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Abstract In this paper we describe a set of symbolic computing tools
for variable structure control system design. The software implements
all aspects of a design approach for input-output linearizable systems. It
is part of a comprehensive symbolic computing environment for
nonlinear and adaptive control system design that has been under
continuous development for several years. Current work is focused on
plants with nondifferentiable nonlinearities. Some preliminary results
are reported.

1 Introduction

The purpose of this paper is twofold. First, to describe a set of symbolic
computing tools developed to assist in the design and implementation of variable
structure control systems. The tools enable the efficient design of sliding surfaces
and reaching controllers including the inclusion of ‘smoothing’ and ‘moderating’
functions and the assembly of C-source code for simulation and real time
implementation. These functions extend the capabilities of the symbolic modeling
and control design software described in [1] and elsewhere.

The second purpose is to introduce a new backstepping methodology for systems
with uncertain nondifferentiable nonlinearities. The key innovations in our approach
are (1) that the states are grouped depending on where an uncertainty enters the
system and the robustification is attempted only where the uncertainty is identified,
and (2) that the control designed at each step is a variable structure control.

The variable structure methods we have implemented are developed in [2-4].
These references deal with variable structure control system design for smooth affine
systems that are feedback linearizable in the input-output sense. Such systems are of
the form:

x=f(x)+G(RYu

)
y=h(¥



wheref, G, h are sufficiently smooth and satisfy certain feedback linearizability

conditions [5]. All of the basic functions needed for design including reduction to
regular form (as described in [1]) and computation of the zero dynamics (as
previously reported in [6]), as well as functions for designing sliding surfaces and

switching controllers, have been integrated into a conveMathematicapackagé
Ongoing work is focused on extending these techniques to plants containing hard
nonlinearities such as dead zone, backlash, hysteresis and coulomb friction. To do
this has required extendingMathematica’s facilities for working with
nondifferentiable nonlinear functions. Our examples describe applications to friction
compensation.

In Section 2 we summarize the methods and computations that we have
implemented. We include some preliminary remarks concerning nonsmooth plant
dynamics and we briefly discuss chattering reduction techniques. Section 3 describes
and illustrates the symbolic computing tools. A very simple system with honsmooth
friction is used for illustrative purposes. The effects of control smoothing and
moderation are illustrated. Section 4 describes ongoing work involving plants with
nondifferentiable nonlinearities. A simple example is given which demonstrates the
problems that can occur when applying methods designed for smooth system to
those with nonsmooth nonlinearities by simply approximating the nonsmooth
nonlinearities by smooth functions. A backstepping approach to the variable
structure control design is shown to solve the problem in this simple case. In Section
5, the symbolic computing tools are used to design a friction compensating slewing
controller for the US Army Apache Helicopter 30-mm chain gun. Simulation results
are given that show the control robustness to parameter variation. Some concluding
remarks are given in Section 6.

2 Variable Structure Control Design

There are 2 basic steps to designing a variable structure control. The first is the
design of the sliding control or equivalently the sliding surface. The second is the
design of the reaching or switching control. The system is typically reduced to
normal, or regular, form before the design begins. Also, in order to avoid exciting
higher order unmodeled dynamics, ‘smoothing’ and ‘moderating’ functions are used
to reduce chattering. In this section, these methods are summarized. In addition, a
simple example is given with nonsmooth friction and local asymptotic stability of the
variable structure control is proven.

2.1 Normal Form

Denote thedh Lie (directional) derivative of the scalar functigfx) with respect
to the vector field(x) by L‘; (¢) . Now, by successive differentiation of the outputs
y in (1) we arrive at the following definitions for the list of integgtsthe column
vectora(x) and the matrip(x):

" More information can be found at the website: www.technosci.com.



ro=inf{k| L, (L*(h)) # 0 for at leastonej}
ai (X) = Lr‘f (h)! I :].,..,m
Py (=L, (Li*(h)),i,j =1.m
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where
Z°(x) =L*(h), k=21..,r, andi =1...m (2b)
It is a straightforward calculation to verify that the variables z defined by (2) satisfy
the relation
z=Az+ E[a(x) + p(x)u]

y=Cz
where the only nonzero rows &f are the m rows1,r1+ro,..r and these form the
identity Iy, the only nonzero columns @ are the columns dj+1,r1+ro+1,..5-
rm*1 and these form the identity,, and

|0

A= dlag(Al,,A“),A :% 0 ED R

The variableg are referred to as the linearizable coordinates. The remaining part of
the transform can be defined by arbitrarily choosing additional independent
coordinates. The conditiodet{o(X)} # O insures the existence of a local (around

Xg) change of coordinates- (£,2), § O R"",z0R" such that

E=F(,2) (3a)
z= Az+ Ha( X¢ D +p( &, ¥l (3b)
y:CZ (3C)

Equation (3) is frequently referred to as tleeal normal formof (1). It is
common to refer to (3a) as theternal dynamicsand (3b) as thdinearizable
dynamics If zis set to zero in (3a) then we have a local representation of the zero
dynamics.



