ(x∗,y∗) = 0,

(ii) γ(ξ ,h(ξ )) = f (ξ ,u∗),

(iii) the equilibrium pointξ = x∗ of ξ̇ = γ(ξ ,y∗) is exponentially stable.

Exponential detectability implies that the system

˙̂x= f (x̂,u)− f (x̂,u∗)+ γ(x̂,y) (8.24)

is a local observer. To see this, compute the error dynamics

ė= f (x,u)− f (x−e,u)+ f (x−e,u∗)− γ(x−e,h(x)) (8.25)

and notice that in view of (ii),e= 0 is an equilibrium point for all exogenous inputs
x(t),u(t). Moreover, exponential stability is assured by (iii)– as can be verified by
linearizing (8.25) with respect toeat the equilibrium pointe= 0.

Conditions (ii) and (iii) generalize the linear case in a natural way. It is easy to see
thatγ(ξ ,y) := Aξ −L(y−Cξ ) satisfies (ii), and (iii) is satisfied as well providedL is
chosen such thatA+LC is asymptotically stable. Moreover, the nonlinear observer
(8.22) corresponds to the choiceγ(ξ ,y) := f (ξ ,u∗)+κ (ξ ,y−h(ξ )) providedκ (·, ·)
can be chosen to provide exponential stability, i.e., to satisfy (iii).

The functionExponentialObserver implements the above construction. Its
calling syntax is

{fhat,xhat,eigs}=
ExponentialObserver[f,h,x,u,y,x0,u0,delta]

Thus, given: the system as defined by equations (8.20), an equilibrium point (x0,u0)
and a specified decay rateδ the function returns an observer of the form

˙̂x= f̂ (x̂,u,y)

The eigenvalues of the linearized observer at the equilibrium point(x0,u0) are also
returned.
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Example 8.32 (An exponential observer).Here is a simple example of an exponential
observer.

In[185]:= f = {x1ˆ2 +Cos[x2]∗x3−x2,x2∗Cos[x1],Sin[x3]+Cos[x1]+u1};
h= {x1+x1∗x2+x3,x2+x3ˆ3};

In[186]:= ExponentialObserver [f,h,{x1,x2,x3},{u1},{y1,y2},{0,0,0},{0},4]
Out[186]= {{x1hat2−x2hat+27 (−x1hat−x1hat x2hat−x3hat+y1)+

5 (−x2hat−x3hat3+y2)+x3hat Cos[x2hat],

−10 (−x2hat−x3hat3+y2)+x2hat Cos[x1hat],

u1−45 (−x1hat−x1hat x2hat−x3hat+y1)−
5 (−x2hat−x3hat3+y2)+Cos[x1hat]+Sin[x3hat]},

{x1hat,x2hat,x3hat},{−5,−5,−4}}

Notice that the observer states are assigned names that are the original state names
extended with ‘hat.’ Alternatively, the designer can specify a symbol upon which
state names will be based.

Construction of Exponential Observers

There is considerable literature concerning the design of exponential observers, in-
cluding Kazantis and Kravaris [3] consider the single output, observable system
(7.1). Since the system (8.20) is (zero-input) observable,its linearization

δẋ= Fδx
δy= Hδx

(8.26)

is also observable. They use Lyapunov’s auxiliary theorem to show that an observ-
able linearization implies the existence of an observer for(7.1) with linear dynamics
provided the convex hull of the set of eigenvalues ofF does not contain the origin of
the complex plane2, i.e. 0/∈CH{λ1, . . . ,λn}, whereλ i , i = 1, . . . ,n denote the eigen-
values ofF . When this condition is satisfied, the set of eigenvalues is said to belong to
the ‘Poincaré domain’ [8]. Under these conditions, [3] provides a direct construction
of such an observer. It is claimed in [3] that this construction, bypassing as it does the
requirement of the intermediate form (??), is less restrictive than the requirements
in [1]. But still, the eigenvalue constraint onF is itself undesirably restrictive. As a
matter of fact, there are many systems that satisfy the necessary conditions of [1] but
do not satisfy the conditions of [3]. The following is one such example.

2Notice that this is equivalent to having all eigenvalues in the open left half plane or all
eigenvalues in the open right half plane, i.e. the origin is asource or a sink.





Appendix

8.A Proof of the Sufficiency Part of Proposition 8.21

Sufficiency: Assume that the hypotheses of the proposition hold, and thenew coor-
dinates are defined by Equations (8.16). The vector fieldfu can be expressed in the
new coordinates

fu =
n

∑
i=1

L fu (zi)
∂

∂zi

We wish to determine the components of the vector fieldF i
u = L fu (zi). Notice that,

for i > p, we can write

dFi
u∧dz1∧·· ·∧dzp = L fu (dzi)∧dz1∧·· ·∧dzp

In view of (8.16) this becomes

dFi
u∧dz1∧·· ·∧dzp = L fu (iX (ωi−p))∧dz1∧·· ·∧dzp

But,L fu (iX (ωi−p))∈ΩX. So, we can expressL fu (iX (ωi−p)) as a linear combination
of then− pbasis elements ofΩX where the real coefficients depend on the parameter
u. Thus,

dFi
u∧dz1∧·· ·∧dzp =

n−p

∑
j=1

α i
j (u)ωj ∧dz1∧·· ·∧dzp

One can easily verify the identityiX (ωj)∧dz1∧·· ·∧dzp =ωj , which, again in view
of (8.16), implies thatωj = dzj+p∧dz1∧·· ·∧dzp, for j =1, . . . ,n−p. Consequently,

dFi
u∧dz1∧·· ·∧dzp =

n−p

∑
j=1

α i
j (u)dzj+p∧dz1∧·· ·∧dzp

Then, it must be true that
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dFi
u =

n−p

∑
j=1

α i
j (u)dzj+p+

p

∑
j=1

φ(z1, . . . ,zp,u)dzj

Note, that it is the integrability requirement that insuresthatφ depends only on the
coordinatesz1, . . . ,zp. Integrating, leads to

F i
u =

n−p

∑
j=1

α i
j (u)zj+p+ϕ (z1, . . . ,zp,u) , i = p+1, . . . ,n

For j = 1, . . . , p,

dFi
u∧dz1∧·· ·∧dzp = dLfu (zi)∧dz1∧·· ·∧dzp

But, in view of ΩX
1 , dLfu (zi) ∈ ΩX, for i = 1, . . . , p. So, the remainder of the argu-

ment proceeds as before.

8.B Proof of the Necessity Part of Proposition 8.23

Here, we provide a sketch of the proof. The overall logic follows the arguments of
[37] for the single-output case.

The conditions of the theorem are coordinate free. So if the system (8.1) is trans-
formable to (8.15) we can verify conditions (1), (2), (3) in the z-coordinates. We
begin by introducing the ‘unobservable’ distributions (replaces the unobservable sub-
space of linear systems)

F0 = {X |LX (hi) = 0, i = 1, . . . , p}

Fk+1 = Fk∩






X

∣
∣
∣
∣
∣
∣

LXL fuk+1 · · ·L fu1 (hi) = 0
u1, . . . ,uk+1 ∈ [0,1]m

i = 1, . . . , p







Our observability assumption onE0, . . . .Ep∗ implies that

F0⊃ ·· · ⊃Fp∗ = {0}

In z-coordinates, we can compute (following tedious computations as in [37])

F0 = {X |CX = 0}
Fk+1 = Fk∩

{

X
∣
∣
∣(CA)lk+1

X = 0
}

Accordingly, introduce the sets of constant vector fields

F0 = {X ∈Rn |CX = 0}= kerC

Fk+1 = Fk∩
{

X ∈ Rn
∣
∣
∣(CA)lk+1

X = 0
}

Comparing these, [37] point out that the real vector spacesFk span the distributions
Fk. Their Lemma 5 and Claim 7 are easily extended to the multi-output case:



8.B Proof of the Necessity Part of Proposition 8.23 267

Lemma 8.33.(i) ∀u ∈ {0,1}m, [ fu,Fk+1] ⊂ Fk for k = 0, . . . , p∗ − 1. (ii) ∀X ∈
Fk\Fk+1, ∃u∈ {0,1}m such that[ fu,X] ∈Fk−1\Fk for k= 1, . . . , p∗.

Proof: (i) Let X ∈ Fk+1. From the definition of theFk’s we have for every
(
u1, . . . ,ur

)
∈ ({0,1}m)r and 1≤ r ≤ k+1,LXL fur · · ·L fu1 (hi) = 0, i = 1, . . . , p. Thus,

L[ fu,X]L fur · · ·L fu1 (hi) = L fuL fur · · ·L fu1 (hi)−LXL fur · · ·L fu1 (hi) = 0

so that[ fu,X] ∈Fk.

(ii) Assume the contrary, i.e., there existsX ∈ Fk\Fk+1 such that for everyu ∈
{0,1}m, [ fu,X]∈Fk, then using the formula in (i) above, we obtainLXL fuL f

uk · · ·L fu1 (hi)=

0, i = 1, . . . , p, for everyu,u1, . . . ,uk ∈ {0,1}m. But then,X ∈Fk+1, which contra-
dicts the assumption.

On this basis [37] establish the following corresponding result for theFk.

Lemma 8.34.(i) ∀u ∈ {0,1}m, [ fu,Fk+1] ⊂ Fk, for k = 1, . . . , p∗ − 1, (ii) ∀X ∈
Fk\Fk+1, ∃u∈ {0,1}m such that[ fu,X] ∈ Fk−1\Fk for k= 1, . . . , p∗−1.

Proof: For everyX ∈ Fk+1, [ fu,X] ∈ Fk, 0≤ k ≤ p∗ − 1 by Lemma 8.33. Now
compute

[ fu,X] = − ∂ fu
∂z X =−A(u)X− ∂ϕ (y,u)

∂y CX =−A(u)X

Thus, [ fu,X] is a constant vector field. Hence,[ fu,X] ∈ Fk. This proves (i). Now,
supposeX ∈ Fk\Fk−1. Again from Lemma 8.33, we have[ fu,X] ∈ Fk−1\Fk. But
the calculation above shows[ fu,X] is a constant vector field, so[ fu,X] ∈ Fk−1\Fk,
thus establishing (ii).

Proof of main result:

Condition (1): By rewriting Equation (8.17) inz-coordinates and in view of the defi-
nition of the setsFk, we can establishYi ∈ Fκi−2\Fκi−1, for eachi = 1, . . . , p.

Lemma 8.34 implies there existsu1 ∈ [0,1]m such that[ fu1,Yi ] ∈ Fκi−2\Fκi−1. Suc-
cessive application of Lemma 8.34 leads to the conclusion∃u1, . . . ,uκi−1 ∈ [0,1]m

such that
[

fuκi−1, [· · · [ fu1,Yi ] · · ·]
]
∈ F0\F1 (8.27)

Now we can show that there existsuκi such that

[

fuκi
, [· · · [ fu1,Y] · · ·]

]

/∈ F0 (8.28)

To see this, assume the contrary, i.e.,

∀uκi ∈ Rm; L[ fuκi ,[···[ fu1 ,Yi ]···]](h) /∈ F0
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so that

L fuκi
L[

f
uκi−1 ,[···[ fu1 ,Yi ]···]

](h)−L[
f
uκi−1 ,[···[ fu1 ,Yi ]···]

]L fuκi
(h) = 0

Now, since [

fuκi−1, [· · · [ fu1,Y] · · ·]
]

∈ F0

it follows thatL[
f
uκi−1 ,[···[ fu1 ,Yi ]···]

](h) = 0 and, hence,

[
fuκi−1, [· · · [ fu1,Yi ] · · ·]

]
∈ F1

which contradicts Equation (8.27). Consequently, (8.28) holds.

By construction

Zi
u1···uκi−1 :=

[

fuκi−1, [· · · [ fu1,Yi ] · · ·]
]

is a constant vector field in the z-coordinates, i.e.,

Zi
u1···uκi−1 =

n

∑
k=1

di
k

∂
∂zk

for some constantsdi
k. Now compute,

C jZi
u1···uκi−1 =C j

n

∑
k=1

di
k

∂
∂zk

= di
j

∂
∂zj

so that

LZi
u1···uκi−1

(Cz) =CZi
u1···uκi−1 =






di
1
...

di
p






It is not difficult to verify that the (constant) vector fieldsZi
u1···uκi−1 are linearly inde-

pendent. Now, from (8.28), we have for eachi = 1, . . . , p

[
di

1 · · · di
p 0 · · · 0

]T
/∈ kerC

Since rankC = p, we have dimkerC = n− p and there are preciselyp independent
vectors not contained in kerC. It follows that thep-vectors

[
di

1 · · · di
p

]
, i = 1, . . . , p

are independent. Consequently,

[

LZ1
u1···uκ1−1

(Cz) · · · LZp

u1···uκp−1
(Cz)

]

=






d1
1 · · · d

p
1

...
. . .

...
d1

p · · · dp
p






is invertible. This impliesI 6= /0.

Condition (2): Since theZi
u1···uκi−1 are constant vector fields in thez-coordinates,

Condition (2) holds.
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Condition (3): In thez-coordinates, compute

Xi =
[

LZ1
u1···uκ1−1

(Cz) · · · LZp

u1···uκp−1
(Cz)

]−1
Zi

u1···uκi−1 =
∂

∂zi

which satisfies the conditions of Proposition 8.21 for a system in the form observer
form (8.15), see item (1) in Remark 8.22 and [34, 35].
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Robust and Adaptive Control Systems

9.1 Introduction

Developments in nonlinear geometric control theory have had a substantial impact on
the theory and design of robust and adaptive controls for nonlinear systems. We will
describe some of the more established approaches and the associated computations.
Our primary interest, in this chapter and the next, is the application of feedback
linearization methods to uncertain systems.

Any model-based control design method is vulnerable to model errors. This is ob-
viously a concern with feedback linearization techniques since exact cancelation is
a basic ingredient of the method. On the other hand, models used for control sys-
tem design are never infinitely precise. Thus, it is necessary to investigate the impact
of model uncertainty on closed loop system performance and to devise methods for
insuring adequate performance when a controller is appliedto systems that deviate
from the design model.

Model uncertainty is generally of two types.Unmodeled dynamicsrefers to dynam-
ics that are neglected because they act on a time scale (typically) much faster than
the time scale of interest.Functional uncertaintymeans uncertainty in the functions
f ,G,h that define the affine differential equation model. The effect of unmodeled
dynamics is often analyzed using singular perturbation or averaging methods. While
unmodeled dynamics are extremely important, our focus willbe on functional un-
certainty. Normally, functional uncertainty is characterized by perturbing a nominal
(certain) part by an appropriately bounded, but otherwise unspecified function. In
some cases the uncertainty is characterized in terms of an uncertain parameter.

Feedback linearization methods typically begin with the transformation of the design
model to a normal form. Thus, we begin, in Section 2, with an investigation of the
consequences of applying a state transformation derived onthe basis of a nominal
model to a perturbation of it. When the uncertainties satisfy certain structural condi-
tions, the transformed system assumes a triangular form that can facilitate analysis.
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The design of robust stabilizers, i.e., controllers that guarantee closed loop stability
for all admissible perturbations of a nominal plant, for systems with matched uncer-
tainties is considered in Section 3 using the method ofLyapunov redesign. In Section
4 we consider the design of robust stabilizing controllers for systems with a class of
nonmatched uncertainties. The design we describe employs abacksteppingmethod.
Backstepping will reappear with some variation in our discussion of adaptive control
and variable structure control.

We then turn to the case where the uncertainty can be characterized in terms of uncer-
tain parameters. Thus, we describe the design of parameter-adaptivecontrols. Section
5 introduces a basic adaptive regulator. In general, this controller requires measure-
ment of the system states and some of the transformed states.The need to measure
transformed states can be avoided by using the backsteppingapproach discussed in
Section 6. Section 7 describes an adaptive tracking controller based on dynamic in-
version. Computational tools are described and illustrated for each method.

9.2 Perturbations of Feedback Linearizable
Systems

We will examine perturbations of systems of known relative degree. There are several
important applications of such an analysis. For example, a perturbation may arise as
an uncertainty applied to a nominal system. Or it may simply be convenient, for a
variety of reasons, to divide a system into a nominal system plus a perturbation in
order to isolate certain terms. The main point is that under certain constraints on
the perturbation, the perturbed system can be transformed into a triangular or near
triangular form that can be exploited for purposes of control system design.

9.2.1 SISO Case

We will consider the ‘perturbed’ SISO system

ẋ = f (x)+ϕ (x)+ [g(x)+ γ(x)]u
y = h(x)

(9.1)

wherex ∈ Rn, u ∈ R, y ∈ R andϕ (x), γ(x) represent a perturbation applied to the
nominal system( f ,g,h). Previously, we discussed the reduction of the nominal sys-
tem to normal form via a transformation of coordinates. Under certain conditions,
the nominal transformation when applied to the perturbed system still produces a
useful form of the system equations. The following definitions apply constraints on
the structure of the perturbationϕ (x), along the lines of [81]. Recall

Gi = span
{

g, . . . ,adi
f g
}
, 0≤ i ≤ n−1
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Definition 9.1. Suppose the system (9.1) is of relative degree r. We say that the per-
turbation,ϕ (x) satisfies:

1. thetriangularity conditionif adϕ Gi ∈ Gi+1, 0≤ i ≤ r−3

2. thestrict triangularity conditionif adϕ Gi ∈ Gi , 0≤ i ≤ r−2

3. theextended matching conditionif ϕ ∈ G1

4. thematching conditionif ϕ ∈ G0

Notice that these conditions are listed from weakest to strongest, i.e.,

matching⇒ extended matching⇒ strict triangularity⇒ triangularity

Consider the following result which perturbs only the driftterm.

Proposition 9.2.Assume

1. the nominal system( f ,g,h) has relative degree r at the x0 ∈ Rn.

2. the perturbed system( f +ϕ ,g,h) satisfies thestrict triangularityassumption on
a neighborhood of x0: adϕ Gi ⊂ Gi , 0≤ i ≤ r−2.

There exists a local transformation on a neighborhood of x0 that reduces the per-
turbed system to

ξ̇ = F̂(ξ ,z), ξ ∈Rn−r

ż1 = z2+φ1(ξ ,z1)
ż2 = z3+φ2(ξ ,z1,z2)
...
żr = α (x(ξ ,z))+φr(ξ ,z1, . . . ,zr)+ρ(x(ξ ,z))u

Proof: The nominal system has relative degreer. Then there exists a transformation
x 7→ (ξ ,z), ξ ∈ Rn−r , zi ∈ R with zi(x) = Li−1

f h(x), 1≤ i ≤ r, that takes the nominal
system to

ξ̇ = F(ξ ,z)
ż1 = z2
...
żr = Lr

f h(x(ξ ,z))+LgLr−1
f h(x(ξ ,z))u

Now, we apply this transformation to the system (9.1). Firstcompute

ξ̇ = ∂ξ
∂x ẋ
∣
∣
∣
x7→(ξ ,z)

= L f ξ (x)+Lϕ ξ (x)+Lgξ (x)u
∣
∣
x7→(ξ ,z)

= F(ξ ,z)+ Lϕ ξ (x)
∣
∣
x7→(ξ ,z)

= F̂(ξ ,z)
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Now compute

ż1 = ẏ= L f h(x)+Lϕ h(x)+Lgh(x)u= z2+Lϕ h(x)
ż2 = L2

f h(x)+Lϕ L f h(x)+LgL f h(x)u= z3+Lϕ L f h(x)
...

żr = Lr
f h(x)+Lϕ Lr−1

f h(x)+LgL
r−1
f h(x)u

Define the functionφ(ξ ,z)







Lϕ h(x(ξ ,z))
Lϕ L f h(x(ξ ,z))

...
Lϕ Lr−1

f h(x(ξ ,z))







= φ(ξ ,z)

so that we can write

ż1 = z2+φ1(ξ ,z))
ż2 = z3+φ2(ξ ,z)

...
żr = Lr

f h(x)+φr(ξ ,z)+LgLr−1
f h(x)u

So, we see that under transformationϕ (x) 7→ φ(ξ ,z).

It is necessary to establish the triangular dependence ofφ on z1, . . . ,zr . We do the
required calculations in the transformed –(ξ ,z) – coordinates. Under transformation
f andg become

f (x) 7→ f̂ (ζ ) =









F(ξ ,z)
z2
...
zr

Lr
f h(x(ξ ,z))









, g(x) 7→ ĝ(ζ ) =










0
...
...
0

LgLr−1
f h(x(ξ ,z))










Thus, we see that

adf g=

[
∂ ĝ
∂ζ

]

f̂ −
[

∂ f̂
∂ζ

]

ĝ=









0
...
0
0

LgLr
f h









−









0
...
0

LgLr−1
f h

LgLr
f h









=−









0
...
0

LgLr−1
f h
0









Similarly, we compute
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adi
f g=














0
...
0

(−1)iLgLr−1
f h

0
...
0














← (n− i), 1≤ i ≤ r−1

Thus, we have

Gi = span





















0
...
...
...
...
0

LgLr−1
f h




























0
...
...
...
0

−LgLr−1
f h

0














· · ·














0
...
0

(−1)iLgLr−1
f h

0
...
0














︸ ︷︷ ︸

i terms







Now, consider

adϕ g=
∂ϕ
∂ζ

g− ∂g
∂ζ

ϕ =
∂ϕ
∂zn

LgLr−1
f h−








0
...
0

∂LgLr−1
f h

∂ζ ϕ







∈ span













0
...
0

LgLr−1
f h













This implies
∂ϕ1

∂zr
= 0, . . . ,

∂ϕn−1

∂zr
= 0

Next consider

adϕ adf g= ∂ϕ
∂ζ adf g− ∂adf g

∂ζ ϕ

= ∂ϕ
∂zr−1

LgLr−1
f h−










0
...
0

∂LgLr−1
f h

∂ζ ϕ
0










∈ span
















0
...
...
0

LgLr−1
f h


















0
...
0

LgLr−1
f h
0















This implies
∂ϕ1

∂zr−1
= 0, . . . ,

∂ϕn−2

∂zr−1
= 0
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Continuing in this way, we find

∂ϕ1

∂zr−i
= 0, . . . ,

∂ϕn−i−1

∂zr−i
= 0, 0≤ i ≤ r−2

providing the desired result.

The above result can be easily generalized to allow perturbations in the control gain
of the form γ ∈ G0. Although restrictive, this class of perturbations is nontheless
useful in applications. Notice that for any scalar functionor vector fieldw(x), if
Lgw(x) = 0 then if thematching condition, γ∈ G0, is true we haveLγw(x) = 0. Thus,
in the calculations in the above proof, the only change is in the last of the transformed
state equations. In fact, we have for the transformed system:

ξ̇ = F̂(ξ ,z), ξ ∈ Rn−r

ż1 = z2+φ1(ξ ,z1)
ż2 = z3+φ2(ξ ,z1,z2)
...
żr = α (x(ξ ,z))+φr(ξ ,z1, . . . ,zr)+ [ρ (x(ξ ,x))+ ρ̂ (x(ξ ,x))]u

whereρ̂ (x(ξ ,x)) = LγLr−1
f h(x(ξ ,x)).

Similar results obtain for the other conditions of Definition (9.1). The following is a
summary:

Suppose the nominal part of the control system (9.1) has local relative degreer.
Then the perturbation conditions of Definition (9.1) assurelocal transformation to
triangular forms as follows:

1. the triangularity condition implies

ξ̇ = F̂(ξ ,z), ξ ∈ Rn−r

żi = zi+1+φi(ξ ,z1, . . . ,zi+1), 1≤ i ≤ r−1
żr = α (x(ξ ,z))+φr(ξ ,z1, . . . ,zr)+ρ(x(ξ ,z))u

(9.2)

2. the strict triangularity condition implies

ξ̇ = F̂(ξ ,z), ξ ∈ Rn−r

żi = zi+1+φi(ξ ,z1, . . . ,zi), 1≤ i ≤ r−1
żr = α (x(ξ ,z))+φr(ξ ,z1, . . . ,zr)+ρ(x(ξ ,z))u

(9.3)

3. the extended matching condition implies

ξ̇ = F̂(ξ ,z), ξ ∈ Rn−r

żi = zi+1, 1≤ i ≤ r−2
żr−1 = zr +φr−1(ξ ,z1, . . . ,zr)
żr = α (x(ξ ,z))+φr(ξ ,z1, . . . ,zr)+ρ(x(ξ ,z))u

(9.4)
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4. the matching condition implies

ξ̇ = F(ξ ,z), ξ ∈ Rn−r

żi = zi+1, 1≤ i ≤ r−1
żr = α (x(ξ ,z))+φr(ξ ,z1, . . . ,zr)+ρ(x(ξ ,z))u

(9.5)

Example 9.3 (Strict Triangularity).Consider the following system:

In[187]:= f = {x2,x3−x1− x2,x4,x1−x3− (1/2)x4};
g= {0,0,0,1};
h= x1;

In[188]:= DF= {0,−DF1[x1,x2],0,−DF2[x3,x4]};

First, let us show that the uncertainty satisfies the strict triangularity condition. To do
this, we compute the relative degree,

In[189]:= VectorRelativeOrder [f,g,{h},{x1,x2,x3,x4}]
Out[189]= {4}

and the required distributionsG0, G1 andG2:

In[190]:= G0= Span[{g}]
G1= Span[{g,Ad[f,g,{x1,x2,x3,x4},1]}]
G2= Span[Join [G1,{Ad[f,g,{x1,x2,x3,x4},2]}]]

Out[190]= {{0,0,0,1}}
Out[190]= {{0,0,1,0},{0,0,0,1}}
Out[190]= {{0,1,0,0},{0,0,1,0},{0,0,0,1}}

Now, test the uncertainty

In[191]:= Map[Ad[DF,#,{x1,x2,x3,x4},1]& ,G0]
Out[191]= {{0,0,0,DF2(0,1)[x3,x4]}}

In[192]:= Map[Ad[DF,#,{x1,x2,x3,x4},1]& ,G1]
Out[192]= {{0,0,0,DF2(1,0)[x3,x4]},{0,0,0,DF2(0,1)[x3,x4]}}

In[193]:= Map[Ad[DF,#,{x1,x2,x3,x4},1]& ,G2]
Out[193]= {{0,DF1(0,1)[x1,x2],0,0},

{0,0,0,DF2(1,0)[x3,x4]},{0,0,0,DF2(0,1)[x3,x4]}}

and notice that the conditions are indeed satisifed. The transformation that places the
nominal system is obtained:

In[194]:= {T1,T2}= SISONormalFormTrans [f,g,x1,{x1,x2,x3,x4}]
Out[194]= {{x1,x2,−x1−x2+x3,x1−x3+x4},{}}

Then, its inverse.

In[195]:= InvTrans= InverseTransformation [{x1,x2,x3,x4},{z1,z2,z3,z4},T1];

”InverseTransformation : ”{x1,x2,x3,x4}” = ”{z1,z2,z1+z2+z3,z2+z3+z4}
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Application of the transformation to the nominal system confirms the reduction to
normal form.