Equation (3) is the point of departure for the variable structure design as described
in [2]. It constitutes aegular formin the sense of [7].

2.2 Sliding

The reduction to this normal form is commonly associated as the first step in the
process of feedback linearization. Here instead of feedback linearization, we
construct a variable structure control law with switching surface of the form,
S(x)=Kz(x). We can prove that during sliding, the equivalent control,is= Kz, so

that we achieve feedback linearized behavior irsliiiag phase (see, [2-4, 9]).

2.3 Reaching

The second step in VS control system design is the specification of the control
functions 4t such that the manifold s(x)=0 contains a stable submanifold which

insures that sliding occurs. There are many ways of approaching the reaching design
problem, Utkin [10]. We consider only one. Consider the positive definite quadratic
formins

V(x) =s'Qs

A sliding mode exists on a submanifold of s(x)=0 which lies in a region of the state
space on which the time rate of chaije negative. Upon differentiation we obtain

d
dt
If the controls are boundedl,l|i <U, >0 (0>U
obviously, to minimize the time rate of change/ofve should choose

ui = Uminj Step@* )+ Umaxi, Step( 1'5* ) [ :l,...,m,
s (x) = p" (YQKZX)

Notice that ifU . . ==U ..,

U = Uy SIGNES )

In this case it follows tha¥/ is negative provided

V =28"Qs=2[KAz+a] QKz+2u" p"QKz

i<y U i >0)then

min,i

the control reduces to

U, 0'QKZ> ‘[ KAz+a]' QK)z @)
A useful sufficient condition is that
(PO )| > [(KAZ % +a (), (5)

Condition (4) or (5) may be used to insure that the control bounds are of sufficient
magnitude to guarantee sliding and to provide adequate reaching dynamics. This



rather simple approach to reaching design is satisfactory when a “bang-bang” control
is acceptable.

2.4 Chattering Reduction

The state trajectories of ideal sliding motions are continuous functions of time
contained entirely within the sliding manifold. These trajectories correspond to the

equivalent controueq(t) . However, the actual control signa(t) — definable only

for nonideal trajectories — is discontinuous as a consequence of the switching
mechanism that generates it. Persistent switching or ‘chattering’ is undesirable in
some applications. Several techniques have been proposed to reduce or eliminate
chattering. These include: ‘regularization’ of the switch by replacing it with a
continuous approximation; ‘extension’ of the dynamics by using additional
integrators to separate an applied discontinuous pseudo-control from the actual plant
inputs; and ‘moderation’ of the reaching control magnitude as errors become small.

Switch regularizatiorentails replacing the ideal switching functigign(s(x)) ,
with a continuous function such as

sa&s(x)Eor |()| tanhﬂ&

This intuitive approach is employed by Young & Kwatny [11] and Slotine and
Sastry [12, 13] and there are probably historical precedents. Regularization induces a
boundary layer around the switching manifold whose siia(is). The justification
for this approach for linear systems is provided by the results in [14]. Some of those
results have been extended to single input—single output systems nonlinear systems
by Marino [9]. Switch regularization for nonlinear systems has been extensively
discussed by Slotine and coworkers, e.g. [12, 13]. With nonlinear systems there are
subtleties and regularization can result in an unstable system.

Dynamic extension is another effective approach to control input smoothing,
Emelyanov et al [15]. A sliding mode is said to bg-i order relative to an output

y if the time derivativesy, ¥,..., y'"™ are continuous in but y® is not. The

following observation is a straightforward consequence of the regular form theorem:

Suppose (1) is input-output linearizable with respect to the owytputh(x) with

vector relative degreerq,...ym). Then the sliding mode corresponding to the

variable structure control law is of ordgrmin(rq,...rm) relative to the output. We

may modify the relative degree by augmenting the system with input dynamics as

described. Hence, we can directly control the smoothness of the outputywector
Control moderationnvolves design of the reaching control functian&) such

that|u, (X) |- small as|&(X) |- O. For example,

u, (x) =l &(x) | sign(s (x))

Control moderation was used by Young and Kwatny [11] and the significance of
this approach for chattering reduction in the presence of parasitic dynamics was
discussed by Kwatny and Siu [16].



2.4.1 Example 1: Simple Friction

The following is a simple rotor with friction and input torque:
X =%
X = =0 (%) + U
Suppose the input torqueis bounded, say [J[—U, U] . We can easily show that

the controlleru = —U Sgr(C)(l + Xz) , >0 andU sufficiently large stabilizes the

origin for all piecewise smooth friction functions with a discontinuity at the origin
such that@,, (0) is bounded.

Consider a VS controller with
W= [U >0
u(x) %<0

Imposing the sliding conditiors( X) = 0 leads to
¥ =70, Ugg = ~C% + @4 (%)
Now, we need to design the reaching control. Chdbg) = < ( X and compute
V=2(cx + %) C% =@ (%) + U
If uis bounded, sayl O[~U, U], chooseu = —U sgr(cx + %) . Then
V =2abgcx + >§){ sgficx+ %)( cx-@, (%)= L}
Certainly, V <0 if ab$cx,~@; (¢ )<U. It follows that so long as

(Y =cx+ %, ¢c>0

U >sup ab@pfr (D) there is a neighborhood of the orighh such that each

trajectory beginning itN converges to the origin.

3 Computing Tools

We need to be able to reduce the system to normal form, compute an appropriate
switching surface, assemble the switching control and insert smoothing and/or
moderating functions as desired. Functions that we have implemented to do this are
defined in Table 1 and Table 2.

3.1 Sliding Surface Computations

There are several methods for determining the sliding sur{c§,= K4 3,
once the system has been reduced to normal form. We have included a function
SlidingSurface that implements two alternatives depending on the arguments
provided. The function may be called via
{rho,s}=SlidingSurfacelf,g,h,x,lam]

or



s=SlidingSurface[rho,vro,z,lam]

Function Name Operation
VectorRelativeOrder computes the relative degree vector
DecouplingMatrix computes the decoupling matrix
IOLinearize computes the linearizing control
NormalCoordinates computes the partial state transformation,
LocalZeroDynamics computes the local form of the zero dynamics
StructureAlgorithm computes the parameters of an inverse system
DynamicExtension applies dynamic extension as a remedy for singular

decoupling matrix
Table 1. Nonlinear systems: Geometric Control

Function Name Operation
SlidingSurface generates the sliding (switching) surface for feedback
linearizable nonlinear systems
SwitchingControl computes the switching functions — allows the inclusion

of smoothing and moderating functions
SmoothingFunctions an option for SwitchingControl that introduces specified
smoothing functions
ModeratingFunctions an option for SwitchingControl that introduces specified
moderating functions
Table 2. Nonlinear systems: Variable Structure Control

In the first case the data provided is the nonlinear system defifiiipi, x and
an m-vector lam which contains a list of desired exponential decay rates, one for
each channel. The function returns the decoupling matrix rho and the switching
surfaces s as functions of the state x. The matris obtained by solving the
appropriate Ricatti equation.

The second use of the function assumes that the input-output linearization has
already been performed so that the decoupling matrix rho, the vector relative degree
and the normal coordinate (partial) transformatifr) are known. In this case the
dimension of each of thm switching surfaces is known so that it is possible to
specify a complete set of eigenvalues for each surface. Thus, lam is arlst of
sublists containing the specified eigenvalues. Only the switching surfaces are
returned. In this cade is obtained via pole placement.

3.2 Switching Control

The functionSwitchingControl[rho,s,bounds,Q,opts] returns the
variable structure controlwhere rho is the decoupling matrix, s is the vector of
switching surfaces, ‘bounds’ is a list of controller bounds each in the form {lower
bound, upper bound}, Q is anxm positive definite matrix (a design parameter), and
‘opts’ are options that allow the inclusion of smoothing and/or moderating functions
in the control.

Smoothing functions are specified by a rule of the form

SmoothingFunctions[x_]->{function1[x],...,functionm[x]}



Where mis the number of controls. Moderating functions are similarly specified by
arule
ModeratingFunctions->{functionl1[z],...,functionm[z]}

The smoothing function option replaces any pure switch sign by a smooth switch
function as specified. The moderating function option multiplies the switch by the
specified function. We give an example below.

3.2.1 Example 1 Continued.

We will apply some of the above computations to Example 1. For illustrative
purposes the friction function is taken to be

@, =Ssighw.
{ho2,2 3 = SidngSufece [fgh,  (helgomega 3, {2)] 3
Computing Decoupling Matrix 3
Computing finearizing ,decouping control 3
({{1y), (8030660mega +161844teta )} 3

Now, we compute the switching control using various combinations of smoothing
and moderating functions. The particular functions chosen for this example are
shown below in Figure 1. Results can change significantly when other functions are
used or when the parameters of the functions are varied.

1

3 2 i 1 2 3
05 0%

0%

3 2 1 1 2 3
0A
05
02
1
Abs( %
1— @ Ap(X/1 005+ Abs( X)
Abs( X « Abg6)+ Alsv)/10
Smoothing Function Moderating Function
Figure 1. Smoothing and moderating functions used in the
example.

We specify the control bounds asb and Q =1. The following computation
yields the four controls.



rps- Vol - SwicigContd phe2 2.abis Q ]
V2 = SwichingContrdl o2, <2,
arbonds, Q, SmoothingFundions X1 -> ((1- Bpr-Absix/ 11131

&3 = SwichingContrdl 1tho2, 2, dibnds, Q, ModeratingFundions ->
((Absithela 1 + Abstomegay /10y / (002 + Absithela 1 + Absiomegay 7 10) 3]
vso4 = SwichingContrdl 1tho2, 2, dibnds, Q, ModeratingFundions ->

{(Absithela 1 + Abstomegey /10y 7 (002 + Absithela 1 + Absomege /10y 3,
SmoohingFundions (X ] -> {(1- Bp-Absix/ 11111
ouf29]= {5Sign [-8030660mega - 161844 theta 1}

ou[30= {5Sign [-8030660mega - 161844 theta ] -
5 10As (-80006aTexR -16184MeR ) g | _g030660mega. - 161844thela |}
Abs[omega) S gn[-803066omega - 161844 theta | .
2 (0002 + ABIOA . A et )
5Abs (theta ] Sign [-8030660mega - 161844 thela | }
0002 . ABEER , Apstheta |