In[196]:= {fnew,gnew,hnew}= TransformSystem [f,g,h,{x1,x2,x3,x4},
{z1,z2,z3,z4},T1, InvTrans]

Out[196]=
{{

z2,z3,z4,−z3− 3
2

(z2+z3+z4)
}
,{0,0,0,1},z1

}

Now, apply the transformation to the perturbed system, to obtain:

In[197]:= {ff ,gg,hh}= TransformSystem [f+DF,g,h,{x1,x2,x3,x4},
{z1,z2,z3,z4},T1, InvTrans];

In[198]:= ff //MatrixForm

Out[198]=








z2
z3−DF1[z1,z2]
z4+DF1[z1,z2]

1
2

(−3 z2−5 z3−3 z4−2 DF2[z1+z2+z3,z2+z3+z4])








The system is indeed in the strict triangular form anticipated by Proposition (9.2).

The perturbation is readily modified so that the strict triangularity assumption fails.

In[199]:= DF= {0,−DF1[x1,x2,x3],0,−DF2[x4]};

In[200]:= Map[Ad[DF,#,{x1,x2,x3,x4},1]& ,G0]
Out[200]= {{0,0,0,DF2′[x4]}}

In[201]:= Map[Ad[DF,#,{x1,x2,x3,x4},1]& ,G1]
Out[201]= {{0,DF1(0,0,1)[x1,x2,x3],0,0},{0,0,0,DF2′[x4]}}

In[202]:= {ff ,gg,hh}= TransformSystem [f+DF,g,h,{x1,x2,x3,x4},
{z1,z2,z3,z4},T1, InvTrans];

In[203]:= ff //MatrixForm

Out[203]=








z2
z3−DF1[z1,z2,z1+z2+z3]
z4+DF1[z1,z2,z1+z2+z3]

1
2

(−3 z2−5 z3−3 z4−2 DF2[z2+z3+z4])








In this case we do not achieve strict triangular reduction ofthe perturbed system
because adϕ G1 /∈ G1. However, we do have a (non-strict) triangular form since
adϕ G1 ∈ G2 (as well as adϕ G0 ∈ G1).

9.2.2 MIMO Case

We now turn to the multi-input multi-output system with uncertainty in the drift term

ẋ= f (x)+ϕ (x)+G(x)u
y= h(x)

(9.6)



9.2 Perturbations of Feedback Linearizable Systems 279

wherex∈ Rn, u∈ Rm, y∈ Rm. Define the distributions

Gi = span
{

adj
f gk |0≤ j ≤ i, 1≤ k≤m

}

, 0≤ i ≤ n−2

Then Definition (9.1) can be adapted to the MIMO case.

Definition 9.4. Suppose the system (9.1) is of (vector) relative degreer = {r1, . . . , rm},
with r = r1+ · · ·+ r2. We say that the perturbation satisfies:

1. thetriangularity conditionif adϕ Gi ∈ Gi+1, 0≤ i ≤ r−3

2. thestrict triangularity conditionif adϕ Gi ∈ Gi , 0≤ i ≤ r−2

3. theextended matching conditionif ϕ ∈ G1

4. thematching conditionif ϕ ∈ G0

The following result generalizes Proposition (9.2).

Proposition 9.5.Suppose the nominal part of the control system (9.6) has vector
relative degree{r1, . . . , rm} at x0 with r1≥ r2≥ . . .≥ rm and r= r1+ . . .+ rm. More-
over assume that the strict triangularity condition applies. Then there exists a local
transformation of coordinates such that the perturbed equations take the form:

ξ̇ = F̂(ξ ,z,u), ξ ∈ Rr−1

żi
j = zi

j+1+φi
j(ξ ,z1

r1−r i+1, . . . ,z
1
r1−r i+ j , . . . ,z

m
rm−r i+1, . . . ,z

m
rm−r i+ j),

1≤ j ≤ r i−1
żi
r i
= αi(x(ξ ,z))+ρi·(x(ξ ,z))u+φi

j(ξ ,z1, . . . ,zm)

1≤ i ≤m

on a neighborhood of x0.

Proof: The proof proceeds precisely as in Proposition (9.2), although the calculations
are considerably more tedious. First, as in Proposition (9.2), we compute

ξ̇ =
∂ξ
∂x

ẋ= F(ξ ,z,u)+ Lϕ ξ (x)
∣
∣
x7→(ξ ,z) = F̂(ξ ,z,u)

Now, compute

żi
1 = zi

2+Lϕ hi(x)
...

żi
r i
= Lr i

f hi(x)+Lϕ Lr i−1
f hi(x)+

m
∑
j=1

LgLr i−1
f hi(x)u j

and define the functions
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φi(ξ ,z) =








Lϕ hi(x(ξ ,z))
Lϕ L f hi(x(ξ ,z))

...
Lϕ Lr i−1

f hi(x(ξ ,z))








for i = 1, . . . ,m. In (ξ ,z) coordinates

gk =










0
LgkL

r1−1
f h1

...
0

LgkL
rm−1
f hm










← row r1
...
...

← row n= r1+ · · ·+ rm

and

adj
f gk =












0
LgkL

r1−1
f h1

...
0

LgkL
rm−1
f hm
0












← row r1− j
...
...

← row n− j = r1+ · · ·+ rm− j

, 1≤ j ≤ r1−1

Notice that

G1 = span





















...
0
1
0
...















,















...

0
1
0
...















, . . . ,















...

0
...
0
1





















← row r1

← row r1+ r2
...

← row r1+ · · ·+ rm = r

G2 = span





















...
0
1
0
...















,















...

0
1
0
...















, . . . ,















...

0
...
0
1















,














0
1
0
...

...














,















...

0
1
0
...















, . . . ,















...

...
0
1
0





















← row r1−1

← row r1+ r2−1
...

← row r1+ · · ·+ rm−1

and so on.

Now, as in Proposition (9.2), we apply the triangularity assumption to obtain:
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∂φi
1

∂zj
r j−k

= 0, . . . ,
∂φi

r j−k−1

∂zj
r j−k

= 0, 0≤ k≤ r i−2, 1≤ i, j ≤m

These relations establish the conclusion of the theorem.

As in the SISO case uncertainty in the control input matrix ofthe matched type
is easily accommodated. Consider a perturbation of the formG(x)→ G(x)+Γ (x),
Γ (x) = [γ1(x) · · ·γm(x)] andγi ∈ G0 for eachi = 1, . . .m. Then the transformed equa-
tions are unchanged other than

ρi j = Lg j L
r i−1
f hi +Lγj L

r i−1
f hi

9.3 Lyapunov Redesign for Matched Uncertainty

Very often a control system is designed on the basis of a nominal model. If the uncer-
tainty is confined to a suitably characterized admissible class, it may be possible to
augment the nominal control with a robustifying component that insures asymptotic
stability for all admissible uncertainties. When this is accomplished using Lyapunov
methods the technique is referred to asLyapunov redesign(see, for example, [52],
Chapter 5).

Suppose that the multi-input system (9.6) has well defined relative degree withr =
n (i.e., the exact state linearizable case) and the uncertainty satisfies the matching
condition. Then, it is reducible, by state transformation,to the form

ż= Az+E[α (z)+∆(z,u, t)+ρ(z)u] (9.7)

A nominal feedback control designed on the basis of the feedback linearization ap-
proach is

u∗(z) = ρ−1(z){−α (z)+Kz} (9.8)

whereK is chosen such that(A+EK) is Hurwitz. Thus, the nominal closed loop
system is described by the equation

ż= (A+EK)z (9.9)

Moreover, it may be associated with a Lyapunov functionV(z) = zTPz, whereP
satisfies the Lyapunov equation

P(A+EK)+ (A+EK)TP=−Q− I , Q= QT > 0 (9.10)

andV̇ =−zTQz−‖z‖2 < 0 along trajectories of the closed loop nominal system. In
the sequal it will become apparent why it is convenient to require the right hand side
of (9.10) to be more negative than−I .
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The nominal controlu∗ does provide some protection against plant unertainty. In-
deed, along trajectories of (9.7) withu= u∗, we have

V̇ =−zTQz−‖z‖2+2zTPE∆ (9.11)

If the uncertainty has a bound‖∆‖ ≤ γ‖z‖, with constantγ≥ 0, then

V̇ ≤−(λmin(Q)+1)‖z‖2+2γ‖PE‖ ‖z‖2

Thus, stability is assured providedγ < (λmin(Q)+1)/2‖PE‖.
Now, consider the system with uncertainty and apply a control u= u∗+ρ−1µ , that
includes a ‘robustifying’ component,µ intended to compensate for the uncertainty.
Assume that the uncertainty satisfies the condition∆(0, t) = 0, ∀t, and the bounding
condition

∥
∥∆(z,u∗+ρ−1µ , t)

∥
∥≤ σ(z)‖z‖+ k‖µ‖ , 0≤ k< 1 (9.12)

for some known, smooth bounding functionσ(z) > 0. We wish to chooseµ so that
the closed loop is asymptotically stable for any admissibleuncertainty. The actual
system closed loop equation is

ż= (A+EK)z+E
(
µ +∆(z,u∗(z)+ρ−1µ , t)

)
(9.13)

The derivative ofV(x) along trajectories of (9.13) is

V̇ =−zTQz−‖z‖2+2zTPE(µ +∆) (9.14)

Notice that the first two terms arise from the nominal system and the next is due to
the uncertainty,∆ , and the control,µ , that is intended to compensate for it. For the
time being, writewT = zTPE and observe that the design objective is achieved ifµ
can be chosen such that−‖z‖2+wT (µ +∆)≤ 0.

In view of (9.12)

wT µ +wT∆ ≤ wT µ + ‖w‖ ‖∆‖
≤ wT µ + ‖w‖ [σ(z)‖z‖+ k‖µ‖] (9.15)

For now, let us proceed in a fashion that leads to a smooth control. Setµ = −wκ ,
whereκ (z)> 0 is a scalar valued function not yet defined. Then

−‖z‖2+wT µ +wT∆ ≤−‖z‖2−‖w‖2κ + ‖w‖ [σ(z)‖z‖+ k‖w‖ ‖κ‖]
≤−‖w‖2κ (1− k)+ ‖w‖σ(z)‖z‖−‖z‖2

Now choose
κ = 1

4(1−k)σ
2

so that

−‖z‖2+wT µ +wT∆ ≤−‖w‖2 1
4σ2(z)+ ‖w‖σ(z)‖z‖1‖z‖2

=−
(1

2 ‖w‖σ(z)−‖z‖
)2
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Consequently, a robust control is achieved withκ > 1
4(1−k)σ

2. In particular, suppose
σ0 > 0 is a constant and take

µ =−
(

σ0+
σ2(z)

4(1− k)

)

w=−
(

σ0+
σ2(z)

4(1− k)

)

ETPz (9.16)

These calculations establish the following proposition.

Proposition 9.6.Consider the uncertain system (9.7) and assume it has an isolated
equilibrium point at the origin. Suppose that a nominal control u∗, given by (9.8), is
associated with the Lyapunov function V(z) = zTPz, where P satisfies (9.10). Then
the control u= u∗+ρ−1µ , where

µ =−
(

σ0+
σ2(z)

4(1− k)

)

ETPz, σ0 > 0 (9.17)

globally stabilizes the origin of (9.7) for all uncertainties that satisfy (9.12).

Proof: TakingV = zTPz, direct calculation as above leads to

V̇ =−zTQz−σ0
∥
∥ETPz

∥
∥

2−
(

1
2

∥
∥ETPz

∥
∥σ(z)−‖z‖

)2

Thus,V̇ < 0 everywhere except at the originz= 0.

Remark 9.7.As an alternative to the smooth control given above, we couldproceed,
as in [2], to design a discontinuous control. For example, choose

µ =− η (z)
1− k

w
‖w‖ , η (z)≥ σ(z)‖z‖ (9.18)

A simple computation verifies that this control achievesV̇ < 0,

wT µ +wT∆ ≤− η (z)
1−k ‖w‖+σ(z)‖z‖ ‖w‖+ kη (z)

1−k ‖w‖
≤ −η (z)+σ(z)‖z‖ (9.19)

However, there are subtleties with discontinuous controlsand we will consider them
fully in the next chapter.

Remark 9.8.The second term in the uncertainty bounding condition (9.12) can be
interpreted in the following way. Suppose that both the nominal system

ẋ= f (x)+G(x)u

and the actual (perturbed) system

ẋ= ( f (x)+ϕ (x))+ (G(x)+ µ(x))u
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are both exactly feedback linearizable. Then, they are respectively reducible to the
normal forms

˙̂z= Aẑ+E [α̂ (ẑ)+ ρ̂(ẑ)u]

and
ż= Az+E[α (z)+ρ(z)u]

The feedback linearizing control for the nominal system isu= ρ̂−1 [−α̂ + v]. Using
this control, the perturbed system can be expressed

ż= Az+E
[
α +ρ

(
ρ̂−1 [−α̂ + v]

)]

= Az+E
[
v+
(
α −ρρ̂−1α̂ +ρρ̂−1v− v

)]

In the nominal case,̂ρ = ρ, α̂ = α , the equation reduces to

ż= Az+Ev

As a result, we identify

∆(z,v) = α −ρρ̂−1α̂ +
[
ρρ̂−1− I

]
v

Now choosev= v∗+ µ , v∗ = Kzso that

∆(z,v∗+ µ) = α −ρρ̂−1α̂ +
[
ρρ̂−1− I

]
Kz+

[
ρρ̂−1− I

]
µ

Thus,

‖∆(z,v∗+ µ)‖ ≤
∥
∥α −ρρ̂−1α̂ +

[
ρρ̂−1− I

]
Kz
∥
∥+

∥
∥
[
ρρ̂−1− I

]∥
∥ ‖µ‖

The requirement 0≤ k< 1 implies

0≤
∥
∥
[
ρρ̂−1− I

]∥
∥ < 1

Consequently, there is a specific limit on the tolerable variation of the control gain
matrix.

Example 9.9 (Linearization with Matched Uncertainty).This simple example illus-
trates the effectiveness of robust feedback linearization. Consider the system:

[
ẋ1

ẋ2

]

=

[
x2

−0.1x2+ x3
1/2

]

+

[
0
1

]

{u+ κx3
1+au

︸ ︷︷ ︸

uncertainty

}

The parametersκ ∈ [0,1] anda∈ [−0.1,0.1] are uncertain. We will design a stabi-
lizing feedback control for the nominal system using feedback linearization. Then
we will make it robust via Lyapunov redesign and evaluate performance of both con-
trollers when the system is subject to a perturbation.

First, enter the system definition, and design the nominal system.
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In[204]:= f0 = {x2,−0.1 x2 +x1+x1ˆ3/2};
g0= {0,1};
f1 = {0, kap x1ˆ3} ;
g1= {0,a};
x = {x1,x2};

In[205]:= alpha0=−0.1 x2 +x1 +x1ˆ3/2;

alpha1= alpha0+kap x1ˆ3;

rho0= 1;

rho1= rho0+a;

K = {−1,−2};
ustar= (1/rho0) (−alpha0+K.x);

Now, turn to the redesign process.

In[206]:= A = {{0,1},{−1,−2}};Q = 2 IdentityMatrix [2];

P= LyapunovEquation [A,Q];

A bound for the uncertainty needs to be established in order to define the robustifying
control component,µ , and assemble the control,u.

In[207]:= Del1= Chop[Simplify [alpha1− (rho1/rho0) alpha0+(rho1/rho0−1) K.x]]

Del2= (rho1/rho0−1);

Out[207]= kap x13+a
(

−2 x1− x13

2
−1.9 x2

)

In[208]:= AA = Chop[Coefficient [Del1,{x1,x2,x1ˆ3}]];
sig2=

Simplify [(AA[[1]]+AA[[3]] x1ˆ2)ˆ2+AA[[2]]ˆ2]/.{a→−0.1,kap→ 1};
µ =−(1+(sig2/4)(1/(1−0.1)) ){0,1}.P.x;

u= Simplify [ustar+µ];
Out[208]= −3.02114 x1−0.616667 x13−0.30625 x15−2.92114 x2−0.116667 x12 x2−

0.30625 x14 x2

Now, the equations can be assembled and computations performed. First, the re-
designed control is applied to the nominal system.

In[209]:= ReplacementRules= Inner [Rule,{x1,x2},{x1 [t],x2 [t]},List];

Eqns= Chop[MakeODEs[{x1,x2}, f0+ f1+(g0+g1) u, t]]/.{a→ 0,kap→ 0};
InitialConds= {x1 [0] == 1.5,x2 [0] == 0};
VSsols = NDSolve[Join [Eqns, InitialConds],{x1 [t],x2 [t]},{t,0,10},

AccuracyGoal→ 2,PrecisionGoal−> 1,MaxStepSize−> 10/60000,

MaxSteps→ 60000];
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In[210]:= Plot [Evaluate [{x1 [t]} /. VSsols],

{t,0,10},PlotRange−> All ,AxesLabel→ {t,x1}];
Plot [Evaluate [{x2 [t]} /. VSsols],

{t,0, 10},PlotRange−> All ,AxesLabel→{t,x2}];
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Now apply the control to a perturbed system.

In[211]:= Eqns=

Chop[MakeODEs[{x1,x2}, f0+ f1+(g0+g1) u, t]]/.{a→−0.1,kap→ 1};
InitialConds= {x1 [0] == 1.5,x2 [0] == 0};
VSsols = NDSolve[Join [Eqns, InitialConds],{x1 [t],x2 [t]},{t,0,10},

AccuracyGoal→ 2,PrecisionGoal−> 1,MaxStepSize−> 10/60000,

MaxSteps→ 60000];
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In[212]:= Plot [Evaluate [{x1 [t]} /. VSsols],

{t,0,10},PlotRange−> All ,AxesLabel→ {t,x1}];
Plot [Evaluate [{x2 [t]} /. VSsols],

{t,0, 10},PlotRange−> All ,AxesLabel→{t,x2}];
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Notice that there is performance degradation but the systemremains stable. For com-
parison, let us apply the nominal control to the perturbed system.
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In[213]:= Eqns=

Chop[MakeODEs[{x1,x2}, f0+ f1+(g0+g1) ustar, t]]/.{a→−0.1,kap→ 1};
InitialConds= {x1 [0] == 1.5,x2 [0] == 0};
VSsols = NDSolve[Join [Eqns, InitialConds],{x1 [t],x2 [t]},{t,0,1.55},

AccuracyGoal→ 2,PrecisionGoal−> 1,MaxStepSize−> 1.55/60000,

MaxSteps→ 60000];

In[214]:= Plot [Evaluate [{x1 [t]} /. VSsols],

{t,0,1.5},PlotRange−> All ,AxesLabel→{t,x1}];
Plot [Evaluate [{x2 [t]} /. VSsols],

{t,0, 1.5},PlotRange−> All ,AxesLabel→{t,x2}];
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Clearly, the system is unstable – the feedback linearizing control without redesign
can not cope with the perturbation.

9.4 Robust Stabilization via Backstepping

When a system involves nonmatched uncertainty, a backstepping procedure might be
appropriate. We will describe such an approach to the designof a robust stabilizing
controller for SISO systems that satisfy the triangularityconditions. Backstepping
will be revisited below for the design of adaptive and variable structure controllers.

Suppose that nominal part( f ,g,h) of the system (9.1) has relative degreer = n
(alternatively,( f ,g) is exactly feedback linearizable) around the origin, and that
the strict triangularity condition applies. Moreover, suppose thatϕ (0, t) = 0 and
|ϕ (x, t)| ≤ σ̂(x)‖x‖ ∀t. It follows from Proposition (9.2) that we may as well be-
gin with the triangular form

ẋi = xi+1+∆i(x1, . . . ,xi , t), 1≤ i ≤ n−1
ẋn = α (x)+ρ(x)u+∆n(x, t)

(9.20)

with detρ(x) 6= 0 at least around the origin,∆(0, t) = 0 and|∆i(x, t)| ≤ σi(x)‖x‖,
for some smooth bounding functionσi(x) ≥ 0. An uncertainty vector∆(x, t) that
satisifies these two conditions along with the triangular structure exhibited in (9.20)
will be calledadmissible. Therobust stabilization problemis to design a state feed-
back control such that the originx= 0 is asymptotically stable for every admissible
uncertainty.

Now, we design the control sequentially. At each ofn steps we design a ‘psuedo-
control’ vk. At thekth step we consider the system (withv0 = 0)

ẋi = xi+1+∆i(x1, . . . ,xi , t), 1≤ i ≤ k−1
ẋk = vk+∆k(x1, . . . ,xk, t)
yk = xk− vk−1(x1, . . . ,xk−1)

(9.21)

and choose a controlvk to stabilize the input-output behavior (driveyk→ 0 for all
initial conditions and all admissible uncertainties). Finally, the actual controlu is
defined byu= ρ−1(−α + vn). The process proceeds as follows.

1. k= 1 At the first step we have

ẋ1 = v1+∆1(x1, t)
y1 = x1

(9.22)

Notice that we can write Equation (9.22)

ẏ1 = v1+ y1∆̄1(y1, t) := f1(y1) (9.23)
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Now, consider the function
V1 =

1
2y2

1

and compute it’s derivative along trajectories of Equation(9.23).

L f1V1 = y1 (v1+∆1(y1, t))

Choosev1 =−k1y1− y1κ1(y1) which yields

L f1V1 =−k1y2
1− κ1(y1)y

2
1+ y1∆̄1

Now takeκ1(y1)>
1
4σ2

1 (x1) for x1 6= 0. This insures that

L f1V1 ≤−(k1−1)y2
1−
(
y2

1
1
4σ2

1 + y2
1

)

≤−(k1−1)y2
1−
(
y2

1
1
4σ2

1 −σ1y2
1+ y2

1

)

≤−(k1−1)y2
1−
(

1
2σ1 |y1|− |y1|

)2

≤−(k1−1)y2
1

is negative definite (providedk1 > 1) so that the originx1 = 0 is asymptotically
stable.

2. k=2 Now consider the system

ẋ1 = x2+∆1(x1, t)
ẋ2 = v2+∆2(x1,x2, t)
y2 = x2− v1(x1)

(9.24)

Consider the coordinate change(x1,x2) 7→ (y1,y2) and compute

ẏ2 = v2+∆2(x1,x2, t)−
∂v1

∂x1
(x2+∆1(x1, t)) := v2+ ∆̄2(y1,y2, t)

The differential equations (9.24) in the new coordinates are

ẏ1 = v1(y1)+ y2+∆1(y1, t)
ẏ2 = v2+ ∆̄2(y1,y2, t)

:= f2(y1,y2) (9.25)

Notice that the derivative ofV1 along trajectories of Equation (9.25) is

L f2V1 = y1(v1+ y2+ ∆̄1) = L f1V1+ y1y2

Define the function
V2 =V1+

1
2y2

2

and compute
L f2V2 = L f1V1+ y1y2+ y2(v2+ ∆̄2)

= L f1V1+ y2
(
y1+ v2+ ∆̄2

)

Now, setv2 =−y1− k2y2− y2κ2(y1,y2) so that
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L f2V2 = L f1V1− k2y2
2− y2

2κ2(y1,y2)+ y2∆̄2

≤−(k1−1)y2
1− k2y2

2− y2
2κ2(y1,y2)+ |y2| ‖Y2‖ σ̄2(y1,y2)

≤−(k1−2)y2
1− (k2−1)y2

2− y2
2κ2(y1,y2)

+ |y2| ‖Y2‖ σ̄2(y1,y2)−‖Y2‖2
≤−(k1−2)y2

1− (k2−1)y2
2−
(1

2 |y2| σ̄2(Y2)−‖Y2‖
)2

≤−(k1−2)y2
1− (k2−1)y2

2

(9.26)

3. k= 3. . .n We continue in the same fashion. Suppose we have completedi steps
(i = 1, . . . ,n−1). So, we have already defined the new statesy1, . . . ,yi and psuedo
controlsv1, . . . ,vi and the functions

Vj =Vj−1+
1
2y2

j , 1≤ j ≤ i

Now, we wish to computevi+1. Defineyi+1 = xi+1− vi , and organize the equa-
tions

ẏ j = v j(Yj)+ y j+1+ ∆̄(Yj , t), 1≤ j ≤ i
ẏi+1 = vi+1+ ∆̄(Yi+1, t)

:= fi+1 (9.27)

As above, we have
L fi=1Vi = L fiVi + yiyi+1

so that
L fi+1Vi+1 = L fiVi− yi+1

(
yi + vi+1+ ∆̄i+1(Yi+1, t)

)

Choosevi+1 =−yi−ki+1yi+1−yi+1κ i+1 andκ i+1(Yi+1)>
1
4σ̄2

i+1(Yi+1) to obtain

L fi+1Vi+1 ≤−
i+1
∑
j=1

(k j − (i +2− j))y2
j − y2

i+1κ i+1

+ |yi+1| ‖Yi+1‖ σ̄i+1(Yi+1)−‖Yi+1‖2

≤−
i+1
∑
j=1

(k j − (i +2− j))y2
j −
(1

2 |yi+1| σ̄i+1(Yi+1)−‖Yi+1‖
)2

≤−
i+1
∑
j=1

(k j − (i +2− j))y2
j

(9.28)

These calculations establish the following proposition.

Proposition 9.10 (Smooth Robust Stabilization).Consider the system (9.1) and
suppose

1. the nominal system( f ,g) is exactly feedback linearizable,

2. the strict trangularity condition is true,

3. the uncertainty satisfies the conditions:ϕ (0, t) = 0 and|ϕ (x, t)| ≤ σ̂(x)‖x‖ ∀t.

Then there exists a smooth state feedback controller such that the origin, x= 0, is
asymptotically stable for all admissible uncertaintiesϕ (x, t).
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Proof: Apply the nominal system normal form transformation to the actual uncertain
system and follow the construction of Equations (9.20) through (9.28) to obtain

L fnVn≤
n

∑
j=1

(k j −n−1+ j)y2
j

Notice that we need to choosek j > n+1− j, j = 1, . . . ,n.

9.5 Adaptive Control of Linearizable Systems

The essential idea is easy to develop. Consider a parameter dependent system re-
duced to local regular form:

ξ̇ = F(ξ ,z,ϑ ) (9.29)

ż= Az+E[α (x,ϑ )+ρ(x,ϑ )u] (9.30)

y=Cz (9.31)

HereA,E,C are of the special Brunovsky form as indicated in Section 6.5and inde-
pendent of all system parameters. Now, suppose that the control u is different from
the ideal decoupling control,u∗ = ρ−1{−α +v}, because it is based on current esti-
mates of the uncertain parameters:

u= ρ(x, ϑ̂ )−1{−α (x, ϑ̂ )+ v} (9.32)

equivalently,
α (x, ϑ̂ )+ρ(x, ϑ̂ )u= v

Then we can compute

ż= Az+E[α (x,ϑ )+ρ(x,ϑ )u] (9.33)

ż= Az+E[v+∆ ] (9.34)

where
∆ = [α (x,ϑ )+ρ(x,ϑ )u]− [α (x, ϑ̂ )+ρ(x, ϑ̂ )u] (9.35)

Assumption 1:

∆(ξ ,z, ϑ̂ ,ϑ ,u) is linear in the parameter estimation error, i.e.,

∆(ξ ,z, ϑ̂ ,ϑ ,u) =Ψ(ξ ,z, ϑ̂ ,u)(ϑ − ϑ̂ ) (9.36)

Thus, we have the
ξ̇ = F(ξ ,z,ϑ ) (9.37)

ż= Acz+EΨ(ϑ − ϑ̂ ) (9.38)

We are in a position to employ the standard Lyapunov argumentto derive an update
law for the parameter estimate.
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Proposition 9.11.Asymptotic output stabilization, y→ 0, is achieved with the pa-
rameter estimator

˙̂ϑ = QΨT(ξ ,z, υ̂ ,u)ETPz

where P is a symmetric, positive definite solution of

(A+EK)TP+P(A+EK) =−I

and Q is any symmetric positive definite matrix.

Proof: Choose a candidate Lyapunov function

V = zTPz+(ϑ − ϑ̂ )TQ−1(ϑ − ϑ̂ )

Differentiate with respect to time to obtain

V̇ = 2zTPż−2 ˙̂ϑ TQ−1(ϑ − ϑ̂ )

= 2zTP(Acz+EΨ(ϑ − ϑ̂ ))−2 ˙̂ϑ TQ−1(ϑ − ϑ̂ )

= 2zTPAcz+2(zTPEΨ− ˙̂ϑ TQ−1)(ϑ − ϑ̂ )

= zT(PAc+AT
c P)z+2(zTPEΨ− ˙̂ϑ TQ−1)(ϑ − ϑ̂ )

The assumptions reduce this to
V̇ =−zTz

There are many variants of this basic construction. One model reference adaptive
control configuration is illustrated in Figure (9.1). The key point is that the input–
output linearizing and decoupling control absorbs all of the parameter dependencies
so that only this part of the control law has to be adjusted.

Remark 9.12.The regressorΨ(ξ ,z, ϑ̂ ,u) is particularly easy to compute ifα (x,ϑ )
andρ(x,ϑ )u are linear in the uncertain parameters:

α (x,ϑ ) = α0(x)+ α̃ (x)ϑ

ρ(x,ϑ )u= ρ0(x,u)+ ρ̃(x,u)ϑ

Then
∆ = {α̃ (x)+ ρ̃(x,u)}(ϑ − ϑ̂ ),

and
Ψ = {α̃ (x)+ ρ̃(x,u)}

In the implementation of the controller illustrated in Figure (9.1), it is necessary to
measure or estimate bothx andz. Notice thatzcan not be computed from the normal
coordinate relationsz(x,ϑ ) because they now depend on the unknown parameterϑ .
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Fig. 9.1: A model reference, adaptive tracking control configuration based on decoupling con-
trol.

Example 9.13 (Adaptive Regulator).We will illustrate adaptive regulation using the
following example adapted from Isidori [46]:





ẋ1

ẋ2

ẋ3



 =





0
x1+ x2

2
θx1− x2



+





ex2

ex2

0



u

y = x3

We need to specify the desired closed loop pole locations. Itis necessary to do this
in groups according to the vector relative degree. So we firstcompute the vector rel-
ative degree and then use the functionAdaptiveRegulator . Here are the com-
putations.

In[215]:= var32 := {x1,x2,x3};
f32 := {0, x1 + x2ˆ2, θ ∗x1 − x2};
g32 := {Exp[x2],Exp[x2],0};
h32 := {x3};
ro= VectorRelativeOrder [f32,g32,h32,var32]

Out[215]= {2}

In[216]:= Poles= {{−2,−2}};
{Parameters,ParameterEstimates,UpdateLaw,Control}=

AdaptiveRegulator [f32,g32,h32,var32, t,{θ},{},Poles]

Computing Decoupling Matrix
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Computing linearizing/decoupling control

Finished Linearizing Control

NewParameters= {θ}

Finished Stabilizing Control

Finished Stabilizing Control

Finished regressor computation

Finished Lyapunov Equation

Finished parameter update law

Out[216]=
{
{θ},{thetahat1},

{125. AdaptGain1 ex2 z1 (x1+x22−4 z1−4 z2)
−ex2+ex2 thetahat1

+

156.25 AdaptGain1 ex2 (x1+x22−4 z1−4 z2) z2
−ex2+ex2 thetahat1

}
,

{x1+x22−4 z1−4 z2
−ex2+ex2 thetahat1

}}

While this approach to adaptive control has limitations, itdoes have its place in
applications. See, for example, [8, 7].

We can provide a modest but useful generalization of the above result. Once again,
consider a parameter dependent system reduced to local regular form:

ξ̇ = F (ξ ,z,ϑ )
ż = Az+E [α (x,ϑ )+ρ (x,ϑ )φ(u,ϑ )]
y =Cz

(9.39)

Here matricesA,E,C are of the special Brunovsky form and independent of all sys-
tem parameters;α : Rn×p→Rm, ρ : Rn×p→Rm×m andφ : Rn×p→Rm are piecewise
smooth inx and continuous in the parameterϑ ; for each admissibleϑ , and the map
φ has a piecewise smooth inverseφ−1 (·,ϑ ). The inclusion of the mapφ allows us
to treat systems with certain types of control saturation, backlash and similar input
nonlinearities (see [6]). If the parameterϑ is known, it is possible to implement the
ideal decoupling control law

u∗ = φ−1(ρ−1(x,ϑ )(−α (x,ϑ )+ v) ,ϑ
)

to obtainż= Az+Ev. If the zero dynamicṡξ = F (ξ ,0,ϑ ) are stable the control
renders the loop stable. On the other hand, if the parameterϑ is uncertain, then we
can implement a control based on estimates of the parameter:

u= φ−1(ρ−1(x̂, ϑ̂
)(
−α

(
x̂, ϑ̂
)
+ v
)
, ϑ̂
)

(9.40)

equivalently,u satisfies

α
(
x̂, ϑ̂
)
+ρ

(
x̂, ϑ̂
)

φ(u, ϑ̂ ) = v
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In the present case we have
ż= Az+E [v+∆ ]

where

∆ = [α (x,ϑ )+ρ(x,ϑ )φ(u,ϑ )]−
[
α (x̂, ϑ̂ )+ρ(x̂, ϑ̂ )φ(u, ϑ̂ )

]
(9.41)

with x= x(ξ ,z,ϑ ) andx̂= x
(
ξ ,z, ϑ̂

)
. The following basic assumption replaces As-

sumption 1.

Assumption 2:The control error∆
(
ξ ,z,ϑ , ϑ̂ ,u

)
has the form

∆
(
ξ ,z,ϑ , ϑ̂ ,u

)
=Ψ

(
ξ ,z, ϑ̂ ,u

)(
ϑ − ϑ̂

)
+ϕ0

(
ξ ,z,ϑ , ϑ̂ ,u

)

whereϕ0 is a bounded, piecewise smooth function.

Assume, further, that upper and lower bounds,ϑ imin,ϑ imax, respectively, are known
for each uncertain parameterϑ i . In conjunction with the control (9.40), we imple-
ment a parameter update rule:

˙̂ϑ = ΩΨT (ξ ,z, ϑ̂ ,u
)

ETPz−Ωσ
(
ϑ̂
)

(9.42)

whereΩ > 0 is a (matrix) design parameter,P satisfies the Lyapunov equation

(A+EK)T P+P(A+EK) =−Q, Q> 0 (9.43)

and the functionσ
(
ϑ̂
)

is defined by

σ(ϑ̂ ) =
[
σ1(ϑ̂ ), . . . ,σp(ϑ̂ )

]T
(9.44)

σi
(
ϑ̂
)

:=







κ i ϑ̂ i > ϑ imax

0 ϑ imin ≤ ϑ̂ i ≤ ϑ imax κ i > 0, i = 1, · · · , p
−κ i ϑ̂ i < ϑ imin

(9.45)

Remark 9.14 (Implementation).In order to implement the control (9.40) and (9.42),
we require direct measurement or estimates of the system state in either the original
coordinatesx or the normal form coordinates(ξ ,z). In many practical cases(ξ ,z)
are the natural coordinates for measurement. In fact, it is not uncommon with elec-
tromechanical systems for the components of z to be a subset of the original states
x. In general if the measurements are(ξ ,z), then when computing the regressor it
is necessary to use the state transformation ˆx= x

(
ξ ,z, ϑ̂

)
in ρ andα . On the other

hand, ifx is the natural measurement andzneeds to be computed from the parameter
dependent state transformation, then it is necessary to proceed quite differently, i.e.
via backstepping as described below.

The closed loop system that obtains when the control (9.40) with update law (9.42)
is applied to the system (9.39) enjoys three basic properties:
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1. the parameter trajectorŷϑ (t) , t > 0 is bounded,

2. the partial state trajectoryz(t) , t > 0, is bounded and enters a neighborhood of
the origin whose size is proportional to the bound onϕ0,

3. under mild additional conditionsz(t) ,y(t)→ 0 ast→ ∞.

Proposition 9.15 (Bounded states and parameter estimates). Consider the closed
loop system composed of the plant (9.39) and control (9.40)-(9.45). Suppose that As-
sumption 2 is satisfied. Then the partial state trajectory z(t) , t > 0 and the parameter
estimateϑ̂ (t) , t > 0 are bounded. Furthermore, the state trajectory z(t) eventually
enters the disk

D =

{

z∈ Rr

∣
∣
∣
∣

∥
∥
∥Q1/2z− r

∥
∥
∥

2
≤ ‖r‖2

}

wherer =
(
Q−1/2PEϕ0

)

max.

Proof: : Choose a candidate Lyapunov function

V = zTPz+(ϑ − ϑ̂ )TΩ−1(ϑ − ϑ̂ ) (9.46)

and compute

V̇ =−
∥
∥
∥Q1/2z−Q−1/2PEϕ0

∥
∥
∥

2
+
∥
∥
∥Q−1/2PEϕ0

∥
∥
∥

2
+2

(

zTPEΨ− ˙̂ϑ
T
Ω−1

)

(ϑ − ϑ̂ )

(9.47)

V̇ =−
∥
∥
∥Q1/2z−Q−1/2PEϕ0

∥
∥
∥

2
+
∥
∥
∥Q−1/2PEϕ0

∥
∥
∥

2
−σ(ϑ̂ )(ϑ − ϑ̂ ) (9.48)

which is clearly negative provided

∥
∥
∥Q1/2z−Q−1/2PEϕ0

∥
∥
∥

2
>
∥
∥
∥Q−1/2PEϕ0

∥
∥
∥

2
(9.49)

For each fixedϕ0 this condition defines a circular disk inRr (in the coordinates

Q1/2z) of radius
∥
∥Q−1/2PEϕ0

∥
∥

2
and centered atQ−1/2PEϕ0. Sinceϕ0 is bounded

there exists a largest disk (of maximum radius) that contains all others. This is the
disk D. D lifts to a cylinder in the state space (Rr+p). V̇ < 0 outside of this cylinder.
The minimum value ofV (V = 0) occurs on its boundary. Hence all trajectories must
reach a neighborhood of the cylinder in finite time. Sincez(t) is continuous fort > 0,
it is bounded. In view of (9.48) we have

V̇ ≤
∥
∥
∥Q−1/2PEϕ0

∥
∥
∥

2

max
−σ(ϑ̂ )(ϑ − ϑ̂ ) (9.50)

Thus,V̇ < 0 outside of the rectangular domain

[

ϑ imin−
‖Q−1/2PEϕ0‖2

max
κi

,ϑ imax+
‖Q−1/2PEϕ0‖2

max
κi

]

, i = 1, . . . , p
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So thatϑ̂ (t), t > 0 is bounded.

Notice that we would like to insure that̂ϑ (t) begins and remains in the parameter
cube

Cparam=
{

ϑ ∈Rp| ϑ imin ≤ ϑ̂ ≤ ϑ imax, i = 1, . . . , p
}

Since the estimate can always be initialized within the cube, it is desired to insure
that trajectories beginning in the cube can not leave it. This is often done by simple
projection. However, by choosing eachκ i sufficiently large we can guarantee that the
parameter will remain withinCparamso long as the state trajectory remains within any
prespecified bound.

Define the sets

Sext =

{

(z,ϑ ) ∈ Rr+p

∣
∣
∣
∣

∥
∥
∥Q1/2z−Q−1/2PEϕ0

∥
∥
∥

2
>
∥
∥
∥Q−1/2PEϕ0

∥
∥
∥

2
}

Sint =

{

(z,ϑ ) ∈ Rr+p

∣
∣
∣
∣

∥
∥
∥Q1/2z−Q−1/2PEϕ0

∥
∥
∥

2
<
∥
∥
∥Q−1/2PEϕ0

∥
∥
∥

2
}

Notice thatSext andSint share a common boundary that we denote∂S := ∂Sext :=
∂Sint . ∂S includes points that satisfy

∥
∥
∥Q1/2z−Q−1/2PEϕ0

∥
∥
∥

2
=
∥
∥
∥Q−1/2PEϕ0

∥
∥
∥

2

as well as points at whichϕ0 is undefined. Observe that all points withz= 0 belong
to ∂S. With this notation we can state the second key result:

Proposition 9.16 (Output convergence).Suppose Assumption 2 is satisfied and, in
addition: (i) the only invariant set of the closed loop system contained in∂S corre-
sponds to z= 0, (ii) all trajectories beginning in Sint with initial estimates in Cparam

remain in Cparamwhile they are in Sint . Then all trajectories of the closed loop system
beginning in Cparamsatisfy z(t)→ 0 (hence y(t)→ 0) as t→ ∞.

Proof: Once again consider the Lyapunov function

V = zTPz+(ϑ − ϑ̂ )TΩ−1(ϑ − ϑ̂ )

Along closed loop trajectories we have

V̇ =−
∥
∥
∥Q1/2z−Q−1/2PEϕ0

∥
∥
∥

2
+
∥
∥
∥Q−1/2PEϕ0

∥
∥
∥

2
−σ(ϑ̂ )(ϑ − ϑ̂ )

Thus,V̇ < 0 onSext andV̇ > 0 along all trajectories inSint that begin inCparam. Fur-
thermore, inf

(z,ϑ )∈Sext

V(z,ϑ ) occurs on∂Sso that trajectories beginning inSext eventu-

ally reach∂S. Similarly, for each fixedϑ̂ , sayϑ̂ = ϑ̂ ∗, sup
(z,ϑ̂ ∗)∈Sint

V(z, ϑ̂ ∗) occurs on

∂S. Consequently, trajectories beginning inSint with initial estimates inCparam also
reach∂S. By assumption, the only invariant set in∂S corresponds toz= 0, so all
trajectories beginning inCparam tend toz= 0.
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Example 9.17 (Example (9.9) Revisited).Let us reconsider the uncertain system of
example (9.9). Previously we designed a controller using the Lyapunov redesign
approach. For comparison, we now design an adaptive controller. First, the data:

In[217]:= f0 = {x2,−0.1 x2 +x1+x1ˆ3/2};g0= {0,1};
f1 = {0, kap x1ˆ3} ;(∗ 0< kap< 1∗)
g1= {0,a};(∗ −0.1< a< 0.1∗)
x = {x1,x2};
f = f0+ f1;g= g0+g1;h= {x1};

Now, design the adaptive regulator.

In[218]:= Poles= {{−1,−2}};
{Parameters,ParameterEstimates,UpdateLaw,Control}=

AdaptiveRegulator [f,g,h,x, t,{a,kap},{0.00002,0.0005},Poles];

Computing Decoupling Matrix

Computing linearizing/decoupling control

Finished Linearizing Control

NewParameters= {a,kap}

Finished Stabilizing Control

Finished regressor computation

Finished Lyapunov Equation

Finished parameter update law

We replace occurrences of transformedz variables with the measuredx variables (in
this example, the transformation is independent of the uncertain parameters) and add
the parameter range limit switch to the update law.

In[219]:= u= Control/.{z1→ x1,z2→ x2}

ULaw= (UpdateLaw/.{z1→ x1,z2→ x2})−
Sig [{thetahat1, thetahat2},{10,1},{−0.1,0},{0.1,1}];

For a baseline, simulate with perfectly known parameters.

In[220]:= Eqns= Chop[MakeODEs[{x1,x2, thetahat1, thetahat2},
Join [f+g u[[1]],ULaw], t]]/.{a→ 0,kap→ 0};

InitialConds=

{x1 [0] == 1.5,x2 [0] == 0, thetahat1 [0] == 0, thetahat2 [0] == 0};
VSsols = NDSolve[Join [Eqns, InitialConds],{x1 [t],x2 [t],

thetahat1 [t], thetahat2 [t]},{t,0,10},AccuracyGoal→ 2,

PrecisionGoal−> 1,MaxStepSize−> 10/60000,MaxSteps→ 60000];
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In[221]:= Plot [Evaluate [{x1 [t]} /. VSsols],

{t,0,10},PlotRange−> All ,AxesLabel→ {t,x1}];
Plot [Evaluate [{x2 [t]} /. VSsols],

{t,0, 10},PlotRange−> All ,AxesLabel→{t,x2}];
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Now, suppose that the parameters are unknown.
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In[222]:= Eqns= Chop[MakeODEs[{x1,x2, thetahat1, thetahat2},
Join [f+g u[[1]],ULaw], t]]/.{a→−0.1,kap→ 1};

InitialConds=

{x1 [0] == 1.5,x2 [0] == 0, thetahat1 [0] == 0, thetahat2 [0] == 0};
VSsols = NDSolve[Join [Eqns, InitialConds],{x1 [t],x2 [t],

thetahat1 [t], thetahat2 [t]},{t,0,10},AccuracyGoal→ 2,

PrecisionGoal−> 1,MaxStepSize−> 10/60000,MaxSteps→ 60000];

In[223]:= Plot [Evaluate [{x1 [t]} /. VSsols],

{t,0,10},PlotRange−> All ,AxesLabel→ {t,x1}];
Plot [Evaluate [{x2 [t]} /. VSsols],

{t,0, 10},PlotRange−> All ,AxesLabel→{t,x2}];
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These results should be compared with trajectories in example (9.9).

The following figures illustrate the parameter estimates. Note that there is no guaran-
tee that the estimates will converge to the true parameter values. It is only assured that

the loop is stable and that the statesz(t) converge to zero.
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9.6 Adaptive Control via Backstepping

The adaptive control controllers discussed above require access to the full state,x,
and the transformed partial state,z. Also, there is a constraint imposed on the uncer-
tainty structure imposed by equation (9.36) - Assumption 1 -that cannot be validated
a priori. Another approach to adaptive control design has been described in [51] by
Kanellakopolis, Kokotovic and Morse that requires access only to the system state,
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x, and characterizes the uncertainty constraint directly interms of the way in which
the parameters appear in the differential equations.

It is assumed that the single-input, feedback linearizablesystem is of the form

ζ̇ = f (ζ ,θ)+g(ζ ,θ)u (9.51)

whereζ ∈Rn is the state,u∈R is the control, andθ ∈Rp is the uncertain parameter
vector. Moreover,f , andg are linear in the parameters:

f (ζ ,θ) = f0(ζ )+
p

∑
i=1

θi fi(ζ ), g(ζ ,θ) = g0(ζ )+
p

∑
i=1

θigi(ζ ) (9.52)

and fi(ζ ),gi(ζ ),0≤ i ≤ p are smooth vector fields in a neighborhood of the origin
ζ = 0 with fi(0) = 0,0≤ i ≤ p andg0(0) 6= 0. A fundamental assumption is that
there exists a parameter-independent diffeomorphismx = φ(ζ ) that transforms the
system intoparametric-pure-feedback form:

ẋi = xi+1+θTγi(x1, . . . ,xi+1), 1≤ i ≤ n−1

ẋn = γ0(x)+θTγn(x)+ [β0(x)+θTβ(x)]u (9.53)

with
γi(0) = 0, 1≤ i ≤ n and β0(0) 6= 0 (9.54)

Necessary and sufficient conditions for such a transformation are given in the fol-
lowing proposition from [51, 56].

Proposition 9.18.A diffeomorphism x= φ(ζ ) with φ(0) = 0, transforming (9.51)
and (9.52) into (9.53) and (9.54) exists in a neighborhood Bx ⊂ U of the origin if
and only if the following conditions are satisfied in U.

i) Feedback Linearization Condition: The Distributions

Gi = span{g0,adf0g0, . . . ,adi
f0}

are involutive and of constant rank i+1.

ii) Parametric-Pure-Feedback Condition:

gi ∈ G0

[X, fi ] ∈ G j+1,∀X ∈ G j ,0≤ j ≤ n−3,1≤ i ≤ p

Conditions i) and ii) can be restated in more compact form:

i) Gn−2 is involutive, andGn−1 has constant rankn.

ii) [ad j
f0

g0, fi ] ∈ G j+1,0≤ j ≤ n−3,1≤ i ≤ p
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A special case of the parametric-pure-feedback form is the so-calledparametric-
strict-feedbackform. The system (9.51) and (9.52) is of the parametric-strict-feedback
type if it is diffeomorphically equivalent to:

ẋi = xi+1+θTγi(x1, . . . ,xi), 1≤ i ≤ n−1

ẋn = γ0(x)+θTγn(x)+β0(x)u (9.55)

Necessary and sufficient conditions for the existence of therequired diffeomorphism
are given by the following proposition [51].

Proposition 9.19.Suppose there exists a global diffeomorphism, x= φ(ζ ) with
φ(0) = 0, that transforms the (nominal) system

ζ̇ = f0(ζ )+g0(ζ )u

into
ẋi = xi+1, 1≤ i ≤ n−1

ẋn = γ0(x)+β0(x)u

with γ0(0) = 0 andβ0(x) 6= 0,∀x∈Rn . Then the system (9.51) and (9.52) is globally
diffeomorphically equivalent to (9.55) if and only if the following conditions hold:

(i) gi ≡ 0

(ii) [X, fi ] ∈ G j+1,∀X ∈ G j ,0≤ j ≤ n−2,1≤ i ≤ p

The backstepping procedure for adaptive control design is given [51, 56]. We will
summarize the constructions for the simpler case of parametric-strict-feedback form
in order to explain the basic ideas. More details can be obtained from [51, 56] and
their references. Suppose the system has been reduced to parametric-strict-feedback
form, (9.55). Then the backstepping procedure sequentially generates:

(i) a (parameter-dependent) state transformation to new coordinatesz, z= z(x, θ̂),

(ii) a feedback control lawu= u(x, θ̂),

(iii) a parameter update laŵ̇θ = τ (x, θ̂)

When the state transformation and feedback control are applied, the closed loop
equations in thez-coordinates have the form

ż=
[
diag(−c1, . . . ,−cn)+Φ(z, θ̂)

]
z+Ψ(z, θ̂)θ̃

whereΦ(z, θ̂) is an antisymmetric matrix, i.e.,ΦT(z, θ̂) = −Φ(z, θ̂), andθ̃ is the
parameter estimation error,θ̃ = θ− θ̂. Stability can be established via standard Lya-
punov arguments. Choose a candidate Lyapunov function in the form
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V(z, θ̂)+
1
2

zTz= θ̃TQθ̃, QT = Q> 0

Differentiate and use the closed loop equations to obtain

V̇ = zT [diag(−c1, . . . ,−cn)+Φ(z, θ̂)
]
z+
(

zTΨ + ˙̂θTQ
)

θ̃

Because of asymmetry,zTΦ(z, θ̂)z= 0, so we can choose the update law

˙̂θ =−Q−1ΨTz

to obtain
V̇ = zTdiag(−c1, . . . ,−cn)z

Providedci > 0, i = 1, . . . ,n, this establishes the uniform stability of the equilibrium
pointz= 0, θ̂ = θ, which, corresponds tox= 0. Moreover, from the LaSalle invari-
ance theorem we can obtain

lim
t→∞

z(t) = 0, lim
t→∞

ż(t) = 0, lim
t→∞

˙̂θ = 0

The update law is implemented in the form

˙̂θ = τ (x, θ̂) =−Q−1ΨT(z(x, θ̂), θ̂)z(x, θ̂)

Remark 9.20. 1. Computations for the parametric-pure-form of the equations are
somewhat more complicated but lead to similar results.

2. The controller consists of a feedback law

u=
1

β0(x)

[
−γ0(x)+αn(z1, . . . ,zn, θ̂)

]

and parameter estimator equations

˙̂θ = τn(z1, . . . ,zn, θ̂)

whereαn,τn are the last of recursively computed sequences as defined in the
above references. In actual computation, they are obtained, successively, directly
as functions ofx (rather thanz) which is the way in which the controller is to be
implemented. This is easier, and avoids the need to invert the state transformation
equationsz= z(x).

ProPacimplements three functions that assist in the design of backstepping adaptive
controllers:AdaptiveBackstepRegulator , PSFFCond, and PSFFSolve .
The following example provides an illustration of their use.
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Example 9.21 (Backstepping Adaptive Regulator).

Consider the following single input example. First we put the system in parametric
strict feedback form usingPSFFSolve . Then, we design an adaptive regulator. We
only display the control and update law.

In[224]:= var30= {x1,x2};
f30= {θ x13+Sin[x2],x2};
g30= {0,1};

In[225]:= PSFFSolve [f30,g30,var30,{θ}]
LinearizingOutputSolutions :{x1}
PSFFTransformationz= T({x1,x2})
z1= x1

z2= Sin[x2]
Out[225]= {{x1,Sin[x2]},{θ z13+z2,x2 Cos[x2]},{0,Cos[x2]}}

In[226]:= {control,update,zcoords}= AdaptiveBackstepRegulator [f30,g30,

var30,{θ},{{AdGain}},{c1,c2,c3}];
In[227]:= control

Out[227]= −x1−c1 c2 x1−c1 thetahat1 x13−c2 thetahat1 x13−
3 thetahat12 x15−AdGain x17−AdGain c12 x17−
4 AdGain c1 thetahat1 x19−
3 AdGain thetahat12 x111−x2−c1 x2−c2 x2−3 thetahat1 x12 x2−
AdGain c1 x16 x2−3 AdGain thetahat1 x18 x2

In[228]:= update
Out[228]= {AdGain x13 (x1+(c1+3 thetahat1 x12) (c1 x1+thetahat1 x13+x2))}

9.7 Adaptive Tracking via Dynamic Inversion

ProPaccontains the functionAdaptiveTracking that produces an adaptive ver-
sion of the tracking controller defined by (7.86), (7.87) and(7.90) [9]. In this case,
the system is assumed to depend on an uncertain parameter vector ϑ . Then the con-
trol (7.86) and (7.87) also depends explicitly onϑ . This control is implemented with
an estimate of the parameter and a parameter update law in theform:

u= D†
β (x,ϑ )

{

−Cβ(x,ϑ )+M(x,ϑ )ỹ0+N(x,ϑ )y(n)+ v(t)
}

(9.56)

˙̂ϑ =−Ω−1WTRε (9.57)

where
ε := [e1, ..,e

n1−1
1 , ..,el , ..,e

nl−1
l ]T (9.58)
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Computing the Regressor

Recall that application of the exact control (7.86) reducesthe input-output dynamics
to (7.89). When the ‘inexact’ control is applied the input-out dynamics can always
be expressed in the form

y(n) = v+∆(x,ϑ ) (9.59)

Our goal is to compute∆(x,ϑ ). Notice that combining (7.69) and (7.87) and making
the parameter dependence explicit, we have

N(x,ϑ )y(n)+M(x,ϑ )ỹ0 =Cβ(x,ϑ )+Dβ(x,ϑ )u (9.60)

In view of (9.58), the control satisfies

N(x, ϑ̂ )v+M(x, ϑ̂ )ỹ0 =Cβ (x, ϑ̂ )+Dβ(x, ϑ̂ )u (9.61)

Now we make the following assumption:

Assumption 3:

The matricesCβ (x,ϑ ),Dβ (x,ϑ ) andCβ(x,ϑ ) are linear in the uncertain parameters.