4 4 aa L

ou3l)= {

Abs[omega) S gn[-8030660mega. - 161844 theta ] 3
2(0002 + ABEER  Aps e )

ou[3z= {

E-10Abs -8000%6amege -16184ER. ) Abs omegay Sign [-8030660mega. - 161844 theta. | X
2 (0002 + ABIOA . Apsiveta 1)
5Abs theta ] Sign [-8030660mega - 161844 theta |
0002 . ABIIER , Al theta )
5 E10AB -80006ameg -1818MIER | Apg theta | Sign [-8030660mega - 161844 thefa | }
0002 + %[(]}gﬁ}i] +At5[ﬂE1El ]

Notice that the controllers do not depend on the specific parameters of
the friction function. Figure 2 compares the closed loop performance of
the first three controllers.

4 Nonsmooth Plants

Many important systems contain so-called ‘hard’ or ‘nonsmooth’ nonlinearities
such as dead zone, backlash, hysteresis and coulomb friction. These nonlinearities
can have a profound influence on the performance of a control system. While there
exist standard models for these frequently neglected (often considered parasitic)
effects, the parameters associated with them are almost always highly uncertain.
Approaches to control system design that directly address hard nonlinearities must
account for that uncertainty. Several alternatives have been suggested including a
variety of adaptive [17, 18] and variable structure control methods.

Both adaptive and variable structure control designs are simple and effective if the
system is input-output feedback linearizable and minimum phase [1, 2, 4, 19, 20].
When this is the case, the first step in design is to reduce the system the regular form
described above. The basic reduction process applies to affine systems that are
sufficiently smooth so that functions can be differentiated an appropriate number of
times.

In this case we are interested in a more general class of models than given by (1):
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Figure 2. This figure compares, top to bottom, pure switching
control, switching with smoothing and switching with moderating.
From left to right: controly, and positionf. Chattering is virtually
eliminated with either smoothing or moderating. However,
smoothing leaves significantly larger steady state error because the
effective gain is now bounded.

where ¢ : R™ - R™ is an invertible mapping, anfl G, h are only piecewise

smooth functions.

Our primary interest has been applications to various pointing control systems
associated with relatively small (Apache helicopter) to very large (Abrams tank)
weapons. In these cases friction is a very significant issue and, depending on the
drive system, backlash may also be important.

4.1 Controller Design with Nonsmooth Plants

One approach to dealing with nonsmooth nonlinearities is to approximate the
nonsmooth function by a smooth one. In particular, we might consider replacing a

piecewise smooth functiorf (X) by a smootre-approximation f(x, €) such that



|ing fA(X,E) — f(X). Then the design proceeds using the approximate system
£

with ¢ sufficiently small. It is important to realize that there isanpriori assurance
that the resulting control system when applied to the original nonsmooth plant will
produce closed loop behavior close to that designed for the approximate smooth
plant. There are many examples in which any smooth approximation to nonsmooth
nonlinear dynamics produces qualitatively different behavior.

As a matter of fact, a naive application of the above approach for designing
variable structure controllers, i.e., reduction to normal form, smoafiproximation
of the nonsmooth friction, then variable structure control design (sliding and
reaching control), will almost certainly fail. We will give a simple explanation
below. As an alternative, we will use a backstepping approach, introduced in [21] for
adaptive control design and adapted for recursive Lyapunov design in [22]. Now, let
us consider the following simple example which highlights the essential issues.

4.1.1 Example 2: Sandwiched Friction

Suppose we reduce the system

X =%
X, = =@ (%) + X%
% = U

to normal form. Let us write the friction model in the form of a nominal plus an
uncertain part:@;, (X,) = @, o(X,) + 0@, (X,), where @, ,(X,) is smooth. For
example@, ,(x,) = tanh(x, /€ )£ >0 anddg, (x,) = sign(x, )— tanh§, £ )

Then we have the coordinate transform

4 =X
L=%
Z, = =0 (%) + %
which yields the transformed system
4=%
4,=%

Z==0q0(2) + 09, (2) + U
Thus, any error in the friction function produces an uncertainty that depends on the
derivative 9, (z,). Obviously, if the friction function is nondifferentiable, this will

produce an unbounded (although matched) uncertainty. The variable structure
control, which has bounded control authority, cannot be made robust to this type of
unbounded uncertainty. See Figure 5 for simulation results.

Let us instead base the normal form reduction on the smooth nominal system.
Then we have the coordinate transform



Z == @0(%) + X%
which yields the transformed system
4=1
2, =z+00,(3)
z, = _(pfro(zz) +u

Now we have a bounded, although not matched, uncertainty. It is precisely because
the uncertainty is unmatched that we use a backstepping approach. Before
proceeding with this example we describe the backstepping process.

4.2 The VS Backstep Procedure

We give a brief description of the backstepping procedure we propose for SISO
VS control system design in the presence of uncertain nonsmooth nonlinearities.
Technical details and stability proofs will be given elsewhere. The key innovations in
our approach for nonsmooth plants are (1) that the states are grouped depending on
where an uncertainty enters the system and the robustification is attempted only
where the uncertainty is identified, and (2) that the control designed at each step is a
variable structure control.

Consider a SISO nonlinear system in the (multi-state back-stepping) form:

Xi(ni):)§+l+Ai(X1t)’ izl,...,p—l
(np) —
X0 =a()+p(X) U+, (% 9 ©
y=x
We assume that the (possibly nonsmooth) uncertaid}j§¢x,t) are bounded by
smooth, non-negative functiogs(x), i.e.,

0<|A (X, t)| <& (X

Such a model might arise by reduction of a smooth nominal system to regular from
and applying the transformation to the uncertain system.

At each ofp-1 stages we design a ‘pseudo-contig: Thek" control is obtained
by designing a stabilizing smoothed VS controller for a system in the form

yM =y, i=1...,k-2
Vs = %,
X =,

Yie = X ™ Vi



To design the controV, we first reduce the system to normal form by successive
differentiation:

(") =y, — M -
Y = Ve = L (%~ M)
Thus, we identify the evolution equation in the new coordingtethat will replace
X, - Notice that the zero dynamics of this system are

yM =y, i=1...,k-2
Vi = Ve

Now, we design a VS stabilizing controllen, (V,,..., ) such that

Y (t) - 0 ast - . For eachk < p we smooth the controller so that the

process can be continued. Working in this way througtptsiages, and redefining
the states X — Y) at each stage we arrive at the final set of dynamical equations.

Notice the triangular structure.
y™W =y +v(y,...yY) i=1..,p-1
Yo" =a+pu(y,,... p)

This structure, upon which a stability analysis is based, is illustrated in Figure 3. The
basic idea is roughly as follows. A VS controller is designed for syptem), via
methods described above. The system is stable if and only if the zero dynamics,

Y™ = Yty (Y, YY) i=L, pol, ®)

are stable. Buty,_; is itself a (smoothed) VS control so that (8) is stable if its zero

(7)

dynamics:

Y = Y V(Y YY) i1, pe2

are stable. The argument proceeds in this way. There are subtleties because of the
smoothing. And we must also establish the robust stability properties.

4.2.1 Example 2 continued

Since the example system is already in multi-state back stepping form (6) no
transformation is necessary. We break the system into two parts, tr¥atig) a
temporary control and ignoring the uncertainty:

Step 1Design esmoothed/S control,v( X, X,), for:

X1:X2
X, = =@ (X,) +V
y=X

Then, we design a VS control for the composite nominal system with modified
output equation.



v, ¥ y{”":y2+v1 Y

Yo" =a+pu j y

Figure 3. The triangular structure of the closed loop dynamics
achieved with the multistate backstep control design.

Step 2Design a VS controlU for

X =%
X, = =0 (%) + %
X;=U
Y= %~ UX, %)

Now, we will implement these calculatons. The Mathematica code is shown
below where[Xx,, X,, X;] — [theta, omega, ju Using the previously described

tools we have for Step 1:

fl = omegg, -Tanh[omegas 2 13;
ol =01y
h - (thela 3;
thol, sl = SidngSufece [fLL gl hl,  (hel omega 3, (211
abds = ((-551);
Q= ((1yy;
vso0 = SwichingContrdl 1thod, s1, aronds, Q,
SmoothingFundions (X _1 -> {Tanhix/ 0L 1}] |

outf4]= {-5Tanh [100.0mega + 423607theta 1} j_




and Step 2:
f = omega, -Tahomega; 02 1+ wl,0 3;
g=¢001 3
h= (w-vwD 1y
(ho2,2 ) - SdngSufece (g h  (heomega, w3, (204
abds = {(-553;

Q= (b
vl - SwichigCortd (2, 2, abnds, Q| ]
ouf19= (5Sign [-uu - 5Tanh [100.0mega +423607theta |1} i

Simulation results obtained with this controller are illustrated by the trajectory in
Figure 4. For comparison purposes, Figure 5 illustrates the failure of the non-
backstepping controller to eliminate the position output error — as anticipated.
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Figure 4. The projection of a state trajectory ondbe 6
plane illustrates asymptotic convergence.
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Figure 5. A similar projection using the conventional (non-

backstep) design illustrates how the trajectory “sticks” because of
the large matched uncertainty.



5 Apache Helicopter 30-mm Chain Gun

As a test bed problem for the variable structure control design tools, we used the
US Army Apache Helicopter 30-mm chain gun. The goal of the control design is to
increase the pointing and tracking performance of the gun by including friction
compensation.

Figure 6. Apache 30mm Chain Gun Test Bed ADAWS Lab,
Picatinny Arsenal

The control will be tested at the Apache 30mm Chain Gun Test Bed ADAWS
Lab, Picatinny Arsenal Figure 6. The test bed gun is driven by a direct drive electric
motor that is simply modeled as an input torque. The friction in the motor is
dominant, so this is a simple friction control problem, not sandwiched friction
problem.