This allows us to write

Cβ (x,ϑ ) = Cβ0
(x)+C̃β(x)ϑ

Dβ(x,ϑ )u = Dβ0
(x,u)+ D̃β(x,u)ϑ

M(x,ϑ )ỹ0 = M0(x, ỹ0)+ M̃(x, ỹ0)ϑ
N(x,ϑ )y(n) = N0(x,y(n))+ Ñ(x,y(n))ϑ

(9.62)

Subtracting (9.60) from (9.61) and using (9.62) yields

N(x, ϑ̂ )(v− y(n)) =
C̃β (x)(ϑ̂ −ϑ )+ D̃β(x,u)(ϑ̂ −ϑ )− M̃(x, ỹ0)(ϑ̂ −ϑ )− Ñ(x,y(n))(ϑ̂ −ϑ )

so that

∆ = −N−1(x, ϑ̂ )
{

C̃β (x)+ D̃β(x,u)− M̃(x, ỹ0)− Ñ(x,y(n))
}

(ϑ̂ −ϑ )

= −W(ϑ̂ −ϑ )
(9.63)

The functionAdaptiveTracking performs two key operations in assembling the
regressorW. First it sorts through the matricesCβ , Dβ , M andN to identify groups
of physical parameters that can be combined to form new parameters that fit the
linearity assumption. One of the outputs ofAdaptiveTracking is a list of these
parameter transformation rules. Then the matrices are expanded as in (9.62) in terms
of the new parameters so thatW can be assembled as in (9.63).
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Example 9.22 (Adaptive Tracking Controller).The following example is the same as
Example 9.13 (see also [9]). After defining the system equations we define a refer-
ence signal, then specify the desired closed loop pole locations and, finally, compute
the control. Because of the length of the output, we give onlythe control and update
law.

In[229]:= RefSig=

Table [ToExpression [yd<> ToString [i1]<> [t]],{i1,1,Length [h32]}];
Poles= {{−2,−2}};
{Parameters,ParameterEstimates,UpdateLaw,

Control,DecoupMatrix,DerivativeOrders}= AdaptiveTracking[

f32,Transpose [{g32}],h32,var32, t,{θ},RefSig,{},Poles];

Control

Out[229]=
{x1+x22+4 (−x3+yd1[t])+4 (−y1′[t]+yd1′[t])+yd1′′[t]

−ex2+ex2 thetahat1

}

In[230]:= UpdateLaw

Out[230]=
{

− 1
−ex2+ex2 thetahat1

(125. AdaptGain1 ex2 (−x3+yd1[t]) (x1+

x22+4 (−x3+yd1[t])+4 (−y1′[t]+yd1′[t])+yd1′′[t]))−
1

−ex2+ex2 thetahat1
(156.25 AdaptGain1 ex2 (−y1′[t]+yd1′[t]) (x1+x22+4 (−x3+

yd1[t])+

4 (−y1′[t]+yd1′[t])+yd1′′[t]))
}

9.8 Problems

Problem 9.23 (DC drive motor). A separately excited dc motor is decscribed by
the differential equations

J
dω
dt

=−Bω+Ki f ia−TL

La
dia
dt

=−Raia−Ki f ω+ea

L f
di f

dt
=−Rf i f +ef

where the variables and parameters are defined in Table (9.1)Consider the control
inputs to be the two applied voltages,ea, ef . The goal is to regulate speed to a desired
valueω0 and to minimize electrical losses (Rai2a +Rf i2f ). Thus, we formulate two
outputs

y1 = ω−ω0

y2 = Raia−Rf i f
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Symbol Definition Parameter Value
ω motor speed
ia armature current
i f field current
ea armature applied voltage
ef field applied voltage
J motor inertia 0.1kg−m2

B motor damping 0.01Kg−m2−sec−1

K electromechanical transduction0.30nm/a2

TL load torque 0 to 15nm
La armature inductance 1.0H
L f field inductance 10.0H
Ra armature resistance 10.0Ω
Rf field resistance 50.0Ω

Table 9.1:DC motor nomenclature

(a) Design a feedback linearizing adaptive controller taking the load torque as an
uncertain parameter. Assume thatω0 is a specified constant.

(b) Assume that the load torque,TL can be measured or accurately estimated, but
that the motor friction coefficient is uncertain withB∈ (0,0.05). Design a feed-
back linearizing adaptive controller. Via simulation compare the adaptive and
nonadaptive (B= 0.01) performance.

Problem 9.24 (Load with backlash and friction). An inertial load with backlash
and friction is illustrated in Figure (9.2). The drive motorangleθm is cosidered as
the control input to a drive shaft/gear with backlash modeled using the dead zone
function:

D(θ) =







θ− ε θ ≥ ε
0 |θ|< ε

θ + ε θ ≤−ε

The shaft has stiffnessK and the load has inertiaJ and friction f (ω) = bsinω. d(t)
is an external disturbance. Thus, the equations of motion are:

θ̇ = ω

Jω̇ =− f (ω)+K D(u−θ)+d(t)

(a) Assumeε ∈ [0,0.5] and b ∈ [0,1] are uncertain parameters within the given
bounds andd(t)= 0. Design an adaptive feedback linearizing control. Hint: Take
the feedback linearizing and stabilizing control to be of the form

û= D̂−1(−(k1−1)θ− k2ω+ f̂ (ω)
)
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Fig. 9.2: A simplified inertial load with backlash and friction.

(b) TakeJ = 1 andK = 1 and compute the closed loop system response.

(c) Can Lyapunov redesign as described in this chapter be used for this problem?

(d) Suppose the disturbanced(t) = κw(t), whereκ ∈ [0,1] is an uncertain parameter
with known bounds andw(t) = 1+4sin(2πt). Repeat (a) and (b).
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Optimal and Switched Systems





10

Variable Structure Control

10.1 Introduction

Variable structure control systems are switching controllers that exhibit certain de-
sirable robustness properties. Consider a nonlinear dynamical system of the form

ẋ= f (x,u) (10.1)

wherex∈Rn,u∈Rm and f is a smooth function ofx andu. We will focus on switch-
ing control systems in which the control functionsui are discontinuous across smooth
surfacessi(x) = 0, i.e

ui(x) =

{
u+i (x), si(x)> 0
u−i (x), si(x)< 0

i = 1, . . . ,m (10.2)

and the control functionsu+i ,u
−
i are smooth functions ofx.

The design of switching control systems of the type (10.1), (10.2) often focuses on
the deliberate introduction of sliding modes [104][1]. If there exists an open subman-
ifold, Ms, of any intersection of discontinuity surfaces,si(x) = 0 for i = 1, . . . , p≤m,
such thatsi ṡi < 0 in the neighborhood of almost every point inMs, then it must be
true that a trajectory once enteringMs remains in it until a boundary ofMs is reached.
Ms is called asliding manifoldand the motion inMs is called asliding mode. Since
the control is not defined on the discontinuity surfaces, thesliding dynamics are not
characterized by equations (10.1) and (10.2). However, sliding mode dynamics may
often be determined by imposing the constraints(x) = 0 on the motion defined by
the differential equation (10.1). Under appropriate circumstances this is sufficient to
define an ‘effective’ controlueq, called theequivalent control, which obtains for mo-
tion constrained to lie inMs. If this control is smooth and unique, then the sliding
behavior is well defined.

Variable structure control system design entails specification of the switching func-
tionssi(x) and the control functionsu+i (x) andu−i (x). As we will see, the basis for
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design follows from the observations that the sliding mode dynamics depend on the
geometry ofMs, that is, on the switching functionssi(x), and that sliding can be
induced on a desired manifoldMs by designing the control functionsu±i (x) to guar-
antee thatMs is attracting. Thus, control system design is a two step process: 1)
design of the ‘sliding mode’ dynamics by the choice of switching surfaces, and 2)
design of the ‘reaching’ dynamics by the specification of thecontrol functions.

10.2 Basic Properties of Discontinuous Systems

Equation (10.1) when combined with control (10.2) is a special case of the general
class of discontinuous dynamical systems

ẋ= F(x, t) (10.3)

where for each fixedt, F(x, t) is smooth (Ck,k> 0) onRn except onmcodimension-
one surfaces (codimension-one regular submanifolds ofRn) defined bysi(x) = 0,
i = 1, . . . ,m, on whichF(x, t) is not defined. Ordinarily, a solution to (10.3) is a curve
x(t) ⊂ Rn that has the property thatdx/dt = F(x(t), t) for eacht ∈ R. Such a test,
however, would be impossible to apply if the prospective solution contains points
on the discontinuity surfaces. Since the set of points for which F(x, t) is not defined
has measure zero inRn, one might simply require that the integral curve property be
satisfied only whereF(x, t) is defined. This is clearly inadequate because segments
of trajectories that lie in a discontinuity surface would beentirely arbitrary. Filippov
[26] proposed a satisfactory definition of solutions to (10.3):

Definition 10.1.A curve x(t)⊂Rn, t ∈ [t0, t1], t1 > t0, is said to be a solution of (10.3)
on [t0, t1] if it is absolutely continuous on[t0, t1] and for each t∈ [t0, t1]

dx(t)
dt
∈ F̃(x(t), t) :=

⋂

δ>0

convF(S(δ,x(t))−Λ (δ,x(t)), t) (10.4)

where S(δ,x) is the open sphere centered at x and of radiusδ, Λ (δ,x) is the subset
of measure zero in S(δ,x) for which F is not defined, andconvF(U) denotes the
convex closure of the set of vectors{F(U)}.

Remark 10.2 (Remark on notation).If x is a point inRn thenS(δ,x) := {y∈ Rn |‖y− x‖< δ}}.
If U is a set contained inRn then

S(δ,U) :=
⋃

x∈U

S(δ,x)

We callS(δ,U) a δ-vicinity of U .
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If x does not lie on a discontinuity surface, then the setF̃(x, t) = {F(x, t)}, so that
the original differential equation must be satisfied at regular points. However, this
definition does help characterize solutions that lie in discontinuity surfaces. Suppose
a solutionx(t)⊂Rn, t ∈ [t0, t1], t1 > t0, lies entirely in the intersection of some set of
p discontinuity surfaces that is a regular embedded submanifold of Rn of dimension
n− p, which we designateMs. For eacht∗ ∈ [t0, t1], ẋ(t∗) must belong to the set
F̃(x(t∗), t∗). In addition,ẋ(t∗) must lie in the tangent space toMs atx(t∗), i.e.,ẋ(t∗)∈
Tx(t∗)Ms. In many important cases, these two conditions uniquely define solutions that
contain segments that lie inMs.

When we of speak of solutions or, equivalently, trajectories of discontinuous systems
we shall mean solutions in the sense of Filippov. One important consequence of the
definition is an extension of Lyapunov’s direct stability analysis to discontinuous
systems [59].

Lemma 10.3.Suppose that V: Rn→ R is a C1 function. Then:

1. the time derivative of V(x) along trajectories of (10.3) satisfies the set inclusion

V̇(x(t)) ∈
{

∂V
∂x

ξ
∣
∣ ξ ∈ F̃(x(t), t)

}

(10.5)

2. if V̇ ≤ −ρ < 0 (≥ ρ > 0) at all points in an open set P⊂ Rn except on a set
Λ ⊂P3 of measure zero where F(x, t) is not defined, theṅV ≤−ρ̄ < 0 (≥ ρ̄ > 0),
ρ̄ < ρ, at all points of P.

3. if V̇ ≤ −ρ ‖s(x)‖, ρ > 0, at all points in an open P⊂ Rn except on a setΛ ⊂ P
of measure zero where F(x, t) is not defined, theṅV ≤−ρ ‖s(x)‖ at all points of
P.

Proof: The first conclusion (10.5) follows directly from the Filippov definition of a
trajectory.

To prove the second, first note that at regular points the inclusion reduces to the
usualV̇(x) = [∂V/∂x]F(x, t). Consider the negative definite case. The assumption of
definiteness implies that[∂V/∂x]F(x, t) ≤ −ρ at all regular pointsx∈ P. Now take
any x∗ ∈ Λ . We need only show that[∂V(x∗)/∂x]ξ ≤ −ρ̃ for eachξ ∈ F̃(x∗, t).
Consider a sphereS(ε,x∗) where ε > 0 is chosen arbitrarily small and so that
the sphere is contained inP. By assumption,[∂V/∂x]F(x, t) ≤ −ρ at all regu-
lar points inS(ε,x∗). SinceV is C1, we can chooseε sufficiently small so that
[∂V(x∗)/∂x]ξ ≤ −ρ̃ < 0 for any specified̃ρ < ρ and all regularx in S(ε,x∗). By
its definition,F̃(x∗, t)⊂ F(S(ε,x∗)−Λ , t). The conclusion follows.

To prove the third conclusion, consider a pointx∗ in P. By assumption, the condition
V̇ ≤ −ρ ‖s(x)‖ holds at all regular points. Suppose thatx∗ is not regular, then the
condition holds at almost all points in a sufficiently small neighborhoodS(ε,x∗)
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of x∗. Now, the smoothness ofV 9ands implies the approximations∂V(x)/∂x =
∂V(x∗)/∂x+O(ε) and‖s(x)‖= ‖s(x∗)‖+O(ε) for all x∈ S(ε,x∗). Thus we have at
regularx∈ S(ε,x∗)

∂V(x∗)
∂x

F(x, t)≤−ρ ‖s(x∗)‖+O(ε)

Once again, sincẽF(x∗, t)⊂ F(S(ε,x∗)−Λ , t), it follows that

∂V(x∗)
∂x

ξ ≤−ρ ‖s(x∗)‖+O(ε),∀ξ ∈ F̃(x∗, t)

The conclusion follows in the limitε → 0.

In applications,̇V is often relatively easy to determine at all points in a givendomain
other than those on the surfaces of discontinuity. The significance of the lemma is
that it makes it unnecessary to actually computeF̃(x∗, t) in order to determine value
of V̇ at those points.

Definition 10.4.Suppose Ms = {x∈ Rn | s(x) = 0} is a regular embedded manifold
in Rn and let Ds be an open, connected subset of Ms. Ds is a sliding domain if

1. for anyε > 0, there is aδ > 0 such that trajectories of (10.3) which begin in a
δ-vicinity of Ds remain in anε-vicinity of Ds until reaching anε-vicinity of the
boundary of Ds, ∂Ds.

2. Ds must not contain any entire trajectories of the2m continuous systems defined
in the open regions adjacent to Ms and partitioned by the set M:=

⋃

i=1,...,mMsi .

This definition is due to Utkin [104]. By including (2), it is assured that it is the
switching mechanism that produces the sliding mode and the possibility of the exis-
tence of certain ”pathological” sliding domains is excluded.

The definition implies thatDs is invariant with respect to trajectories in the sense of
the following rather obvious proposition.

Proposition 10.5.If Ds is a sliding domain then trajectories of (10.3) which begin in
Ds remain in Ds until reaching its boundary,∂Ds.

Proof: SinceDs belongs to anyδ-vicinity of itself, the definition of a sliding domain
implies that trajectories which begin inDs must remain in every arbitrarily smallε-
vicinity of Ds. Hence trajectories beginning inDs must remain therein until reaching
its boundary.

Sufficient conditions for the existence of a sliding domain are relatively easy to for-
mulate. One approach is as follows. Define aC1 scalar functionV : D⊂Rn→Rwith
the following properties
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V(x) :=

{
= 0 i f s(x) = 0
> 0 otherwise

(10.6)

Recall thatV̇ is uniquely defined everywhere but onM :=
⋃

i=1,...,mMsi and onM it
is still constrained by the set inclusion of Lemma (10.3). Now the following result
can be stated.

Proposition 10.6.Let V be given by (10.6). Suppose that

1. Ds is an open, connected subset of Ms

2. D is an open connected subset of Rn which contains Ds

3. V̇ ≤−ρ ‖s(x)‖< 0 on D−M

Then Ds is a sliding domain.

Proof: Under the stated assumptions, a trajectory cannot leaveDs at any pointx0 ∈
Ds. This is easily proved by contradiction. Suppose a trajectory x(t) does departDs

from a pointx0 ∈ Ds at timet0. Such a departure implies that there is a timet1 > t0
and sufficiently smallε > 0, such that the absolutely continuous trajectory segment
x(t), t ∈ (t0, t1) is entirely contained in the setS(ε,x0)−Ms and along whicḣV > 0.
But in view of Lemma (10.3), the assumptions of the proposition imply thatV̇ < 0
along trajectories at all points inS(ε,x0)−Ms. This is a contradiction.

One distinguishing feature of many variable structure control systems is that trajec-
tories beginning in a vicinity of the sliding surface reach the surface in finite time.
This clearly is the case iḟV is bounded below by a negative number. However, such
a bound is not necessary as the following proposition illustrates.

Proposition 10.7.Suppose that the conditions of proposition (10.6) hold and in ad-
dition V(x) = σ ‖s(x)‖2, σ > 0 on aδ-vicinity of Ds. Then trajectories which reach
Ds from aδ-vicinity of Ds do so in finite time.

Proof: Suppose a trajectory beginning at statex0 in aδ-vicinity of Ds reaches a point
x1 ∈ Ds. Now,‖s(x0)‖ ≤ δ. SinceV(x) = σ ‖s(x)‖2 we have

V̇ = 2σ ‖s(x)‖ d‖s(x)‖
dt

≤−ρ ‖s(x)‖

which in view of Lemma (10.3) holds throughout theδ-vicinity of Ds. Thus,

d‖s(x)‖
dt

≤− ρ
2σ

which implies that the trajectory reachesDs in time not greater thanδ(2σ/ρ).
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10.3 Sliding

In this section we consider the design of sliding surfaces for affine systems of the
form

ẋ= f (x)+G(x)u (10.7)

y= h(x) (10.8)

The procedure begins with the reduction of the given affine system to theregular
form of

ż= Az+E [α (ξ ,z)+ρ(ξ ,z)u] (10.9)

y=Cz (10.10)

as described earlier. Now, we do not feedback linearize as was done in Chapter 6.
Instead, we choose a variable structure control law with switching surface,s(x). The
variable structure control law is of the form:

ui(x) =

{
u+i (x) si(x)> 0
u−i (x) si(x)< 0

Notice that the control is not defined during sliding, i.e., for trajectories completely
contained within the surfaces(x) = 0. We can prove that during sliding the equivalent
or effective control is , such that feedback linearized behavior is achieved in the
sliding phase (see, [59, 63, 80, 58]).

Proposition 10.8.Let the switching surface s(x) be such that s(x) = 0 if and only if
Kz(x) = 0 for some specified K∈ Rm×r and suppose that

1. ρ(x) has continuous first derivatives withdet{ρ(x)} 6= 0 on M0 = {x|z(x) = 0}.
2. ∂s(x)/∂x is of maximum rank on the set Ms = {x|s(x) = 0}.

Then Ms is a regular n−m dimensional submanifold of Rn which contains M0. More-
over, if K is structured so that the m columns numbered r1, r1+ r2, . . . , r compose an
identity Im, then for any trajectory segment x(t), t ∈ T, T an open interval of R, that
lies entirely in Ms, the control which obtains on T is

ueq=−ρ−1(x)KAz−ρ−1(x)α (x) (10.11)

and every such trajectory with boundary condition x(t0) = x0 ∈Ms, t0 ∈ T satisfies

ẋ= f (x)−G(x)ρ−1(x) [α (x)+KAz(x)] , Kz(x(t0)) = 0 (10.12)

Proof: The maximum rank condition insures thatMs is a regular manifold of di-
mensionn−m. M0 is a submanifold ofMs in view of the definition ofs(x). Motion
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constrained bys(x(t)) = 0 must satisfy the sliding condition ˙s = 0, equivalently,
Kż(x) = 0. Direct computation leads to (10.11) and (10.12).

In this case observe that the manifoldMs is invariant with respect to the dynamics
(10.12). The flow defined by (10.12) onMs is called thesliding dynamicsand the
control defined by (10.11) is theequivalent control. Note that the equivalent control
behaves as a linearizing feedback control. The partial state dynamics in sliding is
obtained from (10.9) and (10.11):

ż= [I −EK]Az, Kz(t0) = 0 (10.13)

Proposition 10.9.Suppose the conditions of proposition (10.8) apply. Then M0 is an
invariant manifold of the sliding dynamics (10.12). Moreover, if K is specified as

K = diag(k1, . . . ,km), ki = [ai1, . . . ,air i−1,1] (10.14)

where the m ordered sets of coefficients{ai1, . . . ,air i−1}, i = 1, . . . ,m each constitute
a set of coefficients of a Hurwitz polynomial. Then every trajectory of (10.12) not
beginning in M0 approaches M0 exponentially.

Proof: Notice that (10.13) implies that the only trajectory of (10.12) with boundary
conditionz(t0) = 0 isz(t) = 0 for all t and henceM0 is an invariant set.

Note that Im[E]⊕ ker[K] = Rr so that the motion of (10.13) can be conveniently
divided into a motion in Im[E] and a motion in ker[K] and the latter has eigenvalues
which coincide with the transmission zeros of the triple(K,A,E), Young et al [7]. To
prove that trajectories of (10.12) approachM0 exponentially we need only show that
all trajectories of (10.13) in ker[K] approach the origin asymptotically. Let the matrix
N be chosen so that its columns form a basis for ker[K] and introduce the coordinate
vectorsw∈ Rr−m andv∈ Rm, and write

z= Nw+Ev (10.15)

The inverse of (10.15) may be written
[

w
v

]

=

[
M
K

]

z (10.16)

Direct calculation verifies that (10.13) is replaced by

d
dt

[
w
v

]

=

[
MAN MAE

0 0

][
w
v

]

, v(0) = 0 (10.17)

The result obtains if Reλ {MAN} < 0. If the matrixK is chosen in accordance with
(10.14), then the eigenvalues ofMAN are precisely ther −m eigenvalues of the
matrices
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






0 1 0 . 0
0 0 1 0 .
. . 0 1 0
. . . . 1
−ai1 −ai2 . . −ai(r i−1)







, i = 1, . . . ,m (10.18)

which are lie in the open left half plane by assumption.

10.4 Reaching

The second step in VS control system design is the specification of the control func-
tionsu±i such that the manifolds(x) = 0 contains a stable submanifold which insures
that sliding occurs. Thus we seek to choose a control that drives trajectories into
s(x) = 0, or equivalently,Kz(x) = 0. There are many ways of approaching the reach-
ing design problem, [104]. We consider only one. Define a positive definite quadratic
form in η = Kz

V(x) = η TQη , Q> 0 (10.19)

Consider the set of states that satisfyη (x) = 0. A subset of this set is attractive if it
lies in a region of the state space on which the time rate of changeV along trajectories
is negative. Upon differentiation we obtain

d
dt

V = 2η̇ TQη = 2[KAz+α ]T QKz+2uTρTQKz (10.20)

10.4.1 Bounded Controls

If the controls are bounded, 0>Umin,i ≤ ui ≤Umax,i > 0, then, obviously, to minimize
the time rate of change ofV, we should choose

ui =

{
Umin,i si (x)> 0
Umax,i si (x)< 0

i = 1, . . . ,m (10.21)

s(x) = ρT(x)QKz(x) (10.22)

Clearly,s(x) = 0⇔ Kz(x) = 0. Notice that ifUmin,i = −Umax,i , the control reduces
to

ui =−Umax,isgn(si)

In this case it follows thaṫV is negative (fors 6= 0) provided

∣
∣UT

maxρ
TQKz

∣
∣>
∣
∣
∣ [KAz+α ]T QKz

∣
∣
∣ (10.23)

A useful sufficient condition is that
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|(ρ(x)Umax)i |> |(KAz(x)+α (x))i | (10.24)

Conditions (10.23) or (10.24) may be used to insure that the control bounds are of
sufficient magnitude to guarantee sliding and to provide adequate reaching dynamics.
This rather simple approach to reaching design is satisfactory when a “bang-bang”
control is acceptable.

10.4.2 Unconstrained Controls

Suppose the controls are not constrained to fixed bounds and there exists a continu-
ous bound on the functionα (x), i.e.,

‖α (x)‖< σα (x) (10.25)

for some continuous functionσα (x). In this case chooseui andσ(x) such that

ui =−σ(x)sgn(si(x)), σ(x)‖ρ(x)‖> σ̄(KA)‖z(x)‖+σα (x) (10.26)

Now, we compute

V̇ ≤
(

σ̄(KA)‖z(x)‖+σα (x)−σ(x)
m

∑
i=1
{|sgn(si(x))|}

)

‖QKz(x)‖ (10.27)

ThusV̇ is negative whens 6= 0 and the sliding manifold is attractive.

10.4.3 A Variation for Unconstrained Controls

Supposeα (x) andρ(x) are smooth and known with reasonable certainty. A some-
times useful variation of the controller (10.26) is

u(x) = u0(x)+ v(x) (10.28)

composed of the smooth part

u0(x) =−ρ−1(x)α (x) (10.29)

and discontinuous part

vi =−σ(x)sgn(si(x)), σ(x)‖ρ(x)‖> σ̄(KA)‖z(x)‖ (10.30)

Notice that the required magnitude of the discontinuous part is reduced. We easily
compute from (10.20)

V̇ ≤
(

σ̄(KA)‖z(x)‖−σ(x)
m

∑
i=1

{|sgn(si(x))|}
)

‖QKz(x)‖ (10.31)
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10.4.4 Closed Loop Stability

A ⊂M0 is astable attractorof the zero dynamics if it is a closed invariant set and
if for every neighborhoodU of A in M0 there is a neighborhoodV of A in M0 such
that every trajectory of (10.13) beginning inV remains inU and tends toA ast→∞.
The following proposition establishes conditions under which the variable structure
controller applied to (10.7) stabilizesA in Rn.

Proposition 10.10.Suppose that the conditions of propositions (10.8) and (10.9) ap-
ply; D is an open region in Rn in which (10.23) (or (10.25)) is satisfied;Ds=D ∩Ms

is nonempty; andA ⊂M0 is a bounded, stable attractor of the zero dynamics which
is contained inDs∩M0. ThenA is a stable attractor of the feedback system com-
posed of (10.7) with feedback control law (10.21) (or (10.26), or (10.28)).

Proof: SinceD is an open region inRn in which (10.23) is satisfied, a sliding mode
exists inDs = D ∩Ms which is nonempty. In fact,D0 = Ds∩M0 is also nonempty
and it contains a bounded, stable attractorA of the zero dynamics. Proposition (10.9)
implies thatA is also a stable attractor of the sliding dynamics (10.12). Thus, for
any neighborhood̃U of A in Ms there is a neighborhood̃V of A in Ms such that
trajectories of (10.12) beginning iñV remain inŨ and tend toA with increasing
time. We must show that a similar property applies for neighborhoods ofA in Rn

with respect to the dynamics defined by (10.7) and (10.21). Let

κmin = inf
D
{UT

maxρTQKz− [KAz + α ]TQKz} > 0 (10.32)

which exists by virtue of (10.23), and

κmax = sup
D

{∥
∥ f (x)−∑m

i=1gi(x)Umax,isign(si)
∥
∥

2
}

< ∞ (10.33)

which exists becausef and G are continuous andD is bounded, and where‖•‖
denotes the Euclidean norm. LetS(r,x0) denote the open sphere inRn of radiusr and
centered atx0 and define the set

S(r) :=
⋃

a∈A

S(r,a) (10.34)

Note that any element ofS(r) is at most a distancer fromMs and hence any trajectory
starting inS(r) will reachMs in a finite time not greater thantr = r/

√
κmin. Thus, any

trajectory segment of the of the closed loop system beginning in S(r) and terminating
upon reachingMs is entirely contained in the setS(R) where

R= r

{

1+

√
κmax

κmin

}

(10.35)

Now, let Û be any neighborhood ofA in Rn. DefineŨ = Û ∩Ms, so thatŨ is a
neighborhood ofA in Ms. Then there exists a neighborhoodṼ of A in Ms such that
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trajectories beginning iñV remain inŨ and tend toA with increasing time. In view
of (10.35), we can always chooser sufficiently small so thatS(R)∩Ms⊂ Ṽ ∩Ds.
Then we identifyV̂ = S(r). It follows that trajectories of (10.7), (10.21) beginningin
V̂ remain inÛ and approachA ast→ ∞.

DenoteMh = {x | h(x) = 0} and we assume thatMh is a regular submanifold of
Rn of dimensionn−m. Note thatM0 is a submanifold of bothMh andMs so thatM0

lies in the intersection ofMh andMs. The relationships between these manifolds are
illustrated in Figure (10.1).
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Fig. 10.1: The relationship between the output constraint manifold, the sliding manifold and
the zero dynamics manifold is illustrated in a three dimensional state space.

Our results imply that the closed loop system behaves as follows. If the initial state
is sufficiently close toDs, the trajectory will eventually reachDs and will thereafter
approximate ideal sliding. Ideal sliding is characterizedby (10.12) and sliding tra-
jectories which remain inDs approachD0 and eventuallyA . That A is a stable
attractor of (10.12) is obvious. However, this only impliesthat trajectories of (10.12)
beginning sufficiently close toA approachA .

10.5 Robustness With Respect to Matched
Uncertainties

Variable sructure control systems are especially interesting because they exhibit cer-
tain robustness properties with respect to model uncertainty. Suppose we have an
uncertain system for which the nominal part( f ,G,h) has well defined vector rela-
tive degree{r1, . . . , rm}. Then we can proceed as above to design a variable structure
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control system for the nominal system. The key question is; How does this controller
perform when applied to the actual system? When the uncertainty is matched and
has a known bound it is possible to design the control to insure that the desired slid-
ing manifold is attractive for any actual plant within the admissible class of systems.
Moreover, the sliding behavior is identical to that of the nominal system. If the sys-
tem has matched uncertainty we can take as our starting pointthe system:

ξ̇ = F(ξ ,z,u)
ż= Az+E[α (x(ξ ,z))+∆(ξ ,z, t)+ρ(x(ξ ,z))u] (10.36)

where∆ is a function that represents uncertainties and/or disturbances. We assume
that∆(ξ ,z, t) is bounded by a continuous functionσ∆ (ξ ,z)> 0:

‖∆(ξ ,z, t)‖< σ∆ (ξ ,z), ∀t (10.37)

The following proposition establishes the basic robustness result for variable struc-
ture controls applied to systems with matched uncertainty.

Proposition 10.11.Consider a class ofadmissiblesystems of the form (10.36) sat-
isfying the following conditions

1. There is a known and continuous uncertainty boundσ∆ (ξ ,z) > 0 such that
(10.37) is satisfied.

2. There is a continuous bounding functionσα (x)> 0 such that

|α (x)|< σα (x)

Then there exists a variable structure controller such thatfor all admissible systems
the switching surface s(x) = 0 is a sliding manifold and the sliding behavior is iden-
tical to the nominal system sliding behavior.

Furthermore, the control is given by:

ui =−σ(x)sgn(si(x)) (10.38)

with
σ(x)‖ρ(x)‖> σ̄(KA)‖z(x)‖+σα (x)+σ∆ (x) (10.39)

and
s(x) = ρT(x)QKz(x) (10.40)

where K chosen in accordance with Proposition (10.9).

Proof: First, assume that sliding does occur in the surfaces(x) = 0⇒ Kz(x) = 0⇒
Kż= 0. Then we haveueq defined by

KAz+α (x(ξ ,z))+∆(ξ ,z, t)+ρ(x(ξ ,z))ueq= 0
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and the sliding dynamics reduce, once again, to (10.13). Thus, the actual sliding
dynamics are indeed identical to the nominal system slidingdynamics.

Now, we need to show that it is possible to design control functions u±(x) such
that sliding occurs ins(x) = 0 for all admissible systems. The proposition assumes
that bothα and∆ are bounded by a continuous functionsσα andσ∆ . Consider the
positive definite quadratic form inη = Kz

V(x) = η TQη

A sliding mode exists on a subset ofη (x) = 0, equivalentlys(x) = 0, that lies in
a region of the state space on which the time rate of changeV is negative. Upon
differentiation we obtain

d
dt

V = 2η̇ TQη = 2[KAz+α +∆ ]T QKz+2uTρTQKz

Now, choose the controlu in accordance with Equations (10.38), (10.39) and (10.40)
so that

V̇ ≤
(

σ̄(KA)‖z(x)‖+σα (x)+σ∆ (x)−σ(x)
m

∑
i=1

{|sgn(si(x))|}
)

‖QKz(x)‖

(10.41)
It follows that V̇ is negative wherever it is defined (everywhere but on the sliding
manifold), so the sliding manifold is indeed attractive as required.

10.6 Chattering Reduction

The state trajectories of ideal sliding motions are continuous functions of time con-
tained entirely within the sliding manifold. These trajectories correspond to the
equivalent controlueq(t). However, the actual control signal,u(t) – definable only for
nonideal trajectories – is discontinuous as a consequence of the switching mechanism
which generates it. Persistent switching is undesirable inmost applications. Several
techniques have been proposed to reduce or eliminate it. These include: ‘regular-
ization’ of the switch by replacing it with a continuous approximation; ‘extension’
of the dynamics by using additional integrators to separatean applied discontinuous
pseudo-control from the actual plant inputs; and ‘moderation’ of the reaching control
magnitude as errors become small.

Switch regularization entails replacing the ideal switching function, sgn(s(x)) with a
continuous function such as

sat

(
1
ε

s(x)

)

or
s(x)

ε + |s(x)| or tanh

(
s(x)
ε

)

This intuitive approach is employed by Young and Kwatny [113] and Slotine and
Sastry [97, 98] and there are probably historical precedents. Regularization induces
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a boundary layer around the switching manifold whose size isO(ε). The reaching
behavior is altered significantly because the approach to the manifold is now ex-
ponential and the manifold is not reached in finite time as is the case with ideal
switching. On the other hand within the boundary layer the trajectories areO(ε) ap-
proximations to the sliding trajectories as established byYoung et al [112] for linear
dynamics with linear switching surfaces. Some of those results have been extended to
single input–single output nonlinear systems by Marino [80]. Switch regularization
for nonlinear systems has been extensively discussed by Slotine and coworkers, e.g.,
[97, 98]. With nonlinear systems there are subtleties and regularization can result in
an unstable system. However, we can state the following result.

Suppose that each ideal switch is replaced by a smooth version of a switch . Specifi-
cally, sgn(s)→ tanh(s/ε), ε > 0 so that

ui =−σ(x)sgn(si(x))→−σ(x) tanh(si(x)/ε)

ThenV̇ is not necessarily negative for‖s‖ small. However, for any givenδ > 0 there
exists a sufficiently smallε > 0 such thaṫV < 0, for ‖s‖ > δ so that all trajectories
enter the strip‖s(x)‖ < δ. We wish to establish more than that. Namely, we will
show that the smoothed control steers the state into a neighborhood ofz= 0 the size
of which shrinks with the design (smoothing) parameterε.

Proposition 10.12.Consider the system

ż= Az+E[α (x(ξ ,z))+∆(x(ξ ,z), t)+ρ(x(ξ ,z))u]

Suppose that

1. there exists a continuous bound onα , ‖α (x)‖< σα (x)

2. and a continuous bound on∆ , ‖∆(x, t)‖< σ∆ (x), ∀t
3. K is chosen in accordance with Proposition (10.9)

4. ui =−σ(x) tanh(si(x)/ε), where

σ(x)> (σ̄(KA)‖z(x)‖+σα (x)+σ∆(x))‖QKz(x)‖

and s∗(x) = ρT(x)QKz(x)

Then for anyδ > 0 there exists a sufficiently smallε > 0 such that all trajectories
enter the ball‖z‖< δ in finite time.

Proof: SinceKE = I , we can divide the state space into ImE⊕kerK. Thus, we define
a transformation (recall the proof of Proposition (10.9):

z= [E N]

[
ζ1

ζ2

]
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where the columns ofN span kerK. Notice that we can choose a matrixM such that
[

K
M

]

[E N] = I

which impliesK [I −EK] = 0, andM [I −EK] = M. In these new coordinates the
evolution equations are
[

ζ̇1

ζ̇2

]

=

[
KAE KAN
MAE MAN

][
ζ1

ζ2

]

+

[
I
0

]

(α (x)+∆(x, t)−ρ(x)σ(x) tanh(s∗(x)/ε))

where

tanh(s∗(x)/ε) =






tanh(s∗1(x)/ε)
...

tanh(s∗m(x)/ε)






In addition,s= Kz = ζ1. Furthermore, Reλ (MAN) < 0 by design (MAN ∼ As).
Hence, there exist matrices,Q0 ≥ 0,R≥ 0 such that

1. zTQ0z= 0 for z∈ ImE andzTQ0z> 0 otherwise.

2. d(zTQ0z)
/

dt = −zTRz≤ −λmin‖ζ 2‖2, where λmin is the smallest nonzero
eigenvalue ofR.

Now, consider the Liapunov function

V(z) = zTQ0z+(Kz)TQKz> 0, ‖z‖ 6= 0

and compute

d
dtV = 2żQ0z+2ṡTQs

= 2{Az+b[α +∆ +ρu]}T Q0z+2[KAz+α +∆ ]T QKz+2uTρTQKz

d
dt

V = 2{Az}T Q0z+2[KAz+α +∆ ]T QKz+2uTρTQKz

Now, we have

[KAz+α +∆ ]T QKz+uTρTQKx≤
(σ̄(KA)‖z(x)‖+σα (x)+σ∆ (x))‖QKz(x)‖−σ(x)

m
∑

i=1
|tanh(s∗i (x)/ε)|

and
2{Az}T Q0z≤−λmin‖ζ2‖2

so that
d
dt

V ≤−λmin‖ζ2‖2+2

[

σ̂ −σ
m

∑
i=1

|tanh(s∗i /ε)|
]

where
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σ̂ = (σ̄(KA)‖z(x)‖+σα (x)+σ∆ (x))‖QKz(x)‖
Thus, sinceσ > σ̂ by assumption, for any specifiedδ there is anε such thatV̇ ≤
−c< 0. Consequently, we have all trajectories entering the strip ‖s‖< δ(ε) in finite
time. In fact, for any givenδ > 0 there exists a corresponding sufficiently small
ε > 0. Now, sinces= ζ1, it follows that‖s‖ < δ ⇒ ‖ζ1‖ < δ. Consequently, from
the evolution equations and sinceMAN is asymptotically (exponentially) stable we
can conclude that all trajectories enter a ball with radius proportional toδ in finite
time.

Dynamic extension is another effective approach to controlinput smoothing, see
Emelyanov et al [25]. A sliding mode is said to be ofp-th order relative to an output
y if the time derivatives ˙y, ÿ, . . . ,y(p−1) are continuous int but yp is not. The follow-
ing observation is a straightforward consequence of the regular form proposition:
Suppose the system (10.7) and (10.8) is input-output linearizable with vector relative
degree(r1, . . . , rm). Then the sliding mode corresponding to the control law (10.22)
is of orderp= min(r1, . . . , rm) relative to the outputy. We may modify the relative
degree by augmenting the system with input dynamics as described. Hence, we can
directly control the smoothness of the output vectory.

When parasitic dynamics of sufficiently high order are present a form of persistent
switching can arise that is not removed by the above smoothing strategies. This form
of switching can be associated with a (series of) bifurcation(s) in the fast dynam-
ics. It is commonly referred to as chattering. Control moderation can be effective in
eliminating chattering. Control moderation involves design of the reaching control
functionsui(x) such that the effective gain is reduced when errors are small, i.e.,
|ui(x)| → small as|e(x)| → 0. For example,

ui(x) = |e(x)|sgn(si(x))

Control moderation was used by Young and Kwatny [113] and thesignificance of
this approach for chattering reduction in the presence of parasitic dynamics was dis-
cussed by Kwatny and Siu [68].

10.7 Computing Tools

We need to be able to reduce the system to normal form, computean appropriate
switching surface, assemble the switching control and insert smoothing and/or mod-
erating functions as desired. Functions to do this are implemented inProPac.

10.7.1 Sliding Surface Computations

There are several methods for determining the sliding surface,s(x) =Kz(x), once the
system has been reduced to normal form. We have included a functionSlidingSurface
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that implements two alternatives depending on the arguments provided. The function
may be called via

{rho,s}=SlidingSurface[f,g,h,x,lam]

or

s=SlidingSurface[rho,vro,z,lam]

In the first case the data provided is the nonlinear system definition f ,g,h,x and anm-
vectorlamwhich contains a list of desired exponential decay rates, one for each input
channel. The function returns the decoupling matrixrho and the switching surfaces
s as functions of the statex. The matrixK is obtained by solving the appropriate
Ricatti equation.

The second use of the function assumes that the input-outputlinearization has al-
ready been performed so that the decoupling matrixrho, the vector relative degree
vro, and the normal coordinate (partial) transformationz(x) are known. In this case
the dimension of each of them switching surfaces is known so that it is possible
to specify a complete set of eigenvalues for each surface. Thus, lam is a list of m-
sublists containing the specified eigenvalues, grouped according to the vector relative
degree. Only the switching surfaces are returned. In this caseK is obtained via pole
placement.

10.7.2 Switching Control

The functionSwitchingControl[rho,s,bounds,Q,opts] where rho is
the decoupling matrix,s is the vector of switching surfaces,boundsis a list of con-
troller bounds each in the form{lower bound, upper bound}, Q is anm×mpositive
definite matrix (a design parameter that can be used, for example, to weight switching
surfaces, see Utkin [1]), andoptsare options which allow the inclusion of smoothing
and/or moderating functions in the control. The bounds may be functions of the state.
The alternative syntax

SwitchingControl[alpha,rho,s,bounds,Q,opts]

returns the control in the form of (10.28), i.e., it containsa smooth feedback lineariz-
ing part plus the discontinuous stabilizing part.

Smoothing functions are specified by a rule of the form

SmoothingFunctions[x_]->{function1[x],...,functionm [x]}

Wherem is the number of controls. Moderating functions are similarly specified by
a rule



330 10 Variable Structure Control

ModeratingFunctions->{function1[z],...,functionm[z] }

The smoothing function option replaces the pure switch sgn(s) by a smooth switch
as specified. The moderating function option multiplies theswitch by a specified
function. We give an example below.

Example 10.13 (Variable structure control).We apply some of the above computa-
tions in the single input – single output, third order example shown below. First, we
display the moderating (|x|

/
(.002+ |x|)) and smoothing (1−e−|x|/0.1) functions that

will be employed.

In[231]:= Plot [Abs[x]/(0.002+Abs [x]),{x,−3,3}]
-3 -2 -1 1 2 3

0.92

0.94

0.96

0.98

In[232]:= Plot [Sign [x] (1−Exp[−Abs[x/0.1]]),{x,−3,3},PlotRange−> All ]

-3 -2 -1 1 2 3

-1

-0.5

0.5

1
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Now we apply input-output linearization. Since the relative degree is 2, there are
one-dimensional zero dynamics. They are checked for stability before the control is
designed.

In[233]:= x = {x1,x2,x3};
f = {x2,x3,−x1−x2ˆ2−Sin[x3]};
g= {0,1+x1ˆ3,1};
h= {x1};
{ρ,α ,vro,control}= IOLinearize [f,g,h,{x1,x2,x3}]

Out[233]=
{
{{1+x13}},{x3},{2},

{v1−x3

1+x13

}}

In[234]:= z= NormalCoordinates [f,g,h,{x1,x2,x3},vro];

u0= control/.v1−> 0;

LocalZeroDynamics [f,g,h,x,u0,z]

Out[234]=
{
−2 w1+

w13

6

}

Since we have a stable equilibrium point we proceed to designa sliding surface. We
have already computed the normal coordinates, so we can specify poles at -2,-3 and
compute the sliding surface.

In[235]:= s= SlidingSurface [ρ,vro,z,{{−2,−3}}];
SwitchingControl [ρ,s,{{−1,1}},{{1}}]

Out[235]= {−Sign[(1+x13) (6 x1+5 x2)]}

Now, we compute the switching control using various combinations of smoothing
and moderating functions. The particular functions chosenfor this example are
shown below in Figure 6. Results can change significantly when other functions are
used or when the parameters of the functions are varied. We specify the control
bounds as±1 andQ= 1. The following computation yields the controls.

In[236]:= SwitchingControl [ρ,s,{{−1,1}},{{1}},
SmoothingFunctions [xx ]−> {(1−Exp[−Abs[xx/10]])}]

Out[236]=
{
−Sign[(1+x13) (6 x1+5 x2)]+

e−
1
10 Abs

[(
1+x13

)
(6 x1+5 x2)

]

Sign[(1+x13) (6 x1+5 x2)]
}

In[237]:= SwitchingControl [ρ,s,{{−1,1}},{{1}},
ModeratingFunctions−> {Abs[z[[1]]]/(0.005+Abs [z[[1]]])}]

Out[237]=
{
− Abs[x1] Sign[(1+x13) (6 x1+5 x2)]

0.005+Abs[x1]

}

10.8 Backstepping Design of VS Controls

We will describe a backstepping procedure for SISO variablestructure control sys-
tem design in the presence of uncertain, possibly nonsmooth, nonlinearities as intro-
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duced in [69]. The method differs from the backstepping techniques described in the
previous chapter in the following ways: (1) the states are grouped in accordance with
the appearance of the uncertainty in the system, and (2) the control designed at each
step is a variable structure control. We do not assume that uncertainty enters in every
state equation. Thus, the number of steps can be reduced. This is important when
nonsmooth uncertainties are present as will be evident in the examples below.

Consider a SISO nonlinear system in the (multi-state backstepping) form:

x(ni)
i = xi+1+∆i(x, t), i = 1, . . . , p−1

x
(np)
p = α (x)+ρ(x)u+∆p(x, t)

y= x1

(10.42)

We assume that the (possibly nonsmooth) uncertainties∆i(x, t) are bounded by
smooth, non-negative functionsσi(x), i.e.,

0≤ |∆i(x, t)| ≤ σi(x), ∀t (10.43)

As noted before, such a model might arise by reduction of a smooth nominal sys-
tem to regular from and applying the transformation to the (possibly nonsmooth)
uncertain system.

The basic idea is very simple. At each ofp−1 stages we design a ‘pseudo-control’
vk, at thekth step (withv0 = 0), using the system

x(ni)
i = vi +∆i(x, t), i = 1, . . . ,k< p

yk = xk− vk−1(x1, . . . ,x
nk−1
k−1 )

and at the last (pth) stage we design the actual control,u, using the system

x(ni)
i = vi +∆i(x, t), i = 1, . . . , p−1

x
(np)
p = α (x)+ρ(x)u+∆p(x, t)

yp = xp− vp−1(x1, . . . ,x
np−1
p−1 )

To design the controlvk we first reduce thekth system to normal form by successive

differentiation in the usual way. Thus, we identify the new coordinateyk, . . . ,y
(nk−1)
k

that will replacexk, . . . ,x
(nk−1)
k . The transformed evolution equation is

y(nk)
k = Lnk

fk
hk+LgkL f nk−1

k vk = Lnk
fk

hk+ vk = αk+ vk (10.44)

For analysis purposes it is convenient to carry the equations along in the transformed
coordinates as the process proceeds. Doing so explicitly, thekth control is obtained
by designing a stabilizing smoothed VS controller for a (‘nominal’) system in the
form:
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1. k= 1
x(n1)

1 = v1

y1 = x1
(10.45)

2. k= 2
y(n1)

1 = x2

x(n2)
2 = v2

y2 = x2− v1

(10.46)

3. k= 3, . . . , p−1

y(ni)
i = yi+1+αi + vi, i = 1, . . . ,k−2

y
(nk−1)
k−1 = αk−1+ xk,

x(nk)
k = vk

yk = xk− vk−1

(10.47)

4. k= p

y(ni)
i = yi+1+αi + vi, i = 1, . . . , p−2

y
(np−1)

p−1 = αp−1+ xp,

x
(np)
p = α +ρvp

yp = xp− vp−1

(10.48)

Notice that the zero dynamics of thekth system (10.47) are

y(ni)
i = yi+1+αi + vi , i = 1, . . . ,k−2

y
(nk−1)
k−1 = αk−1+ vk−1

(10.49)

Now, we design a VS stabilizing controller,vk(yk, . . . ,k
(ni)
k ) such thatyk(t)→ 0 as

t→∞. For eachk< p we smooth the controller so that the process can be continued.
Working in this way through thep stages, and redefining the states (x→ y) at each
stage we arrive at the final set of dynamical equations.

y(ni)
i = yi+1+αi + vi(yi , . . .y

(ni−1)
i ) i = 1, . . . , p−1

y
(np)
p = α +αp+ρu(yp, . . .y

(np−1)
p )

(10.50)

Notice the triangular structure of the transformed nominalsystem (10.50). It is illus-
trated in Figure (10.2).

Now, let us define the procedure in detail.

Algorithm 10.14 (Variable Structure Backstepping Algorithm) The
state transformation and control are constructed sequentially as follows:
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Fig. 10.2: The triangular structure of the closed loop (nominal) dynamics achieved with the
multistate backstep control design.

1. k= 1 define the vector fieldŝf1, g1 and the scalar function̂h1:

f̂1 =







ẋ1
...

x(n1−1)
1

0






, g1 =







0
...
0
1







y1 = ĥ1(x1) = x1

Now define the new state variables:

z1
1 = y1 = ĥ1

z1
2 = ẏ1 = L f̂1

ĥ1
...

z1
n1
= y(n1−1)

1 = Ln1−1
f̂1

ĥ1

which leads to the state space description

Ż1 = f1(Z
1)+g1v1 =









z1
2
...

z1
n1

Ln1
f̂1

ĥ1









+







0
...
0
1







v1

y1 = h1(Z
1) = z1

1

where Z1 =
[
z1
1, . . . ,z

1
n1

]T
. This is the state space equivalent to Equation (10.45).

Now, design the smoothed variable structure controller v1.
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2. k= 2, . . . , p−1 Definef̂k, gk, andĥk

f̂k =









fk−1(Zk−1)+gk−1vk−2(zk−2)
ẋk
...

x(nk−1)
k

0









, gk =










0
...
...
0
1










yk = ĥk(Z
k−1,xk) = xk− vk−1(z

k−1)

where

Zk−1 =

[(

Zk−2
)T

,zk−1
1 , . . . ,zk−1

nk−1

]T

Define the next group of new states

zk
1 = yk = ĥk

zk
2 = ẏk = L f̂k

ĥk
...

zk
nk
= y(nk−1)

k = Lnk−1
f̂k

ĥk

Write the state space equivalent to (10.47).

Żk = fk(Z
k)+gkvk =










fk−1(Zk−1)+gk−1vk−2(zk−2)
zk
2
...

zk
nk

Lnk

f̂
ĥk










+










0
...
...
0
1










vk

yk = hk(Z
k) = zk

1− vk−1(z
k−1)

and design the smoothed variable structure control vk.

3. k= p f̂p, gp, andĥp are defined as above for general k. Now introduce the last
group of new states

zp
1 = yp = ĥp

zp
2 = ẏp = L f̂p

ĥp

...

zp
np = y

(np−1)
p = L

np−1

f̂p
ĥp

to obtain the state space equivalent to (10.48).
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Żp = fp(Z
p)+gp(α +ρvp)=










fp−1(Zp−1)+gp−1vp−2(zp−2)
zp
2
...

zp
np

L
np

f̂p
ĥp










+










0
...
...
0
1










(α +ρvp)

Zp =

[
Zp−1

zp

]

∈ Rn1+···+np

yp = hp(Z
p) = zp

1− vp−1(z
p−1)

Finally, design the variable structure controller vp.

Now we apply this transformation to the actual system (10.42).

Lemma 10.15.Consider the transformation defined recursively accordingto Algo-
rithm (10.14). When applied to the actual system (10.42) thetransformed evolution
equations are

y(ni)
i = yi+1+αi +∆i + vi(yi , . . .y

(ni−1)
i ) i = 1, . . . , p−1

y
(np)
p = α +αp+∆p+ρu(yp, . . .y

(np−1)
p )

(10.51)

Proof: Notice that at each stage of Algorithm (10.14), fork = 1, . . . , p−1, nk new
state variables are defined andnk first order equations are added to the system. The
first nk−1 equations come from the state definitions, i.e. the definingequations

zk
1 = yk = ĥk

zk
2 = ẏk = L f̂k

ĥk
...

zk
nk
= y(nk−1)

k = Lnk−1
f̂k

ĥk

imply
ẏk = żk

1 = zk
2

...

y(nk−1)
k = żk

nk−1 = zk
nk

The final equation is obtained by differentiating the last definition and using the

evolution equationx(nk)
k = vk in the nominal case andx(nk)

k = ∆k + vk in the actual
case, leading to

y(nk)
k = żk

nk
= Lnk

f̂k
ĥk+LĝkL

nk−1
f̂k

ĥkvk = Lnk

f̂k
ĥk+ vk

in the nominal case, and
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y(nk)
k = żk

nk
= Lnk

f̂k
ĥk+LĝkL

nk−1
f̂k

ĥk(∆k+ vk) = Lnk

f̂k
ĥk+∆k+ vk

in the actual case.

The casek= p is similar except thatα +ρvp is replaced byα +∆p+ρvp.

The idea for establishing stability is roughly as follows. AVS controller is designed
for system p, (10.50), via methods described above. The system is stable if and only
if the zero dynamics,

y(ni)
i = yi+1+αi + vi(yi , . . .y

(ni−1)
i ) i = 1, . . . , p−2

y
(np−1)

p−1 = αp−1+ vp−1(yp−1, . . .y
(np−1−1)
p−1 )

(10.52)

are stable. But,vp−1 is itself a (smoothed) VS control so that (10.52) is stable ifits
zero dynamics:

y(ni)
i = yi+1+αi + vi(yi , . . .y

(ni−1)
i ) i = 1, . . . , p−3

y
(np−2)

p−2 = αp−2+ vp−2(yp−2, . . .y
(np−2−1)
p−2 )

(10.53)

are stable. The argument proceeds in this way.