5.1 Dynamic Model of Apache Gun

A four-degree of freedom (DOF) model of the apache gun system was
developed. A schematic of the multibody-flex model appears in Figure 7. The model
consists of a rigid turret with flexible forks that connect to a rigid gun which has a
flexible barrel attached to it. A rigid blast suppressor is attached to the muzzle end of
the barrel. A two channel bending actuator, developed by TSi to increase pointing
accuracy, is mounted to the flexible barrel. The actuator can deliver two pairs of
torques to produce muzzle angular deflection in both azimuth and elevation. The
bending actuator will not be used for this study.

The gun system model was developed using the Mathematica patidtse

[23]. Figure 7 shows the three bodies into which the gun system is broken for
modeling. Each body has a local reference frame that is located at the inboard joint.



The reference frames and their associated degrees of freedom are also shown in
Figure 7.

The model was developed for designing and testing slewing controls. In order to
keep the model dimension to a minimum; motions not related to slewing or slewing
disturbances are not modeled. For example, the elevation of the gun is assumed a
fixed value, thus eliminating a potential degree of freedom. In addition, any bending
of the forks such as that which might be caused by a firing disturbance is not

modeled.
Zworld, Zturret
Xworld 6 , Azimuth Rotation

Zgun

Trunnion Axis Q) 9
2

BODY 2 \<frel Xmuzzie
Barrel-Gun
ace

Figure 7. Body coordinate reference frames and degrees of freedom

As depicted in Figure 7, the turret has one degree of fredijpmaout the
azimuth axis. The flexibility of the forks is modeled by a torsional spring with one
degree of freedom@,. The majority of the vibration energy in the system comes
from the approximately 12 Hz flexure mode of the forks in the azimuth direction.
The barrel-gun interface is allowed one degree of free@amThis joint allows for
the unintentional motion at the gun-barrel interface due to clearances in the fitting.
The barrel-gun interface joint was added to the model during the model validation
process to improve the matching of the transfer functions.

The flexible barrel is modeled using a reduced order FEM modal model and
includes the first lateral bending modes in the azimuth plane. The reasoning behind
including only the first mode is that for a cantilevered beam, 75% of the energy is in
the first mode. The complete non-linear system model of the apache gun contains 4
degrees of freedom which ar@,[6, 6, x,]’, where x is the barrel modal
coordinate.

For the slewing control model, there is one control input to the system: a
torque,t,, generated by the turret motor and applied to the turret about, th&ig
There are two outputs measurements from the system: turret aziéutand
muzzle azimuth acceleration, aboth muzzle variables are measured with respect to
the world coordinate frame.

Zmuzzle




5.1.1 Modal Analysis

Under the assumption that the fork deflections are small,i.is.small, then
the non-linear model can be linearized ab@uto generate a representative linear
state space model. The state space equations take the following form

X= Ax+ Bu

y=Cx+ Du
where u:[Ttur]is the control input vector,y:[91ur amaZ]Tis the system
measurement (output) vector, and:[q q]T is the system state vector, and

q= [91 0. 0s xl]T is the coordinate vector.

Mode Frequency [Hz] Mode Description
Number
1 0 Rigid body rotation about the turret
azimuth axis
2 12.6 Fork azimuth flexure. Motion at gun/barrgl

interface in phase with gun motion. Barrel
flexure negligible.

3 54.3 System moves as three bodies with the fjrst
and last moving out of phase with the second.
In addition, the last body, the barrel, flexes|in
phase with the turret and gun/barrel interface
motion.

4 322.0 Primarily barrel flexure in azimuth plan

Interface motion and barrel flexure out pf

phase. Other motion negligible.

Table 3: Description of mode shapes and frequencies of chain
gun model

1%

An eigenvalue decomposition of tiematrix gives the linearized approximation
of the system modal frequencies. The system mode frequencies and mode shapes are
described in Table 3. The lowest frequency mode is a rigid body mode
corresponding to turret azimuth angular displacement. The next lowest frequency
mode is predicted at 12.6 Hz and corresponds to fork azimuth flexure. This mode is
characterized by angular displacements of the rigid turret and the gun/barrel
assembly that are 18@ut of phase with each other. The predicted frequency of this
mode agrees with observations made of the production gun system frequency, which
was determined to be around 10".HEhis is probably the most problematic mode in
the system, since the firing rate of the gun is approximately 10 Hz.

“The slight increase in frequency of this mode may be due to differences in the testbed system
from the real system.



The remaining system modes are associated with barrel flexure. The third mode
excites the turret and barrel to move out of phase with the gun. In addition, the
barrel flexes in phase with the turret and gun/barrel interface motion. The fourth
mode is azimuth barrel flexure mode. In this mode, the flexure of the barrel is out of
phase with motion of the barrel/gun interface.