Proposition 10.16.Consider the system (10.42) and suppose the uncertainties∆i

satisfy the inequality (10.43) with continuous bounding functionsεi , andα also has
a continuous bounding functionσα . Suppose that a controller is designed via the
backstepping procedure of Algorithm (10.14) and each control vk, k = 1, . . . , p is
a smoothed variable structure controller designed in accordance with the assump-
tions of Proposition (10.12). Then for any givenδ > 0 there is a sufficiently small
smoothing parameterε > 0 such that all trajectories enter the ball‖y‖< δ.

Proof: The p-th system

y
(np)
p = α +αp+∆p+ρvp(yp, . . .y

(np−1)
p ) (10.54)

satisfies the conditions of Proposition (10.12) withzi = y(i−1)
p , i = 1, . . . ,np. Hence,

we conclude thatyp (and itsnp−1 derivatives) will be driven, in finite time, into a
δ-neighborhood of the origin with a suitably small smoothingparameter. Now, the
p−1 system is

y
(np−1)
p−1 = yp(t)+αp−1+∆p−1+ vp−1(yp−1, . . .y

(np−1−1)
p−1 ) (10.55)

and
∣
∣yp(t)

∣
∣ ≤ δ, ∀t > t∗ < ∞. Thus, we can incorporateyp(t) into ∆p−1(x, t). It fol-

lows that (10.55) satisfies the conditions of Proposition (10.12) fort > t∗, zi = y(i−1)
p−1 ,

i = 1, . . . ,np−1, so thatyp−1 (and itsnp−1− 1 derivatives) will be driven, in finite
time, into aδ-neighborhood of the origin with a suitably small smoothingparameter.
We continue in this way for systemsk = p−2, . . . ,1 to establish the conclusion of
the theorem.
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Example 10.17 (Nonsmooth, Uncertain Friction).Consider a simple system with a
nonlinear, nonsmooth friction:

θ̇ = ω
ω̇ =−φf r(ω)+ µ
µ̇ = u

with
φf r = sgn(ω)

Suppose the friction to be composed of a smooth nominal part and a nonsmooth
uncertain part, i.e.,

φf r = tanh(ω/0.02)+∆(ω), ∆(ω) = sgn(ω)− tanh(ω/ε), ε > 0

Thus, the nominal system is

θ̇ = ω
ω̇ =− tanh(ω/0.02)+ µ
µ̇ = u

and the uncertainty is bounded byσ∆ = const. > 1.

Now, we complete step 1 and compute the smoothed variable structure (psuedo-)
control, vs1:

In[238]:= f1 = {ω,−Tanh[ω/0.02]};
g1 = {0,1};
h1= {θ};
{rho1,s1} = SlidingSurface [f1,g1,h1,{θ ,ω},{2}]

ctrlbnds = {{−5,5}};
Q = {{1}};
vsc1= SwitchingControl [rho1,s1,ctrlbnds,Q,S

SmoothingFunctions [x ]−> {Tanh[x/0.01]}]
Out[238]= {−5 Tanh[100. ω+423.607 θ ]}

In step 2 we compute the actual control vs2. It is designed without smoothing or
moderation.

In[239]:= f = {ω,−Tanh[ω/0.02]+uu ,0};
g = {0,0,1};
h = {uu−vsc1 [[1]]};
{rho2,s2} = SlidingSurface [f,g,h,{θ ,ω,uu},{20}]

ctrlbnds = {{−5,5}};
Q = {{1}};
vsc2= SwitchingControl [rho2,s2,ctrlbnds,Q]
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Out[239]= {5 Sign[−uu−5 Tanh[100. ω+423.607 θ ]]}

Now, we set up the equations for numerical computation. Notice that the actual plant
friction function is taken to be sgn(ω) which corresponds to takingε = 0.02.

In[240]:= ReplacementRules=

Inner [Rule,{θ ,ω,uu},{θ [t],ω[t],uu[t]},List];

In[241]:= {Surf}= s2/.ReplacementRules;

Surf
Out[241]= 5 Tanh[100. ω[t]+423.607 θ [t]]+uu[t]

In[242]:= {VSControl}= vsc2/.ReplacementRules;

VSControl
Out[242]= 5 Sign[−5 Tanh[100. ω[t]+423.607 θ [t]]−uu[t]]

In[243]:= VSsols =

NDSolve[{∂ttheta[t] == ω[t],∂tω[t] ==−Sign [ω[t]] +uu [t],

∂tuu [t] == VSControl,ω[0] == 0.2,θ [0] == 0,uu [0] == 0},
{θ [t],ω[t],uu[t]},{t,0,10},AccuracyGoal→ 2,

PrecisionGoal−> 1,MaxStepSize−> 10/60000,MaxSteps→ 60000];

Here are some selected results.

In[244]:= Plot [Evaluate [{θ [t]} /. VSsols],

{t,0,9},PlotRange−> All ,AxesLabel→{t,θ}];
Plot [Evaluate [{ω[t]} /. VSsols],

{t,0, 9},PlotRange−> All ,AxesLabel→{t,ω}];
Plot [Evaluate [{VSControl}/.VSsols],

{t,0,9},PlotRange−> All ,AxesLabel→{t,u}];
ParametricPlot [Evaluate [{θ [t],ω[t]}/.VSsols],{t,0, 9},

PlotRange−> All ,AxesLabel→{θ ,ω}]

Here is the outputθ as a function of time. Stability is clearly evident.
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The following plot of angular velocityω shows the ‘stiction’ effect of the discontin-
uous nonlinear friction.
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The switching control is shown in the following figure.
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Finally, a phase plot ofω versusθ indicates thatthetadoes not go to the origin. Of
course, the ultimate error is controlled by choice of smoothing parameter in step 1.
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These results clearly illustrate the anticipated properties.

Example 10.18 (Motor-Load System with Nonsmooth friction). Consider a motor-
load system illustrated in Figure (10.3) and described by Equation (10.56).

ẋ=






ω1

θ2−θ1−ω1/10
ω2

θ1−θ2−ω2/2




+







0
− 1

10

(

1+ 1
10 exp−(ω1/0.02)2

)

sgnω1

0
− 1

10sgnω2






+






0
0
0
1




u (10.56)

We begin by reducing the nominal system to normal form.
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Fig. 10.3: A typical drive system consisting of a motor and aninertial load. The nonlinear
friction functions,ϕ1 andϕ2 contain uncertain discontinuous components.

In[245]:= f =

{omega1, theta2− theta1−omega1/10,omega2, theta1− theta2− omega2/2};
g= {0,0,0,1};
h= theta1;

In[246]:= Df = {0,−(1+Exp[−(omega1/0.02)ˆ2]/10) Sign [omega1]/10,0,

−Sign [omega2]/10};
In[247]:= {T1,T2}=

Chop[SISONormalFormTrans [f,g,h,{theta1,omega1, theta2,omega2}]];
In[248]:= InvTrans= InverseTransformation [{theta1,omega1, theta2,omega2},

{x1,x2,x3,x4},T1];

InverseTransformation :{theta1,omega1, theta2,omega2}= {x1,x2,
1
10

(10 x1+x2+10 x3),

1
10

(10 x2+x3+10 x4)}

The following calculation applies the transformation to the actual (perturbed) sys-
tem.

In[249]:= {fnew,gnew,hnew}= Chop[TransformSystem [f,g,h,

{theta1,omega1, theta2,omega2},{x1,x2,x3,x4},T1, InvTrans]];

In[250]:= {ff ,gg,hh}= Chop[TransformSystem [f+Df,g,h,

{theta1,omega1, theta2,omega2},{x1,x2,x3,x4},T1, InvTrans]];

In[251]:= N[ff ]

Out[251]=
{

x2,x3+0.01
(
−10.−1. 2.71828−2500. x22)

Sign[x2],

x4+0.001
(
10.+2.71828−2500. x22)

Sign[x2],

0.0099
(
10.+2.71828−2500. x22)

Sign[x2]+

0.05 (−12. x2−41. x3−12. x4−2. Sign[x2+0.1 x3+x4])
}
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Now, the backstepping procedure is applied. Observe the structure of the actual sys-
tem in normal form. Because uncertainties enter the right hand sides of the second,
third and fourth equations, three steps will be required.

1st Step

In[252]:= f1 = {x2,0};
g1 = {0,1};
h1= {x1};
{rho1,s1} = SlidingSurface [f1,g1,h1,{x1,x2},{2}];

In[253]:= ctrlbnds = {{−1,1}};
Q = {{1}};
vsc1= SwitchingControl [rho1,s1,ctrlbnds,Q,

SmoothingFunctions [x ]−> {Tanh[x/0.1]}];

2nd Step

In[254]:= f2 = {x2,x3,0};
g2= { 0,0,1};
h2 = {x3−vsc1 [[1]]};
{rho2,s2} = SlidingSurface [f2,g2,h2,{x1,x2,x3},{5}];

In[255]:= ctrlbnds = {{−5,5}};
Q = {{1}};
vsc2= SwitchingControl [rho2,s2,ctrlbnds,Q,

SmoothingFunctions [x ]−> {Tanh[x/0.1]}];
In[256]:= {T1,T2}= Chop[SISONormalFormTrans [f2,g2,h2,{x1,x2,x3}]];

3rd Step

In[257]:= f3 = fnew;

g3= gnew;

h3= Chop[SetAccuracy [{x4−vsc2 [[1]]},4],10 (̂−4)];

It is important to get an estimate of bounds onα in order to set appropriate control
bounds.

In[258]:= {ρ,α , ro,control}= IOLinearize [f3,g3,h3,{x1,x2,x3,x4}];

In[259]:= Coefficient [Truncate [α [[1]],{x1,x2,x3,x4},1],{x1,x2,x3,x4}]
Out[259]= {0,2117.,498.,49.4}

In[260]:= b= 5 (1+10 Abs[x4]+100 Abs[x3]+500 Abs[x2]);
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As it turns out, these bounds are fairly tight. Reducing themsignificantly rsults in
very degraded performance – even of the nominal system.

In[261]:= {rho3,s3} = SlidingSurface [f3,g3,h3,{x1,x2,z3,x4},{20}];

In[262]:= ctrlbnds = {{−b,b}};
Q = {{1}};
vsc3= SwitchingControl [rho3,s3,ctrlbnds,Q,

SmoothingFunctions [x ]−> {Tanh[x/0.04]}];

Simulation of the Actual Plant

In[263]:= InitialConds= {x1(0) = 0,x2(0) = 0.2,x3(0) = 0,x4(0) = 0};
Eqns= MakeODEs[{x1,x2,x3,x4}, ff +ggvsc3[[1]], t];

In[264]:= VSsols= NDSolve[Join[Eqns, InitialConds],{x1(t),x2(t),x3(t),x4(t)},{t,0,4},
AccuracyGoal→ 2,PrecisionGoal→ 1,MaxStepSize→ 4

60000
,MaxSteps→ 60000];

In[265]:= Plot [Evaluate [{x1[t]} /. VSsols],

{t,0,2},PlotRange−> All ,AxesLabel→{t,θ1}];
Plot [Evaluate [{x2[t]} /. VSsols],

{t,0, 2},PlotRange−> All ,AxesLabel→{t,ω1}];
Plot [Evaluate [{x3[t]} /. VSsols],

{t,0, 2},PlotRange−> All ,AxesLabel→{t,x3}];
Plot [Evaluate [{x4[t]} /. VSsols],

{t,0, 2},PlotRange−> All ,AxesLabel→{t,x4}];
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In[266]:= Control= vsc3 [[1]]/.ReplacementRules;

Plot [Evaluate [{Control}/.VSsols],{t,0,2},AxesLabel→{t,u}];
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Notice that the position error does not reduce to zero. This is as expected, because of
the smoothing of the controllers. By decreasing the smoothing parameter, of course,
the error is reduce. On the other hand the (peak) control effort increases. As it is,
control effort is quite substantial.

Simulation with Different Initial Conditions

The following computations illustrate response from a different set of initial condi-
tions.

In[267]:= InitialConds= {x1 [0] == 0.2,x2 [0] == 0,x3 [0] == 0,x4 [0] == 0};

In[268]:= VSsols = NDSolve[Join [Eqns, InitialConds],

{x1 [t],x2 [t],x3 [t],x4 [t]},{t,0,10},AccuracyGoal→ 2,

PrecisionGoal−> 1,MaxStepSize−> 10/60000,MaxSteps→ 60000];

In[269]:= Plot [Evaluate [{x1[t]} /. VSsols],

{t,0,4},PlotRange−> All ,AxesLabel→{t,θ1}];
Plot [Evaluate [{x2[t]} /. VSsols],

{t,0, 4},PlotRange−> All ,AxesLabel→{t,ω1}];
Plot [Evaluate [{x3[t]} /. VSsols],

{t,0, 4},PlotRange−> All ,AxesLabel→{t,x3}];
Plot [Evaluate [{x4[t]} /. VSsols],

{t,0, 4},PlotRange−> All ,AxesLabel→{t,x4}];
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In[270]:= Plot [Evaluate [{Control}/.VSsols],{t,0,4},AxesLabel→{t,u}];
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It appears that from these initial conditions the ultimate error is quite small, but it is
not zero. Notice also the stiction effects. The control plots give a clear indication of
where sliding begins.

10.9 Problems

Problem 10.19.Consider the magnetic suspension system shown in Figure (10.4)
Consider the voltagev(t) to be the control input. The attracting force suspending the
mass is
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Fig. 10.4: Magnetic suspension system.

F =
k1i2

(x+ k2)
2

Suppose the circuit resistance isR and the combined inductance of the coil and sus-
pended mass isL.

(a) Develop Lagrange’s equations for the system.

(b) Design a variable structure control system. Assume all states are available for
measurement. Assume that the mass,m, and the constantsk1 andk2 are uncertain
and can vary±20% from their nominal values.

(c) Develop a simulation of the control system designed in (b).

(d) Assume that only the current and gap width can be measuredand incorporate an
observer in the control design. Compare the state feedback and observer based
designs via simulation.

(e) Design a state feedback adaptive controller and compareits performance with
the controller of (b) by simulation.

Problem 10.20.Repeat Problem (9.24) using a variable structure controller.
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Problem 10.21.Repeat Problem (9.23) using a variable structure controller.

Problem 10.22 (Synchronous motor, revisited).Consider the synchronous motor
described in Problem (6.23) Suppose that the load torqueTL can be measured. Design
a variable structure control using the four control variablesvd,vq,v0,vf . Assume that
there is a power supply that provides a dc voltage of±VS for the stator and±Vf for
the field. The outputs to be regulated are defined as follows:

1. Speed regulation. Define

y1 = ω̇+ c(ω−ω0) = (−
√

3
2L5i f iq−TL)/J+ c(ω−ω0), c> 0

whereω0 is the desired speed.

2. Balanced motor operation. Normally, a 3-phase machine isdriven with line volt-
agesv1,v2,v3 that are sinusoids of the same magnitude and frequency and 120
degrees out of phase. Thus, they sum to zero. Some deviation from this balance
will be allowed, but to regulate it introduce the new state

χ =

∫ t

0
v0dt

(recall,v0 = (v1+ v2+ v3)/
√

3), and define the output

y2 = χ

3. Constantd-axis current. Define

y3 = id− id0

whereid0 is assumed given.

4. Constant field current. Define

y4 = i f − i f 0

wherei f 0 is also given.

Some motivation for choosing this set of regulated output follows from the observa-

tion that the electrical torque isTE =
√

3
2L5 i f iq. Thus, we regulate to an equilibrium

point in which id and i f assume specified constant values andiq takes a value that

insuresTE = TL. Since the stator current magnitude isIs=
√

i2d + i2q, it is not difficult

to show that, in steady-state,TE =
√

3
2L5 i f 0Issinφ whereφ is the usual power angle,

i.e., the angle between the stator current and voltage phasers.

Are the zero dynamics stable?
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Optimal Control

11.1 Introduction
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Hybrid Control Systems

12.1 Introduction

Many systems undergo reconfiguration or switching during normal and abnormal
operations. Such systems can function in differentmodesor discrete statesin each
of which the system may exhibit distinct dynamical behavior. Transitions between
modes are defined by logical conditions that can depend on continuous dynamical
states or external signals. Such systems are calledhybrid systems[93] or Mixed
Logical-Dynamical systems(MLD) [6, 29]. The relevance of such problems to power
systems was clearly noted by Dy Liacco in [76, 77, 78]. This chapter is concerned
with power systems that operate in this way.

The class of control problems described herein derives fromspecific applications
in power systems, specifically systems that involve operation in highly nonlinear
regimes where failure events cause abrupt changes in the controlled system behavior,
which, in turn, require a change in control strategy.

All of the applications of interest herein involve both continuous and discrete dynam-
ics and are conveniently conceived as ahybrid automaton. Such a model is composed
of a description of the discrete transition behavior from one mode to another along
with models of continuous dynamic behavior within each mode. The hybrid automa-
ton model has proved to be an important theoretical tool and is a key conceptual
device for model building. However, other forms of models, like the MLD, are far
more convenient for control system design. The ability to convert from one form of
model to another is important.

In the following approach, the transition behavior of a hybrid automaton is modeled
by a logical statement (orspecification). The logical specification can be converted
into a set of mixed-integer formulas (IP formulas)1. Thus, the transition specification
for the automaton is converted into a set of inequalities involving Boolean variables.

1a computational tool for this purpose has been constructed in Mathematica. This work,
described in [66, 67, 65], extends earlier work in this area reported in [108, 75].
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Logical constraints other than the transition dynamics canalso be added to the speci-
fication making this a powerful approach to formulating an optimal control problem.
[102] describe a tool for building MLD models that allows theinclusion of Boolean
equivalents to logical specifications. So one could use our tool to create those ex-
pressions from an arbitrary logical specification.

The IP formulas are used in computing the optimal control strategy. Our approach de-
rives a feedback policy based on finite horizondynamic programming[5]. Dynamic
programming has been used extensively in control system design and has recently
been explored as a tool for designing hybrid system feedbackcontrols. It’s popular-
ity derives from the generality and broad applicability of theprinciple of optimality
on which it is based. A drawback of dynamic programming is thecurse of dimen-
sionality - a term coined by Bellman about 50 years ago, well before the advent of
powerful desktop computers.

Branicky et al [16] laid the groundwork for the use of dynamicprogramming in hy-
brid systems. They focused on the existence of optimal and near optimal controls,
and the establishment of a taxonomy for hybrid systems. In [38], the authors intro-
duced a discrete version of Bellman’s inequality to computea lower bound on the
optimal cost function using linear programming. In this wayan approximation of the
optimal feedback control law is derived. Another innovative work, [79], considers
the problem of approximating the value function. They called their procedure value
iteration from which a suboptimal solution is found within auser specified distance
from the optimal solution. They have applied thisrelaxed dynamic programming
approach to design a switched power controller for a DC-DC converter.

The hybrid systems study most closely related to our approach is the one described
by Bemporad et al in their recent paper [15]. They consider the optimal control of
constrained discrete-time linear hybrid systems with quadratic or linear performance
criteria. The associated Hamilton-Jacobi-Bellman equations are solved backwards in
time using a multiparametric quadratic (or linear) programming solver. Two cases
are considered, one without binary inputs and the other one with binary inputs. In
the latter case all possible combinations of binary inputs are enumerated.

In our case we consider nonlinear discrete-time hybrid dynamics with a general con-
vex cost function with primarily binary controls. A centralfeature of our formulation
is that it applies to systems with complex logical constraints, defined either by the
transition system or auxiliary considerations. We exploitthe fact that the system is
highly constrained and most of the constraints are linear inBoolean variables. Thus,
we use theMathematicafunctionReduce to determine feasible points from which
we identify those of minimum cost by enumeration.Reduce is a powerful function
that finds feasible solutions by solving equations and inequalties and eliminating
quantifiers. The method used depends on the specific structure of the expressions
involved.

In Section 12.3 we provide a specific definition of the problems considered herein.
Sections 12.4 and 12.5 describe the main concerns of this paper, namely the reduc-
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tion of a logical specification for the discrete subsystem toa set of inequalities and
the use of this model of a hybrid system to design optimal feedback controllers via
dynamic programming. An example is given in Section 12.8.3.The example shows
how additional logical constraints - other than the transition behavior - can be incor-
porated into the control problem.

12.2 Foundations of Discrete Event Systems

12.2.1 Preliminaries

12.2.2 Logical Specification of Transition Dynamics

12.2.3 Observations and Masks

12.2.4 Supervisors

12.2.5 Controllability and Observability

12.2.6 Supervisor Synthesis

12.2.7 Power Network Restoration

12.3 Hybrid Systems

12.3.1 Modeling

The class of hybrid systems to be considered is defined as follows. The system
operates in one ofm modes denotedq1, . . . ,qm. We refer to the set of modes
Q = {q1, . . . ,qm} as the discrete state space. The discrete time difference-algebraic
equation (DAE) describing operation in modeqi is

xk+1 = fi (xk,yk,uk)
0= gi (xk,yk,uk)

i = 1, . . . ,m (12.1)

wherex∈X⊆Rn is the system continuous state,y∈Y⊆Rp is the vector of algebraic
variables andu∈U ⊆ Rm is the continuous control. Transitions can occur only be-
tween certain modes. The set of admissible transitions isE⊆Q×Q. It is convenient
to view the mode transition system as a graph with elements ofthe setQ being the
nodes and the elements ofE being the edges. We assume that transitions are instan-
taneous and take place at the beginning of a time interval. So, if a system transitions
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from modeq1 to q2 at timek we would writeq(k) = q1,q(k+) = q2. We do allow
resets. State trajectories are assumed continuous throughevents, i.e.,x(k) = x(k+),
unless a reset is specified.

Transitions are triggered by externaleventsandguards. We denote the finite set of
eventsΣ. It is convenient to partition the events into two types; those that are con-
trollable (they can be assigned a value by the controller), and those that are not. The
latter are exogenous and occur spontaneously. Such an eventmight correspond to
a component failure, or a high level change of operational mode. We will use the
symbolss to represent controllable events andp to represent uncontrollable events.
Thus,Σ = S×P wheres∈ Sandp∈ P. A guard is a subset of the continuous state
spaceX that enables a transition. A transition enabled by a guard might represent
a protection device. Not all transitions have guards and some transitions might re-
quire simultaneous satisfaction of a guard and the occurrence of an event. The guard
assignment function isG : E→ 2X.

We consider each discrete state label,q ∈ Q, and each event,σ ∈ Σ, to be logi-
cal variables that take the values True or False. Guards alsoare specified as logical
conditions. In this way the transition system, including guards, can be defined by a
logical specification (formula)L .

In summary, a hybrid control system is composed of:

1. Q, discrete space,

2. X, continuous state space,

3. E, set of transitions,

4. Σ, event set,

5. G, guard assignment function,

6. L , logical specification,

7. F , family of controlled vector fields.

Example 12.1 (Three mode system.).Consider the simple three mode hybrid system
shown in Figure 12.1. Each mode,q1,q2,q3, is characterized by continuous dynamics
xk+1 = fqi (xk,uk) , i = 1,2,3.

Discrete transitions are associated with the events represented by logical variables
p,s1,s2,s3, i.e, Σ = {p,s1,s2,s3}. For example, if the system is in modeq1 ands1

evaluates to True, then a mode transition occurs in which themode changes from
q1 to q2. In this example, we use two different symbolss andp to denote transition
variables to underscore the fact that some transitions are controllable and others not
so.

In our formulation the transition system behavior is definedby the logical specifica-
tion:
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Fig. 12.1: Three mode hybrid system with controllable and uncontrollable events.

L = exactly(1,{q1 (t) ,q2 (t) ,q3 (t)})∧exactly
(
1,
{

q1
(
t+
)
,q2
(
t+
)
,q3
(
t+
)})
∧

(
q1 (t)∧s1⇒ q2

(
t+
))
∧
(
q1 (t)∧ p⇒ q3

(
t+
))
∧
(
q1 (t)∧¬(s1∨ p)⇒ q1

(
t+
))
∧

(
q2 (t)∧s2⇒ q1

(
t+
))
∧
(
q2 (t)∧¬s2⇒ q2

(
t+
))
∧

(
q3(t)∧s3⇒ q2

(
t+
))
∧
(
q3 (t)∧¬s3⇒ q3

(
t+
))

(12.2)
Let us dissect this specification. The first line expresses the fact that the system can
only be in one discrete state before the transition (at timet) and after the transition
(at timet+). The next line describes all possible transitions from state q1. Similarly,
the last line characterizes all possible transitions from statesq2 andq3, respectively.

For computational purposes it is useful to associate with each logical variable, say
α , a Boolean variable or indicator function,δα , such thatδα assumes the values 1 or
0 corresponding respectively toα being True or False. It is convenient to define the
discrete state vectorδq = [δq1, . . . ,δqm], the control event vectorδs = [δs1, . . . ,δsmS

],
and the exogenous event vectorδp = [δp1, . . . ,δpmP

]. Precisely one of the elements
of δq will be unity and all others will be zero.

Notice that with the introduction of the Boolean variables we can replace the set of
dynamical equations (12.24) with the single relation

x(k+1) = f (x(k) ,δq (k) ,u(k))
= δq1 fq1 (x(k) ,u(k))+ · · ·
· · ·+δqm fqm (x(k) ,u(k))

0 = g(x(k) ,δq (k) ,u(k))
= δq1gq1 (x(k) ,u(k))+ · · ·
· · ·+δqmgqm (x(k) ,u(k))

(12.3)

12.3.2 The Control problem

We assume that the system is observed in operation over some finite time horizon
T that is divided intoN discrete time intervals of equal length. A control policy isa
sequence of functions
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π=
{

µ0
(
x0,δq,0

)
, . . . ,µN−1

(
xN−1,δq,(N−1)

)}

such that
[
uk,δs,k

]
= µk

(
xk,δq,k

)

Thus,µk generates the continuous controluk and the discrete controlδs,k that are to
be applied at timek, based on the state

(
xk,δq,k

)
observed at timek.

Consider the set ofm-tuples{0,1}m. Let ∆m denote the subset of elementsδ ∈
{0,1}m that satisfyδ1 + · · ·+ δm = 1. Denote byΠ the set of sequences of func-
tionsµk : X×∆m→U×{0,1}mS that are piecewise continuous onX.

Now, given the initial state(x0,δq,0) the problem is to find a policy,π∗ ∈ Π , that
minimizes the cost functional

Jπ
(
x0,δq,0

)
= gN (xN,δq,N)+∑N−1

k=0 gk
(
xk,δq,k,µk

(
xk,δq,k

))
(12.4)

Specifically, theOptimal Feedback Control Problemis defined as follows. For each
x0∈X,δq,0∈∆m determine the control policyπ∗ ∈Π that minimizes the cost (12.26)
subject to the constraints (12.24) and the logical specification, L , i.e.,

Jπ∗
(
x0,δq,0

)
≤ Jπ

(
x0,δq,0

)
∀π∈ Π̄ (12.5)

whereΠ̄ ⊂Π is the subset of policies that steers (12.24) along trajectories that satisfy
L .

Notice that if a receding horizon optimal control is desired, once the optimal policy
is determined, we need only implement the state feedback control

[u,δs] = µ0 (x,δq) (12.6)

12.4 Logical Specification to IP Formulas

The first step in solving the optimal control problem is to transform the logical speci-
ficationL into a set of inequalities involving integer (in fact, Boolean) variables and
possibly real variables, so-calledIP-formulas. The idea of formulating optimization
problems using logical constraints and then converting them to IP formulas has a
long history. This concept was recently used as a means to incorporate qualitative
information in process control and monitoring [103], and generally introduced into
the study of hybrid systems in [6].

McKinnon, [84], proposed the inclusion of logical constraints in optimization meth-
ods. They suggested a sequence of transformations that brings a logical specification
into a set of IP-formulas. Li, [75], presents a systematic algorithm for transforming
logic formulas into IP formulas. Those methods have been modified and extended in
order to obtain simpler and more compact IP formulas with other modifications to
enhance their applicability to hybrid systems.
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12.4.1 Logical Modeling Language

We use a logical specification to describe the transition behavior of a hybrid au-
tomaton. The specification is simply a logical formula. Herewe describe the set of
formulas, i.e., the language, to be employed. Apropositional variableis a variable
that can assume the values True or False. Apropositional formulais composed of
propositional variables,logical connectives(specifically∧, ∨,⇒,⇔, ¬), predicates
(Boolean-valued functions of propositional variables) and constraints. Specifically,
we will use the predicates: atleast(m,S), atmost(m,S), exactly(m,S), and none(S),
wherem≥ 1 is an integer andS is a list of propositional variables or formulas. A
constraint is an arithmetic equality or inequality involving integer or real numbers
and variables. Constraints evaluate to True (satisfied) or False (not satisfied).

Formulas are defined by the following statements:

1. a propositional variable or a constraint is an atomic formula,

2. an atomic formula is a formula,

3. F1 ∼ F2 is a formula ifF1 andF2 are formulas and∼ is one of the logical con-
nectives,

4. ¬F is a formula ifF is a formula,

5. atleast(m,S), atmost(m,S), exactly(m,S), and none(S) are formulas ifS is a list
of formulas andm≥ 1 is an integer.

12.4.2 Transformation to IP Formulas

Logical formulas are convenient for problem formulation. However, in order to com-
pute efficiently it is often convenient to convert a logical formula into a set of
so-called IP-formulas2, that is, a set of linear equalities or inequalities involving
Boolean variables. To do this, we use the transformation procedure defined in [74].
Following [84], the process involves first transforming theoriginal formula into an
intermediate form called aΓ -form and then a series of transformations are applied
that reduce theΓ -form to a set of IP formulas.

TheΓ -form is a logically equivalent normal form that leads to a more compact set
of IP formulas than better known normal forms like the CNF (conjunctive normal
form) or DNF (disjunctive normal form).

2While, generally, computing with IP-formulas is preferred, [43] shows that there are in-
stances when it is an advantage to compute using the originallogical constraint.
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12.4.3 Implementation

The basic function in ourMathematicaimplementation isGenIP which takes as
two arguments, the specification and a list of variables, either propositional variables
or bounded real or integer variables. The latter are specified in the forma≤ x≤ b.
GenIP performs a series of transformations and simplifications and returns the IP
formulas. A typical usage would look like:

GenIP[(q1⊕q2)∧ (qq1⊕qq2)∧((q1∧ (x> 0))⇒ qq2)∧
((q2∧s)⇒ qq1),{q1,q2,qq1,qq2,s,−2≤ x≤ 2}]

{1−δq1−δq2 ≥ 0,−1+δq1+δq2 ≥ 0,1−δqq1−δqq2 ≥ 0,
d7−δq1+δqq2 ≥ 0,−1+δqq1+δqq2 ≥ 0,
1−δq2+δqq1−δs≥ 0,−2+2d7+x≤ 0,−2≤ x≤ 2,
0≤ d7≤ 1,0≤ δq1≤ 1,0≤ δq2 ≤ 1,0≤ δqq1 ≤ 1,
0≤ δqq2 ≤ 1,0≤ δs≤ 1}

Notice that propositional variables are replaced by Boolean indicator functions, e.g.,
q1 is replaced byδq1 and new auxiliary variables may be introduced, in this cased7.

If all of the guards are linear (set boundaries are composed of linear segments),
then the IP formulas are system of linear constraints involving the Boolean variables
δq,δq+ ,δs,δp, respectively, the discrete state before transition, the discrete state after
transition, the controllable events, the exogenous events. They also involve a set of
auxiliary Boolean variables,d, introduced during the transformation process, and the
real state variables,x. The general form is3

E5δq+ +E6d≤ E0+E1x+E2δq+E3δs+E4δp (12.7)

where the matrices have appropriate dimensions. As we will see in examples below,
with x,δq,δs,δp given, these inequalities typically provide a unique solution for the
unknownsδq+ and d. The system evolution is described by the closed system of
equations (12.7) and (12.25).

12.5 Constructing the Optimal Solution

An optimal policyπ∗ is one that satisfies (12.27). Now we are in a position to apply
Bellman’s principle of optimality: supposeπ∗ =

{
µ∗1, . . . ,µ∗N−1

}
is an optimal con-

trol policy. Then the sub-policyπ∗i =
{

µ∗i , . . . ,µ∗N−1

}
, 1≤ i ≤ N−1 is optimal with

respect to the cost function (12.26).

Let us denote the optimal cost of the trajectory beginning atxi ,δq,i asJ∗i (xi ,δq,i). It
follows from the principle of optimality that

3Linearity only obtains if the conditions in the specification involving real variables are
themselves linear.
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J∗i−1

(

xi−1,δq,(i−1)

)

= min
µi−1

{

gi−1

(

xi−1,δq(,i−1),µi−1

)

+J∗i
(
xi ,δq,i

)}

(12.8)

Equation (12.8) provides a mechanism for backward recursive solution of the op-
timization problem. To begin the backward recursion, we need to solve the single
stage problem withi = N. The end pointxN,δq,N is free, so we begin at a general
terminal point

J∗N−1

(

xN−1,δq,(N−1)

)

= min
µN−1







gN−1

(

xN−1,δq,(N−1),µN−1

)

+gN

(

fN−1,δq+,(N−1)

)






(12.9)

Once the pairµ∗N−1,J
∗
N−1 is obtained, we computeµ∗N−2,J

∗
N−2. Continuing in this

way we obtain

J∗N−i

(

xN−i ,δq,(N−i)

)

= min
µN−i







gN−i

(

xN−i ,δq,(N−i),µN−i

)

+J∗N−i+1

(

fN−i ,δq+,(N−i)

)






(12.10)

for 2≤ i ≤ N.

We need to solve (12.10) recursively backward, fori = 2, . . . ,N after initializing with
(12.9). We begin by constructing a discrete grid on the continuous state space. The
discrete space is denoted̄X. At each iteration the optimal control and the optimal
cost are evaluated at discrete points inQ× X̄. To continue with the next stage we
need to set up an interpolation function to cover all points in Q×X.

We exploit the fact that the system is highly constrained andalmost all of the con-
straints are linear in Boolean variables. The basic approach is as follows:

1. Before beginning the time iteration:

a) Separate the inequalities into binary and real sets, binary formulas contain
only binary variables, real formulas can contain both binary and real vari-
ables.

b) For eachq ∈ Q, obtain all feasible solutions of the binary inequalities;a
list of possible solutions of pairs

(
δq+ ,d

)
. Our implementation employs the

MathematicafunctionReduce .

c) Define projection̄X→ X̄P whereX̄P is the subspace of real states actually
appearing in the real equations.

d) For eachxP ∈ X̄P

i. pre-screen the binary solutions to eliminate those that do not produce so-
lutions to the real inequalities - typically a very large fraction is dropped

ii. for every feasible combination of binary variables obtained above, solve
the real inequalities for the real variables

e) Lift real solutions to entirēX.

2. For eachi,
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a) For each pair(q,x) ∈Q× X̄

i. enumerate the values of the cost to go using the feasible sets of binary
and real variables

ii. select the minimum

In step 1b above the number of solutions corresponding to each q can be very large
because there are numerous redundant solutions associatedwith nonactive transi-
tions. Thus, we add additional logical constraints that specify the inactive transitions.
Step 1c exploits the fact that some real states do not appear in the real formulas.
Because a large fraction of the binary solutions do not lead to real solutions, the
pre-screening in step 1(d)i is very effective in reducing computing time. Finally, we
note that the inequalities are independent of the stage of the dynamic programming
recursion. Thus, step 1d, which is by far the most intensive computational element
of the optimization is done only once before the recursion step 2a begins.

12.6 Example: Load Shedding

This section provides a simple illustration of the formulation and solution of a power
management optimal control problem. For simplicity of exposition load shedding is
used as a means for accommodating transmission line faults.

12.6.1 Network and Load Dynamics

A relatively simple system that is known to exhibit interesting voltage stability char-
acteristics is a single generator feeding an aggregated load composed of constant
impedance loads and induction motors. The system has been used to study the effect
of tap changing transformers and capacitor banks in voltagecontrol, e.g., [88, 90, 4].

Consider the system shown in Figure 12.2. The system consists of a generator, a
transmission line, an on-load tap changing transformer (OLTC) and an aggregated
load. The generator is characterized by a ‘constant voltagebehind reactance’ model.
The generator internal bus voltageE is used to maintain the voltage at bus 2; so long
asE remains within the limits imposed by the excitation currentlimits. The OLTC
ordinarily moves in small discrete steps over a narrow range. The load is an aggregate
composed of parallel induction motors and constant impedance loads. An induction
motor can be characterized as an impedance with slowly varying resistance; conse-
quently, the aggregate load is represented by constant impedance - actually, a slowly
varying impedance, where the impedance depends on the aggregate induction motor
slip.

The network equations are easily obtained. Supposeδ1,δ2 denote the voltage angles
at bus 1 and 2. Define the relative angleθ2 = δ2−δ1. The network equations are
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Fig. 12.2: System configuration.

I1ω0ω̇ = Pg− cV2
2

0= (a/n)EV2sinθ2+ cV2
2

0= (a/n)EV2cosθ2+dV2
2

From the last two equations we obtain

V2 =
a/n√
c2+d2

E, θ2 = tan−1 c
d

The power absorbed by the load is

PL =−V2
2 c, QL =V2

2 d

Now, let us turn to the induction motors. An equivalent circuit for an induction mo-
tor is shown in Figure 12.3. Here, the parametersRs,Xs denote the resistance and
inductance of the stator,Xm denotes the magnetizing inductance, andRr ,Xr the rotor
resistance and inductance. The resistanceRr (1− s)/s represents the motor electrical
output power. We will neglect the small stator resistance and inductance. We also
assume the approximation of large magnetizing inductance is acceptable.

mjX

rjXsjXsR rR

1
r

s
R

s

−sI
sV

Fig. 12.3: Induction motor equivalent circuit.

Under these conditions obtain the following. The real powerdelivered to the rotor,
Pd, and the power delivered to the shaft,Pe, are

Pd =V2
s

Rrs
R2

r +s2X2
r

Pe = Pd (1− s)
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The dynamical equation for the motor (Newton’s law) is

ω̇m =
1

Imω0
(Pe−Pm)

Introducing the slip,s, s= (ω0−ωm)/ω0, the motor dynamics take the form

ṡ=
1

Imω2
0

(Pm−Pe) =
1

Imω2
0

(

Pm−V2
s

Rrs(1− s)
R2

r + s2X2
r

)

12.6.2 System Operation

In the following, we allow for shedding a fraction,η , of the load. In the present
example, we allow three different values ofη including zero, soη ∈ {0,η1,η2} .
Consequently, there is normal operation and two prioritized blocks of load that can
be dropped in accordance with the transition behavior defined in Figure 12.4. The
corresponding logical specification is

L = exactly(1,{q1(t) ,q2 (t) ,q3 (t)})∧exactly
(
1,
{

q1
(
t+
)
,q2
(
t+
)
,q3
(
t+
)})
∧

(
q1 (t)∧¬s1⇒ q2

(
t+
))
∧
(
q1 (t)∧s1⇒ q1

(
t+
))
∧

(
q2 (t)∧¬s2⇒ q3

(
t+
))
∧
(
q2 (t)∧s1⇒ q1

(
t+
))
∧
(
q2 (t)∧¬(s1∨¬s2)⇒ q2

(
t+
))
∧

(
q3 (t)∧s2⇒ q2

(
t+
))
∧
(
q3(t)∧¬s2⇒ q3

(
t+
))

���� ���� �� �! "

1q
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Fig. 12.4: Transition diagram for load shedding optimization.

In the present case, assume the blocks are sized such that

q1⇒ η = 0, q2⇒ η = 0.4, q3⇒ η = 0.8

Assume also that the OLTC ratio is fixed, i.e., the OLTC is not being used for control,
so n = const. If the OLTC is to be employed, the dynamics of tap change must be
added.

I1ω0ω̇ = Pg− cV2
2 (12.11)

E = (1−η)

√

c2
0+d2

0

a/n
V2 (12.12)
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ṡ=
(1−η)
Imω2

0

(

Pm−V2
2

Rrs(1− s)
R2

r + s2X2
r

)

(12.13)

c= (1−η)c0, c0 =

(
1

RL
+

Rrs
R2

r + s2X2
r

)

(12.14)

d = (1−η )d0, d0 =

(
Xrs2

R2
r + s2X2

r

)

(12.15)

Equation (12.11) represents turbine-generator dynamics.Ordinarily, the power in-
put Pg is adjusted to regulate the speedω which is to be maintained at the value
ω0. Assume that regulation is fast and accurate. It is possibleto investigate the im-
pact of frequency variation on system behavior. If it were assumed that frequency
variations were small, then the effect on all impedances could be approximated, and
this is often done. That has not been included here, so there is no apparent coupling
between (12.11) and the remaining equations, consequentlyit can be dropped. Equa-
tion (12.12) represents the network voltage characteristic. The field voltageE is used
to control the load bus voltageV2. It will be assumed that it is desired to maintain
V2 = 1. If the exciter dynamics are ignore, then (12.12) allows the determination of
the field voltage that yields the desired load bus voltage. However, the field voltage is
strictly limited, 0≤ E ≤ 2. Assume that only the upper limit is a binding constraint.
There are two possibilities for satisfying (12.12):

V2 = 1, E =

√
c2+d2

a/n or E = 2, V2 = 2 a/n√
c2+d2

Equation (12.21) represents the aggregated motor dynamics, and the load admittance
is given by the last two equations. The system data isRL = 2, Rr = 0.25, Xr =
0.125, a= 1 (nominal) , Imω2

0 = 4.

12.6.3 The Optimal Control Problem Without OLTC, n= 1

The problem is formulated as an N step moving horizon optimalcontrol problem,
in which the slip dynamics are written in discrete time form.The control variables
areE (k) ,η (k). The goal is to keep the load voltageV2 close to 1, specifically, it is
required that 0.95≤V2≤ 1.05. Our intent is to use the field voltage,E, to regulate the
terminal voltage,V2 to 1 p.u. Because 0<E≤ 2 is constrained, specify that solutions
must satisfy

(V2 = 1∧0< E < 2)∨ (E = 2)

If the field voltage saturates, the only remaining option is to shed some load. We seek
an optimal control policy, i.e., a sequence of controlsu(0) , . . . ,u(N−1) , u(k) =
η (k) , that minimizes the cost function

J =∑N−1
k=0

(

‖V2(k)−1‖2+ r1‖η (k)‖2
)
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subject to the system constraints. Some rough assessments of appropriate weighting
constantsr1 can be made. Load shedding should be avoided with respect to regulating
V2 unless theV2 tolerance is violated. Hence it is desired thatr1 > 0.252/0.052 =
1/25.

In summary, the following equations are obtained

1. The slip dynamics in discrete time form (withsk = s(tk), tk = tk−1+h)

sk+1 = f (sk,V2,η )

2. The transition specification in IP form

1−δq1
−δq2

−δq3
≥ 0, −1+δq1

+δq2
+δq3

≥ 0
1−δq+1

−δq+2
−δq+3

≥ 0, −1+δq+1
+δq+2

+δq+3
≥ 0

1−δq1 +δq+1
−δs1 ≥ 0, 1−δq2 +δq+1

−δs1 ≥ 0

1−δq2 +δq+2
−δs2 ≥ 0, 1−δq3 +δq+2

−δs2 ≥ 0

−δq1 +δq+2
+δs1 ≥ 0

−δq2
+δq+3

+δs2 ≥ 0, −δq3
+δq+3

+δs2 ≥ 0

0≤ δq1
≤ 1,0≤ δq2 ≤ 1,0≤ δq3 ≤ 1

0≤ δq+
1
≤ 1,0≤ δq+

2
≤ 1,0≤ δq+

3
≤ 1

0≤ δs
1
≤ 1,0≤ δs

2
≤ 1

3. The IP formulas for the logical constraint

3−d1−E > 0, 1−d1+E > 0, −2d2+E ≥ 0
−2d1+V2≥ 0, −2+d1+V2≤ 0

0≤ d1,d2≤ 1, 0≤ E,V2≤ 2

4. And the IP formulas for the load shed parameterη

−0.4d4+η ≥ 0, −0.8d5+η ≥ 0,
d3−δq+1

≥ 0, d4−δq+2
≥ 0, d5−δq+3

≥ 0

−1+d3+η ≤ 0, −1+0.6d4+η ≤ 0,
−1+0.2d5+η ≤ 0

0≤ d3≤ 1, 0≤ d4≤ 1, 0≤ d5≤ 1, 0≤ η ≤ 1

One result is shown in Figure 12.5. It illustrates the optimal load shedding strategy
following a line failure represented as a reduction ofa. The feedback control is given
as a function of the state - the latter composed of the continuous slip and the three
discrete states. At each state, the values of the control actionsδs1, δs2 are given. The
controlled transitions are also indicated.

Suppose immediately post-failure, the system is in modeq1, with a reduced slip of
0.1, then the system will respond as follows. Given a mechanical power level of 0.7,
the equilibrium slip is about 0.47. As slip increases towardits equilibrium value, the
first block of load is dropped at abouts= 0.3 and the second at abouts= 0.4.
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Fig. 12.5: Depiction of the feedback law obtained witha= 0.25,h= 0.5, andN = 20.

12.6.4 Incorporating Time Delays

Sometimes it is desirable to insure that there is a finite timeduration between two
successive controlled transitions. It is easy to do this by incorporating a time ‘resi-
dence’ requirement within a discrete state. For example, suppose we wish to insure
that a load shedding action will not be followed by another until at least a time∆
has passed. This can be accomplished by requiring that afterentry into stateq2 the
system must remain inq2 for at least time∆ .

To accomplish this we introduce a resetting ‘clock’

τ (k+1) = τ
(
k+
)
+h

whereτ (k+) = 0 upon entry intoq2 from q1 or q3 or τ (k+) = τ (k); and replace the
specificationL by

L = exactly(1,{q1 (t) ,q3(t) ,q3 (t)})∧
exactly

(
1,
{

q1
(
t+
)
,q3
(
t+
)
,q3
(
t+
)})
∧

(
q1 (t)∧¬s1⇒ q2

(
t+
)
∧ τ
(
t+
)
= 0
)
∧

(
q1 (t)∧s1⇒ q1

(
t+
)
∧ τ
(
t+
)
= τ (t)

)
∧

(
q2 (t)∧s1∧ τ (t)> ∆ ⇒ q1

(
t+
)
∧ τ
(
t+
)
= τ (t)

)
∧

(
q2 (t)∧¬s2∧ τ (t)> ∆ ⇒ q3

(
t+
)
∧ τ
(
t+
)
= τ (t)

)
∧

(
q2 (t)∧¬((s1∧ τ (t)> ∆)∨ (¬s2∧ τ (t)> ∆ ))
⇒ q2

(
t+
)
∧ τ
(
t+
)
= τ (t)

)

∧
(
q3 (t)∧s2⇒ q2

(
t+
)
∧ τ
(
t+
)
= 0
)
∧

(
q3 (t)∧¬s2⇒ q3

(
t+
)

τ
(
t+
)
= τ (t)

)

The control law now becomes a function of the discrete state,the two components of
the continuous state: the slips, and the clock variableτ . With time delay∆ = 1 the
control law is virtually identical to that shown in Figure 12.5 expect that the clock
dependence inhibits transitions fromq2 as required.
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We will not display the resulting IP formulas, but it is interesting to note that the
binary equations involve 24 binary variables 3 of which are the current state. Conse-
quently, there are 221= 2,097,152 possible solutions, but actually only 1000 - 2000
prove to be feasible (depending on the current discrete state). From these emerge
about 40-80 feasible real solutions. Finally, the associated cost for these few solu-
tions are enumerated and a minimum cost control is chosen.

12.7 Induction Motor Load with UPS

A relatively simple system that is known to exhibit interesting voltage stability char-
acteristics is a single generator feeding an aggregated load composed of constant
impedance loads and induction motors [90]. By expanding this system to include a
vital load with a UPS, as shown in Figure 12.6, we obtain one ofinterest to us.

,-.-/

012
34567 7869

1,E δ
2 2,V δ

/ja n−

:
;

Fig. 12.6: System with vital load and UPS.

The primary means for voltage control is the field voltage. However, in the event of
a transmission line fault it may be necessary to shed load in order to avoid a system
collapse. This can be accomplished by dropping non-vital load in discrete blocks
and, if necessary switching the vital load to battery supply.

Assume that two blocks of non-vital load can be dropped independently by open-
ing circuit breakers. Correspondingly, a load shed parameter is introducedη ∈
{0,η1,η2} that denotes the fraction of load dropped.

The battery is connected to the DC load bus through a DC-DC converter. There are
three possible UPS operating modes:

1. Battery unconnected.
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2. Battery discharging; The battery and vital load are detached from the rest of
the network. The battery supplies the load through a voltagecontrolled DC-DC
converter set up to keep the load voltage constant.

3. Battery charging; In this mode the battery is charged through a DC-DC converter
operated in current controlled mode – the current is controlled to a specified
value.

The overall system transition system is shown in Figure 12.7. It represents opera-
tional constraints that are imposed on the system.
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Fig. 12.7: Transition behavior for system with UPS.

12.7.1 Dynamics

Battery disconnected, modesq1,q2,q3

The voltage regulated rectifier controls the voltage on vital load bus.We assume that
the rectifier is power factor corrected so that from the AC side of the rectifier, the
vital load looks like a constant power load with unity power fact,P= Pv, Q= 0.
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Let δ1,δ2 denote the voltage angles at bus 1 and 2. Define the relative angle θ2 =
δ2−δ1. The network equations are

Pv = aEV2sinθ2− cV2
2

0= aEV2cosθ2+dV2
2

(12.16)

WherePv is the power consumed by the vital load andc− j d is the admittance of the
non-vital aggregate load.

The field voltageE is used to control the load bus voltageV2 to its desired nominal
value of 1. If we ignore the exciter dynamics, then (12.16) allows the determination
of the field voltage that yields the desired load bus voltage provided the resultantE
is within its strict limits, 0≤ E ≤ 2. It is always the upper limit that is the binding
constraint. This implies two possibilities for satisfying(12.16): eitherV2 = 1 orE =
2. These are:

V2 = 1, E =

√
(c+Pv)

2+d2

a , 0< Pv (12.17)

E = 2,

V2 =

√

2a2−cPv−
√

4a4−4a2cPv−d2P2
v

c2+d2 ,

0< Pv < 2a2
(√

c2+d2− c
)

(12.18)

Once the excitation system saturates there is an upper limitto Pv, as seen in (12.18).
This is the voltage collapse bifurcation point. Also, theserelations are only good for
Pv > 0 . WhenPv = 0 we have

V2 =
a√

c2+d2
E (12.19)

Equation (12.17) (non-saturated field) does approach the proper limit asPv→ 0 , but
the Equation (12.18) (saturated field) does not. This is as itshould be.

Remark 12.2 (Network Solution).As discussed in Remark 12.5 we can express the
network constraints in terms of the logical constraint

L0 = (V2 = 1⇒ E = z1)∧ (E = 2⇒V2 = z2) (12.20)

wherez1,z2 are defined via (12.17), (12.18), and (12.19).

Battery Charging, modeq4

The battery model is composed of a differential equation describing the battery ’state
of charge’σ and an output map that gives the battery terminal voltagevb as a function
of the state of charge.
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d
dt

σ =
1
C

i, vb = f (σ) , 0≤ σ ≤ 1

wherei is the battery charging current andC is the battery effective capacitance. The
DC-DC converter operates in current control mode so the battery is charged with
constant current,i = ic. While charging we have:

dσ
dt

=
ic
C

Because the AC-DC rectifier maintains constantV3, from the AC side of the recti-
fier, charging looks like an additional constant power load,Pc = V3ic. The network
supplies both the vital load and the power to charge the battery. Thus, the network
relation is given by Equations (12.17) and (12.18) withPv replace byPv+Pc.

Battery Discharging, modesq5,q6

The vital loads and battery are separated from the rest of thesystem and draw no
power from the network. Consequently the the relationship betweenE andV2 is
given by Equation (12.19). The DC-DC converter now maintains constant voltage
on bus 3, so that the battery current isi =−Pv/V3 and

dσ
dt

=− Pv

CV3

In the following study we takeC= 0.5 andPv = 10.

Induction Motors

If we neglect the small stator resistance and inductance andassume a large magne-
tizing inductance, the equivalent circuit for an inductionmotor consists of a series
rotor resistance and inductanceRr ,Xr . Define the slips= (ω0−ωm)/ω0 and letPm

denote the mechanical load power. Then the motor dynamics take the form

ṡ=
1

Imω2
0

(

Pm−V2
s

Rrs(1− s)
R2

r + s2X2
r

)

(12.21)

Load Shedding

We assume discrete load shedding blocks and defineη to represent the fraction of
load shed. Thusη can assume a finite number of values 0≤ η < 1. The non-vital
load admittances, taking into account the load shedding parameter, are:

c= (1−η)c0, c0 =

(
1

RL
+

Rrs
R2

r + s2X2
r

)

(12.22)
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d = (1−η )d0, d0 =

(
Xrs2

R2
r + s2X2

r

)

(12.23)

Equation (12.21) represents the aggregated motor dynamics, and the load admittance
is given by the last two equations, (12.22), (12.23). The system data isRL = 2, Rr =
0.25, Xr = 0.125, a= 1 (nominal) , Imω2

0 = 4.

12.7.2 IP Formulas for UPS System

Four logical constraints need to be converted to IP formulas:

1. the network specification,L0, Equation (12.20)

2. the transition specification,L1, of Figure 12.7

(3) the excitation shedding specification

L2 = (V2 = 1∧0< E < 2)∨ (E = 2)

(4) the load shedding specification

L3 = (q+1 ⇒ η = 0)∧ (q+2 ⇒ η = 0.4)∧
(q+3 ⇒ η = 0.8)

The corresponding IP formulas are generated automatically. We don’t display them
here because of space limitations. All of the inequalities derived fromL1 involve
only binary variables while some of those derived fromL0, L2 andL3 involve
both binary and real variables. The latter also contain auxiliary binary variablesdi

introduced during the conversion process. All of the inequalities are linear in all
variables.

12.7.3 Optimal Control

An optimal control policy is sought that minimizes the cost function

J =∑N−1
k=0

(
‖V2 (k)−1‖2+ r0‖σ −1‖2

+r1‖ηL (k)‖2
)

subject to the system constraints. In the following we taker0 = 1, r1 = 1/25.