5.2 Friction Modeling

The goal of this control design is to increase the pointing and tracking
performance of the apache gun testbed at ARDEC by including friction
compensation. Experimentalists have observed several characteristic properties of
friction. These properties can be broken into two categories: static and dynamic.
The static characteristics of friction, including the stiction force, the kinetic force, the
viscous force, and the Stribeck effect, are functions of steady state velocity. The
dynamic phenomena include pre-sliding displacement, varying breakaway force, and
frictional lag. Many empirical friction models have been developed which attempt to
capture specific parts of observed friction behavior.

With all the models available one must decide which friction model should be
used in the friction compensating control. It is unclear whether complicated friction
models improve control performance. One problem is the difficulty in obtaining
good parameter estimates. In experiments we have performed to obtain parameter
estimates, we found it particularly difficult to estimate the dynamic friction
parameters [24]The problem is complicated by the fact that the parameters may
vary considerably based on such factors as temperature, lubricant condition, and
material wear [25, 26]. Moreover, the various friction models in the literature
represent many empirical features; however, realistically the friction present in any
physical system may be different from that described in the model. We have chosen
to use a simple static friction model.

Some sort of control is needed which is robust to the inaccuracy in parameter
measurement, variation of parameters, and model inaccuracy. In the simulation
results below, we demonstrate that the variable structure control achieves the first
two. Testing is scheduled to determine the control performance on the test bed gun
system.

5.2.1 Friction Experiments

The tests performed to determine static friction parameter estimates are described
below. It is assumed that friction enters only at joint 1 and is a function of the
angular velocity of the turret.

The steady state friction parameters including static, Coulomb, viscous, and

Stribeck friction termgF,, F.,F,,v ) were estimated. In the estimation problem,

nonlinear constrained optimization methods from the Matlab Optimization Toolbox
[27] were applied. The objective function used was the error between the observed
and predicted value of friction. Being non-convex with respect to some of the
optimization parameters, the objective function may have local minima. It is thus
important to start from a reasonable initial guess for the parameters. This is not too
difficult for the steady state parameters.



To estimate the steady state friction parameters a friction versus vetoajtyis
constructed. To construct the friction versus velocity map, several constant velocity
experiments were run with reference velocities ranging from -0.03 radians/second to
+0.05 radians/second. A closed-loop Pl velocity control law was implemented for
the tests. The velocity for feedback control was estimated from a low pass filtered
derivative of the motor encoder output. Average steady state velocity and friction
force were computed from the time histories of each experiment to produce the data
points ‘0’ in Figure 8. The zero velocity data point was obtained by computing the
average of the break away force from experiments where the driving force was a
linearly increasing input force.
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Figure 8. Friction versus Velocity

A

The parameter estimates were obtained by minimizing &yef, F,,V, the
cost function

{Fss(v )- 'Esiv )}2

where FSS(Vi) are the friction data obtained during constant velocity motion and

n
i=1

Fdv)= [Fo+ (= Poexi(~(v, 19, sar(w)+ Ry v=0
ss\Vi) = . .
minF,, F) v,=0

" The measured velocity data is from the motor encoder. In these low constant velocity
motions the system is assumed rigid.

" The friction force is approximately equal to the negative of the input torque in constant
velocity motion.



The parameters were all constrained to be greater than or equal to zero, with the
additional constraints thd.0000X V. <0.01, and F5 > F.. The optimization

str —
was done using the Matlab constrained optimization function Constr with tolerances
of 1.0e-5 and the maximum number of iteration set to 1000.
The steady state friction parameter estimates are given in Table 4. The

estimates for statickg, and coulomb,F, friction parameters were obtained by
averaging the values for positive (clockwise) and negative (counterclockwise)
motion. The viscousks, , and Stribecky,, , friction parameters were taken directly

from the positive motion data since it seems that estimates from the negative motion
data may be incorrect due to insufficient measurements at high enough velocity.

5.2.2 Simulation

Simulations of the nonlinear apache gun model were run using a simple PID
control with anti-windup to demonstrate the effects of friction on simple control
strategies. The Simulink block diagram of the closed loop system is displayed in
Figure 9.
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Figure 9. Simulink Apache gun simulation model

Parameter Value
Static friction, Fg 83Nm
Coulomb friction, F 6.0Nm
Viscous friction, K, 40 N m s/rad
Stribeck velocity,V;, 0.003 rad/s

Table 4: Friction Parameters

In addition to friction, there are other nonlinearities in the system that must be
accounted for if one hopes to obtain realistic simulation results. For example, care
must be taken to model the nonlinearities imposed by actuator saturation as well as



measurement quantization. Accounting for these factors can alter significantly the
simulation results. The PID controller output torque is saturation limited. The
saturation values arg 162.5 Nm (32.5 Nm/V*5 V). In addition, a quantizer with

guantization interanrr/Z20 is included to model the encoder output. A low pass

filter is added before the derivative block to smooth the encoder output. Care must
be taken when adding a filter to a feedback loop. The phase delay of the filter could
cause the closed loop system to be come unstable.

apache gun turret angular velocity response to step command 1 rad/sec
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Figure 10. Step response with PID control with and without
friction
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In the simulations, friction is modeled using the classical model with the values
obtained during the friction experiments described above, see Table 4. The friction

enters the system at the first joint and is a function of the turret angular velogity,

For comparison purposes, simulations were run both with and without friction.
A step velocity command of 1 rad/sec at 0.1 sec was input to the PID controller.
The simulation results are shown in Figure 10. It is clear from the simulation results
that accounting for friction in the gun model simulation has significantly deteriorated
the PID controlled tracking performance. The system with friction has a large steady
state error from the commanded velocity.