Consider the optimal controller for a line fault that results in a line admittance of
a= 0.375. This is a severe fault, but one that is manageable. The state space includes
the 7 discrete states (modes) and two continuous states induction motor slip,s, in-
dicative of power, and battery state,σ , that represents the fractional battery charge.
For computational purposes, the continuous state is discretizeds∈ {.1, .2, .3, .4, .5}
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andσ ∈ {.25, .5, .75.1.0}, and the feedback control is computed in terms of these
140 states. In implementation an interpolation function isused for the continuous
states.

Figures 12.8, 12.9 and 12.10 illustrate a particular feedback trajectory in which the
initial battery state of charge is 0.1 and the initial slip is0.
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Fig. 12.8: Because of the low battery charge an initial switch into charging mode 4 occurs
before load is dropped, modes 2 and 3.
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Fig. 12.9: The battery initially charges, but increasing slip, and hence electrical power, even-
tually requires load shedding.

12.8 Ship Integrated Electric Power System

The number of power supply sources available on a ship power system is determined
by the need to supply the maximum anticipated electrical andpropulsion load. On a
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Fig. 12.10: After about 1 second the excitation saturates and load bus voltage drops. Load
voltage regulation is re-established following load shedding.

naval ship, operational modes that require high level of online resources persist only
for a small fraction of the total time a ship is in service. Consequently, a plan for fuel
reduction should focus on the low load, normal operations that dominate the ship’s
lifetime. A significant reduction of fuel consumption can result from running a small
number of turbine-generators during these periods. However, there is a real risk of
contingencies that could lead to the need to curtail load. Toinsure an acceptable level
of reliability of power supply it is necessary to maintain sufficient on-line generation
and to distribute it appropriately around the network.

In [23], the authors draw an important distinction betweensurvivability andqual-
ity of service(QOS). Survivability addresses prevention of fault propagation and
restoration of service under severe damage conditions whereas QOS concerns insur-
ing a reliable supply of power to loads during normal operations, see also [24] and
[45]. QOS is an important consideration during normal operations because equip-
ment malfunction is a relativity common occurrence. Not allloads have the same
requirements for continuity of power supply. As used in [23], QOS is quantified as
themean time between service interruptionswhere a service interruption is defined
as a degraded network condition that lasts longer than a loadcan tolerate before los-
ing functionality. In [45] loads are divided into four categories that depend on two
time parameters associated with the power network.T1 is the reconfiguration time:
the maximum time to reconfigure the network without bringingon additional gener-
ators.T2 is the generator start time: the time to bring on-line the slowest generator.
Accordingly, four categories of loads are defined:

1. Uninterruptible loads: cannot tolerate a power loss of durationT1 .

2. Short term interruptible loads: can tolerate a power lossof durationT1, but not
T2.
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3. Long term interruptible loads: can tolerate a power loss of durationT2.

4. Exempt loads: loads not considered in evaluating QOS.

Because this QOS metric is intended primarily for DC distribution systems it does
not consider power quality measures such as harmonic content, or voltage fluctua-
tions. In fact, it does not consider dynamics at all. In AC systems, however, dynamics
are important.

In [70], the authors formulate the fuel optimization problem with QOS constraints,
where QOS has a meaning appropriate for AC system power quality. The problem is
formulated as follows. Given a time interval,[0,T], over which the ship is to perform
a specified mission with corresponding maximum load,ℓ, having a corresponding
distribution over the network, determine a commitment,c∗ℓ , of generation resources
that minimizes fuel costs, supplies the load, and also satisfies QOS constraints. In
this case the QOS constraints are defined as follows.

Definition 12.3.Given:

1. a set of contingency events,R = {r i , i = 1, · · · ,m},
2. a set of performance variables (e.g., bus voltages, line currents, frequency),Y =
{yi , i = 1, · · · , p}, each variable with a corresponding admissible range so that
Yi,min ≤ yi (t) ≤ Yi,max and a time duration, Ti , for which an out of range value
can be tolerated.

The QOS constraints are satisfied if for every r∈R, occurring at any time tr ∈ [0,T],
at which time the network is in equilibrium, none of the performance variables yi (t)
experience a constraint violation for a duration longer than its corresponding Ti .

The fuel optimization problem as formulated above is naturally a static optimiza-
tion problem as meaningful fuel cost savings are obtained when measured over a
long period of operation. QOS constraints, on the other hand, involve short term
dynamics. They are incorporated by eliminating from consideration any otherwise
feasible commitment configuration. This is accomplished byevaluating the response
of the given configuration to the specified contingencies. Noattempt is made to op-
timize that response. In [57] that analysis is expanded to allow the temporary use
of load shedding and energy storage to avoid violating contingency constraints. The
proposed frame-work also allows inclusion of load scheduling as a means of fuel
conservation.

In the following discussion, an example based on the ship propulsion system de-
scribed in Appendix?? will be employed. The electrical load is assumed constant
over the duration of the analysis. Its value varies with the mission and the season and
may range from about 2000 KW to 4500 KW.
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12.8.1 The Fuel Consumption Model

It is instructive to first consider the operation of the ship in its various configurations
in terms of fuel consumption without regard to QOS constraints. The only constraints
considered here, are the generation capacity of each of the generators and the electric
power flow constraints of the network.

Fuel consumption data was obtained from the Navy’s Energy Conservation Program
web site http://www.i-encon.com. Based on the DDG 51 CLASS SHIPS data the
associated fuel data and fuel curves for both Allison GTGs and GE LM2500 GTMs
can be obtained. Curve fits where used to parameterize the data in terms of ship
speed,v, in knots. There are three propulsion alignments with distinct fuel curves.

Trail Shaft One GTM engine online and one shaft windmilling.

fTS= 117.17exp(0.1087v)

Split Plant One GTM engine online on each shaft.

fSP= 181.74exp(0.098v)

Full Power Two GTM engines online on each shaft.

fFP = 334.48exp(0.082v)

For theAllison 501-K34 GTG fuel consumption, the curve was parameterized in
KW electric load,L and the number of GTGs,NGT G.

fGT G= 0.068L+97.4NGTG

Figures 12.11 and 12.12 show the fuel consumption at low speed (up to 8 knots)
and high speed (above 8 knots), respectively, assuming a constant electric load of
3000 KW. Split plant operation has two GTMs operational, oneon each shaft with
all electric power supplied by two GTGs, as one would not be sufficient. This is
the most fuel costly configuration. Trail shaft operation issomewhat better as only
one GTM is operational. Note that one GTM can comfortably produce 22 knots.
The HED motoring configuration with 2 GTGs supplying 3000 KW,and 1500 KW
(or 2011 HP) for propulsion – so that about 8 knots is achievable – with 500 KW
remining. This is the most fuel efficient configuration for low speed operation, see
Figure 12.11. The HED generation configuration allows all ofthe GTGs to be shut
down, but this configuration is not as efficient as motoring.

The HED motoring configuration can only be used above 8 knots with 3 GTGs op-
erational, thereby, increasing fuel consumption and raising it to about the same as
trail shaft HED generation. With three GTGs and 3000 KW of electrical load, it can
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only produce a maximum speed of about 12 knots. Consequentlyit is omitted from
the high speed considerations in Figure 12.12. In the high speed range, trail shaft
HED generation is the most fuel efficient operating configuration. Also note that the
optimal speed is in the range of 14-15 knots.
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12.8.2 Optimal Response to Contingencies

From Section 12.8.1, it is clear that without considerationof supply reliability the
most efficient operational configuration at low speed is trail shaft HED motoring,
and at high speed operation it is trail shaft HED generation.The question now turns
to how QOS constraints alters this picture. In accordance with Definition 12.3, to
answer this it is necessary to evaluate the candidate configuration with respect to
all contingency events inR. This requires delineating the admissible corrective ac-
tions to each contingency and then evaluating the corresponding response in terms
of continuity of supply variablesY .

Example 12.4.Low speed Operation: Loss of Generator. As an example, consider
operation of the system described in Appendix?? at 7 knots, so the trail shaft HED
motoring is the most fuel efficient configuration. Suppose one of the specified con-
tingencies is loss of one of the two GTGs. Figure 12.13 illustrates the situation in
terms of a state diagram. The normal operating stateq1 consists of two GTGs each
producing 2250 KW. The system operating in stateq1 experiences an external event
e1 corresponding to a GTG failure inducing a transition to state q2. From the failed
state it is desired to restore the system back to the HED motoring state with two
GTGs and to do so without violating the QOS requirements. To accomplish this the
controller should react with a sequence of corrective actions. In this example the
actions to be taken include:

1. Start up the spare GTG (it takes 6 minutes to get from shutdown to full power).

2. Temporarily drop non-vital load (1000 KW),

3. Supply power, temporarily from the emergency storage module (ESM)

4. Use the generator crisis capacity (4500 KW for up to 5 minutes).

The discrete statesqi , i = 2, . . . ,6 are illustrated along with admissible controllable
transitionssi , i = 1, . . . ,9. The contingency triggering event cause the system to tran-
sition fromq1 to q2. There are four controlled events leading to transition from q2.
Any departure from stateq2 initiates startup of GTG 3. Now, it is proposed to select
thebestsequence of controlled transitions aimed at satisfying theQOS constraints.
If the best does indeed satisfy the constraints as specified in Definition 12.3, then the
same process can be followed for the other contingencies until one fails the test. If
all contingencies have an adequate response sequence, the the mode is accepted as a
valid operating configuration.

In earlier publications [67] and [65] the authors introduced an approach that uses a
nonlinear DAE model to describe the continuous state dynamics. In [57] new con-
cepts were introduced for improving the efficiency of the dynamic programming
computations. Logical specifications are used to define the admissible transition be-
havior of the discrete system, to incorporate saturation ofthe continuous control, to
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Fig. 12.13: Possible remedial strategies following loss ofGTG from trail shaft motoring con-
figuration.

characterize the algebraic constraints of the DAE model, and in the definition of the
the cost function. Conversion of the logical specificationsto integer formulas using
symbolic computation enables the use of mixed-integer dynamic programming to
derive an optimal feedback control.
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Fig. 12.14: The distribution network 12 bus configuration includes the generator internal
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Modeling

The system operates in one ofm modes denotedq1, . . . ,qm. Q= {q1, . . . ,qm} is the
discrete state space. The continuous time differential-algebraic equation (DAE) de-
scribing operation in modeqi is

ẋ= fi (x,y,u)
0= gi (x,y)

i = 1, . . . ,m (12.24)

wherex ∈ X ⊆ Rn is the system continuous state,y ∈ Y ⊆ Rp is the vector of al-
gebraic variables andu ∈ U ⊆ Rl is the continuous control. Transitions can occur
only between certain modes. The set of admissible transitions isE ⊆ Q×Q. It is
convenient to view the mode transition system as a graph withelements of the set
Q being the nodes and the elements ofE being the edges. We assume that transi-
tions are instantaneous. So, if a system transitions from modeq1 to q2 at timet we
would write q(t) = q1,q(t+) = q2. We allow resets. State trajectories are assumed
continuous through events, i.e.,x(t) = x(t+), unless a reset is specified.

Transitions are triggered by externaleventsandguards. Events are designateds and
belong to a setΣ. A guard is a subset of the continuous state spaceX that en-
ables/disables a transition. A transition enabled by a guard might represent a pro-
tection device. Not all transitions have guards and some transitions might require
simultaneous satisfaction of a guard and the occurrence of an event.

Each discrete state label,q ∈ Q, and each event label,s∈ E is considered to be a
logical variable that takes the value True or False. Guards also are specified as logical
conditions. In this way the transition system can be defined by a logical specification
(formula)L .

For computational purposes it is useful to associate with each logical variable, say
α , a binary variable or indicator function,δα , such thatδα assumes the values 1 or
0 corresponding respectively toα being True or False. It is convenient to define the
discrete state vectorδq = [δq1, . . . ,δqm]. Precisely one of the elements ofδq will be
unity and all others will be zero.

With the introduction of the binary variables the set of dynamical equations (12.24)
can be replaced with the single DAE:

ẋ= f (x,y,δq,u) = ∑m
i=1δqi fqi (x,y,u)

0= g(x,y,δq) = ∑m
i=1δqi gqi (x,y)

(12.25)

Remark 12.5 (Power System DAE Models).Power systems are typically modeled by
sets of semi-explicit DAEs as given by (12.24) In any modeqi the flow defined by
(12.24) is constrained to the setMi ⊂ X×Y defined by 0= gi (x,y). Ordinarily, it is
assumed thatMi is a regular submanifold ofX×Y.
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Example 12.6.Loss of Generator, Continued. The dynamical behavior in each of the
six discrete states shown in Figure 12.13 will be modeled with reference to the net-
work illustrated in Figure 12.14.Note that the initial state involves two generators
corresponding to buses 1 and 2. The spare generator corresponds to bus 3. It is as-
sumed that the bus 2 generator fails. The difference betweenthe initial stateq1 and
the final stateq6 in Figure 12.13 is that the replacement generator is on a different
bus. In summary, the reduced bus network models for the 6 states are:

Stateq1: Generator buses 1 and 2, PQ buses 4,5,6, full load.

Stateq2: Generator bus 1, PQ bus 4, full load,

Stateq3: Generator buses 1 and 3, PQ buses 4,6, vital load,

Stateq4: Generator buses 1 and 3, PQ buses 4,6, ESM, full load,

Stateq5: Generator buses 1 and 3, PQ bus 4,6, ESM, vital load

Stateq6: Generator buses 1 and 3, PQ bus 4,6, full load.

The Control problem

The system is observed in operation over some finite time horizonT that is divided
into N discrete time intervals of equal length. A control policy isa sequence of func-
tions

π=
{

µ0
(
x0,δq0

)
, . . . ,µN−1

(
xN−1,δq(N−1)

)}

such that[uk,δsk] = µk
(
xk,δqk

)
. Thus,µk generates the continuous controluk and

the discrete controlδsk that are to be applied at timek, based on the state
(
xk,δqk

)

observed at timek.

Consider the set ofm-tuples{0,1}m. Let ∆m denote the subset of elementsδ ∈
{0,1}m that satisfyδ1 + · · ·+ δm = 1. Denote byΠ the set of sequences of func-
tionsµk : X×∆m→U×{0,1}mS that are piecewise continuous onX.

TheOptimal Feedback Control Problemis defined as follows. For eachx0 ∈X,δq0 ∈
∆m determine the control policyπ∗ ∈ Π that minimizes the cost

Jπ
(
x0,δq0

)
=

gN (xN,δqN)+

∑N−1
k=0 gk

(
xk,δqk,µk

(
xk,δqk

))
(12.26)

subject to the constraints (12.24) and the logical specification, i.e.,

Jπ∗
(
x0,δq0

)
≤ Jπ

(
x0,δq0

)
∀π∈Π (12.27)

12.8.3 Example

Consider, again, the loss of generator 2. This event causes the transition from stateq1

to q2 as indicated in Figure 12.13. The goal now is to determine an optimal response
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strategy for this contingency. Departure fromq2 to any of the statesq3, . . . ,q6 initi-
ates startup of the spare generator (GTG3). It is assumed that the generator power
increases at a conservative rate of 250 KW/minute. In units of pu per sec,

Ṗ3 = 1/1200 (12.28)

The goal is to steer the system from the initial stateP3 = 0,q = q2 to the terminal
stateP3 = 0.45,q= q6. This will take 9 minutes sinceP3 must reach 0.45 pu from
0 pu. The fast electrical dynamics will be neglected so that the only dynamics are
associated with equation (12.28). Each mode is described by(12.28) and a set of
algebraic equations describing the network.

The nine minute interval is divided into nine one-minute segments, and (12.28) is
replaced by the discrete time equation

P3,i+1 = P3,i +60/1200 (12.29)

The goal is to find a sequence of state transitions that steersthe system from the
initial state{0,q2} to the final state{0.45,qr} such that QOS constraints are met. To
do this, an optimal control is sought that minimizes a cost defined to reflect the QOS
objectives. In this example, the costJ is

J =∑12
i=4 |Vi−1|+max[0,P1−0.5]+0.3δESM+0.15δNVL

whereδESM andδNVL are binary variables that take the values 0 or 1.δESM= 1 de-
notes the ESM is active andδNVL= 1 denotes the non-vital load is dropped, whereas
in each case, the value zero denotes the opposite. Dynamic programming is used
to obtain the switching strategy illustrated in Figure 12.15. The weights assigned to
δESM= 1,δESM= 1 are selected to reflect a judgement of the relative cost of employ-
ing these actions.

Notice that following the failure, the controller immediately switches to configu-
ration q3 which means that the non-vital load is dropped and the ESM turned on
providing 1000 KW of supporting power. It is worth noting that the power provided
by GTG1 isP1 = 0.494pu which is still below the unit’s normal rating of 0.5 pu.
If no action is taken, GTM1 would provide 0.786 pu power whichis just below the
unit’s five minute crisis capability (0.9 pu). However, the voltage levels are also un-
acceptably low. After one minute, the optimal strategy switches toq5, in which the
ESM is turned off, but the non-vital loads remain disconnected. The GTG1 power
output increases to 0.642 pu. The system remains in this state for four minutes by
which time the GTG1 power output has dropped below its normalrating to 0.444 pu.
At this point the configuration is switched toq6, the non-vital load is picked up and
the GTG1 power output increase to 0.640 pu. The system remains in this configura-
tion and reaches the target state in four minutes as the GTG1 power output reduces



12.8 Ship Integrated Electric Power System 383

linearly to its target value. Throughout this trajectory the bus voltages remain within
acceptable limits.
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Fig. 12.15: The optimal strategy is shown in terms of the timeperiod and GTG3 power level.
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Fig. 12.16: The optimal strategy is shown as a discrete statetransition diagram.

In summary, using the engine fuel consumption data, a set of possible operational
configurations, and mission specific electric load and ship speed requirements it is
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a straightforward matter to compute the most fuel efficient operating configuration.
However, when QOS constraints are imposed, the problem is more complicated. In
this case, it is necessary to delineate all credible contingencies and eliminate any con-
figuration which violates the QOS constraints for any one of the contingent events.
The occurrence of a contingency should trigger a remedial action designed to pre-
vent violation of the QOS constraints. The goal is to design an optimal sequence of
available remedial actions. The cost function is constructed from penalties associ-
ated with QOS violations which are balanced against costs associated with the using
the available remedial actions. With a remediation strategy defined, the response to
a contingency can be evaluated to determine if a QOS constraint is violated.
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ProPac

A.1 Getting Help

TheMathematicapackageProPacis an integral part of this book.ProPaccontains
subpackages for multibody dynamics, linear control, and nonlinear control. Once it
is installed, as described in Chapter 1, appropriate packages will be loaded automat-
ically as they are required. However, individual packages can be manually loaded
by simply entering GeometricTools, Dynamics, LinearControl, NonlinearControl,
or MEXTools as desired. Once a package is loaded, enter ?GeometricTools, ?Dy-
namics, ?LinearControl, ?NonlinearControl, or ?MEXTools, respectively, to obtain
a complete list of available functions. Then enter ?FunctionName to obtain usage
information for the functionFunctionName . After ProPacis installed, theMath-
ematicaHelp index should be rebuilt as described in Chapter 1. When this is done,
help will also be available in the Help Browser under Add-ons.

The CD that accompanies this book includes severalMathematicanotebooks that
illustrate the use ofProPac. The notebooks, Dynamics.nb and Controls.nb are in-
tended to give an overview of the available functions.

Of course, all standardMathematicafunctions and packages are available and
ProPac is compatible with theMathematicapackage Control Systems Profesional,
available from Wolfram Research.

A.2 Quick Reference Tables

The following tables provide a summary of the available functions. They are not all
inclusive. A complete list of available functions can be obtained as described in the
Section??.
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Function Name Operation

Bode produces a Bode plot of the transfer function of a (scalar) continuous
time system

RootLocus generates the root locus plot for a given transferfunction

Nyquist generates the Nyquist plot for a given transfer function

ColorNyquist generates a color version of the Nyquist plot

PhasePortrait computes a family of state space trajectories for a vector field onR2

and returns a list of graphics objects

Table A.1: Graphics Functions

Function Name Operation

ControllablePair test for controllability

ObservablePair test for observability

ControllabilityMatrix returns the controllability matrix

ObservabilityMatrix returns the observability matrix

PolePlace state feedback pole placement based on Ackermann’s for-
mula with options

DecouplingConrol state feedback and coordinate transformation that decouples
input-output map

RelativeDegree computes the vector relative degree

LyapunovEquation computes the solution,P, of AT +PA=−Q

AlgebraicRiccatiEquation computes the positive solutionof the algebraic Riccati equa-
tion

LQR, LQE compute optimal quadratic regulator and estimatorparame-
ters

Table A.2: Linear Systems: Time Domain
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Function Name Operation

LeastCommonDenominator finds the least common denominatorof the elements of a
proper, rational G(s)

Poles finds the roots of the least common denominator

LaurentSeries computes the Laurent series up to specified order

AssociatedHankelMatrix computes the Hankel matrix associated with Laurent expan-
sion of G(s)

McMillanDegree computes the degree of the minimal realization of G(s)

RelativeDegree computes the relative degree of a linear system

ControllableRealization computes the controllable realization of a transfer function

ObservableRealization computes the observable realization of a transfer function

KalmanDecomposition returns a Kalman decomposition of a linear system

Table A.3: Linear Systems: Frequency Domain

Function Name Operation

LieBracket computes the Lie bracket of a given pair of vectorfields

Ad computes the iterated Lie bracket of specified order of a pair
of vector fields

Involutive tests a set of vector fields to determine if it is involutive

Span generates a set of basis vector fields for a given set of vector
fields

TriangularDecomposition computes the transformation that trangularizes a vector field
from a given involutive distribution, invariant with respect to
the vector field

SmallestInvariantDistribution Computes the smallest distribution containing a given distri-
bution and invariant with respect to a set of vector fields

LargestInvariantDistribution Computes the largets distribution contained in the annihilator
of an exact codistribution and invariant with respect to a set
of vector fields

Table A.4: Geometry Tools
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Function Name Operation

Contraction returns the contraction of a form with a vector field

d the exterior derivative operator

FormBasis returns a basis for a given list of forms

FormDegree returns the degree of a differential form

RankCodistribution returns the Rank of a codistribution (alist of 1-forms)

Wedge returns the wedge product of a set of forms

Table A.5: Differential Forms

Function Name Operation

Joints returns all of the kinematic quantities corresponding to a list
of joint definitions

TreeInertia computes the inertia matrix of a multibody system in a tree
structure containing flexible and rigid bodies

EndEffector returns the Euclidean Configuration Matrix of abody fixed
frame at a specified node

NodeVelocity returns the (6 dim) spatial velocity vector ofa body fixed
frame at a specified node

GeneralizedForce computes the generalized force at specified node in terms of
generalized coordinates

RelativeConfiguration computes the relative configurationof body fixed frames at
specified nodes

KinematicReplacements sets up temporary replacement rules for repeated groups of
expressions to simplify kinematic quantities

Table A.6: Kinematics
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Function Name Operation

TreeInertia generates the spatial inertia of a tree structure

LeafPotential returns the elastic potential energy associated with leaf abso-
lute position in terms of the system generalized coordinates

BacklashPotential Returns the Hertz impact potential associated with a speci-
fied material potential

JointFriction assembles a dissipation function of Lur’e type for a joint that
involves viscous, Coulomb and Stribeck effects

CreateModel builds the kinematic and dynamic equations fortree struc-
tures

DifferentialConstraints adds differential constraints to a tree configuration

AlgebraicConstraints adds algebraic constraints to a treeconfiguration

MakeODEs assembles differential equations in a form that can be inte-
grated in Mathematica

MakeLagrangeEquations assembles Lagrange’s equations ina form that can be inte-
grated in Mathematica

Table A.7: Dynamics

Function Name Operation

ControlDistribution computes the controllability distribution of a nonlinear
(affine) system

Controllablity test for controllability of a nonlinear (affine) system

ObservabilityCodistribution computes the observabilitycodistribution of a nonlinear
(affine) system

Observability test for observability of a nonlinear (affine) system

LocalDecomposition computes a transformation that puts a nonlinear (affine) sys-
tem into Kalman-partitioned form

Table A.8: Nonlinear Controllability and Observability
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Function Name Operation

SISONormalFormTrans Computes the transformation taking an IO linearizable SISO
system to its normal form

VectorRelativeOrder computes the relative degree vector

DecouplingMatrix computes the decoupling matrix,ρ(x)
IOLinearize computes the linearizing control,

u= ρ−1{−α (x)+v}
NormalCoordinates computes the partial state transformation, z(x)

LocalZeroDynamics computes the local form of the zero dynamics F(ξ ,0), near
x0

DynamicExtension implements dynamic extension process toproduce a nonsin-
gular decoupling matrix when posible

StructureAlgorithm implements the Hirschorn-Singh structure algorithm for as-
sembling a dynamic inverse

Table A.9: Feedback Linearizing Functions

Function Name Operation

AdaptiveRegulator generates an adaptive regulator for a class of linearizable sys-
tems

AdaptiveBackstepRegulator computes an adaptive regulator by backstepping for SISO
systems in PSFF form

AdaptiveTracking computes an adaptive tracking controller

PSFFCond tests a system to determine if it is reducible to PSFF form

PSFFSolve transforms a system to PSFF form if possible

Table A.10: Adaptive Control

Function Name Operation

LinearizeToOutputInjection computes a transformation that converts the system to ob-
server form

ObservabilityIndices returns a list of the observability indices of the system

ObservableForm computes a transformation that converts the system to ob-
servable form

Table A.11: Observer Tools
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Function Name Operation

SlidingSurface generates the sliding (switching) surfacefor feedback lin-
earizable nonlinear systems

SwitchingControl computes the switching functions - allows the inclusion of
smoothing and moderating functions

Table A.12: Variable Structure Control
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semidefinite, 22
simple kinematic joints, 103
simulation, 170
sleigh, 158, 176, 190, 227
slice, 50
slide, 189
sliding domain, 316
sliding modes, 313
sliding surface

design, 318
smooth, 13

smoothed control, 326
smoothing function, 331
soft spring, 28
spatial inertia matrix, 142
spatial velocity, 142
spherical joint, 145
stability, 21
stable equilibrium point, 21
stable manifold, 33
stable subspace, 33
state space, 54
steer, 189
strong local observability, 234
structure algorithm, 216
submanifold, 43
submerged rigid body, 139
synchronous motor, 174, 350
system inverse, 215

tangent bundle, 51, 53, 133
tangent covectors, 56
tangent space, 51
thin disk, 145
torus, 47
tracking control, 220, 231
trajectories, 15
tree, 119
triangularity conditions, 273
two bar linkage, 168

universal joint, 110, 145
unstable manifold, 33
unstable subspace, 33

Van der Pol system, 15
variable structure control

backstepping, 331
chattering, 325
extension, 328
matched uncertainty, 323
moderation, 328
stability, 322

vector field, 15, 58
Ck, 58
left invariant, 85
right invariant, 85

vector relative degree, 201
velocity potential, 140
virtual displacement, 133



404 Index

weak local observability, 234

wedge product, 92

wriggle, 189

zero dynamics, 200
computation, 204
global form, 203
local form, 204