5.3 Variable Structure Control

For control design purposes we used a rigid two-body model of the apache gun.
The flexibility in the barrel and the movement at the gun barrel interface were
ignored. The friction enters the system at the first joint and is a function of the turret

angular velocitym, , as described in above.

Once the control design model was generated, the control was simple to obtain.
The Mathematic&roPac code for the control design is shown in Figure 11. A
simple VSC control was generated. In addition, controls with smoothing using the



function tanh(x), and moderation using the functien [0,/10+|e,|/10 , and
0.02+|w,|/10+|w,|/ 10

both moderation and smoothing were generated.

= VSC Controls T
Oupus = Chopr (Wi ]
(o2 2 3 = SdngSulece [, G, Oulpuss, Saes, 2n

19502
{{{41.4593 +191083Cos [theta2 12+ 102759 Cos [thed2 | Sin [thea2 | + 229619Sn [theta2 ]2}}'
(o)
_2.+/5
(» dbnds - ((-16251625 }}; ) (» 5vis 5NN /V 4
abnds - ({-35,35 3); (« 10wk 25NN,V 4
Q= ((Iiy;

vecl = Chopp SiichingConrdl 1tho2, <2, arbnds, Q 11
V&2 = SwichingCorird 1ha2, 82, arbnds, Q, SmoathingFuncions X1 -> {Tah[x111
Va3 = ChoprSaidhingCord o2, 2, atbonds, Q,
ModeraingFundions —> ((Absrthelal 7+ Absiheta? 7+« Abspwly /10 + Abspw2) /10y /
(002 + (Absrthetal 1+ Absithes2 1+ Abspwly 710+ Abstw2 7 10)) 111
Vo4 = SwichingConid 1ho2, s2, drbnds, Q,
ModeratingFuncions —> ((Absrtheial 7+ Absihete? 7« Abspwly £ 10 + Asspw2) £ 10y /
(002 + (Absrthel 1+ Aspihe2 1+ Abspwly 710+ Astw2 / 10)) 1,
SmoohingFundions X 1 -> {Tamhx/ 11315

Figure 11. Mathematica code for VSC design

Simulations were run from Simulink testing control of the 3-body apache model
against each of the controls. The goal of each of the controls is to drive the angular

velocity @, to zero. The results are shown below. It is clear from the simulation

that for this command, the VSC with smoothing performs best, i.e., induces the least
vibration in the system.

6 Conclusions

In this paper we have described a set of symbolic computing tools that enable
efficient design and implementation of variable structure control systems. The
functionality includes reduction to regular form, computation of zero dynamics,
design of sliding modes, assembly of the switching controller, the addition of
smoothing and moderating functions and assembly of C-code for real-time
implementation. The toolbox in its present form applies to smooth, (partially)
feedback linearizable systems.

In developing the toolbox for variable structure control, we have had to tackle
several fundamental issues involved in symbolic computing with nonsmooth
functions in general, i.e., whether control or modeling related. Ongoing work is
focused on extending the design method as well as the software to plants with
nondifferentiable nonlinearities other than friction. We have provided a simple
example above that illustrates some of the issues involved in the control design and
explains why we have adopted a backstepping approach to plants of this type. Our
results to date suggest that this formulation can be very effective for systems



involving uncertain nonlinear friction. The backstepping approach to handling robust
control is not new, however in our approach we put a new twist on it. The key
innovations in our approach for nonsmooth plants are (1) that the states are grouped
depending on where an uncertainty enters the system and the robustification is
attempted only where the uncertainty is identified, and (2) that the control designed
at each step is a smoothed variable structure control.

An additional example was given which demonstrates the power of the computing
tools to easily tackle real industrial control problems with simple nonsmooth
uncertainties. The variable structure control designed for the apache gun system is
scheduled to be tested using the real-time C-code implementation.
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Figure 12. Apache VSC simulations

In order to address the issue of robustness to parameter variation, simulations
were performed over a large range of friction parameters. Of course, with less
friction the control performed better, i.e., less induced vibration in the system. In
Figure 13, simulation results are shown for the case when the friction parameters are
increased from their nominal values, see Table 4, to approximately double the
friction, F, =45 Nm, F. =12 Nm, F;, =17 Nms/ rad v, = 0.003rad/ secand

then to approximately eight times the frictiods, =45 Nm, F. =48 Nm,
F, =64 Nms/radv, =0.003rad /s



VSC w/Smoothing: 3 body apache model wiflex barrel & 2 X friction VSC w/Smoothing: 3 body apache model w/flex barrel & 8 X friction
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Figure 13. Robustness to varying friction parameters.
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