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INTRODUCTION
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PRELIMINARIES

WHAT IS OPTIMAL CONTROL?

» Optimal control is an approach to control systems design that seeks the best possible
control with respect to a performance metric.

» The theory of optimal control began to develop in the WW Il years. The main result of

this period was the Wiener-Kolmogorov theory that addresses linear SISO systems
with Gaussian noise.

» A more general theory began to emerge in the 1950’s and 60’s
» In 1957 Bellman published his book on Dynamic Programming
» In 1960 Kalman published his multivariable generalization of Wiener-Kolmogorov
» In 1962 Pontryagin et al published the maximal principle
» In 1965 Isaacs published his book on differential games
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COURSE CONTENT

1. Introduction
» Optimization basics
> Intro to Variational Calculus
2. Variational Calculus and the Minimum Principle
» Unconstrained Control problems
» Control and State Constraints
3. Dynamic programming
» Principle of Optimality
» The Hamilton-Jacobi-Bellman Equation
4. Min-Max Optimal Control
» Min-Max Control
» Game Theory
5. Hybrid Systems
» Hybrid Systems Basics
» Hybrid Systems Optimal Control
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DEFINITION

THE OPTIMAL CONTROL PROBLEM
[ 1]

PROBLEM DEFINITION

We will define the basic optimal control problem:
» Given system dynamics

x=f(xu),

xeXCR' ueUCR"
» Find a control u (¢), t € [0, T] that steers the system from an initial state
x(0) = xo to a target set G and minimizes the cost

REMARK

J(u () = gr (x(T)) +/0 g(x (1), u(r)) dr

free. The target set can be fixed or moving.

OPTIMAL CONTROL

gr Is called the terminal cost and g is the running cost. The terminal time T can be fixed or

DA



THE OPTIMAL CONTROL PROBLEM
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DEFINITION

OPEN LooPr vs. CLOSED Loopr

» If we are concerned with a single specified initial state x,, then we might seek the

optimal control control « (¢), u : R — R™ that steers the system from the initial state to
the target. This is an open loop control.

» On the other hand, we might seek the optimal control as a function of the state u (x),
u: R" — R". This is a closed loop control; sometimes called a synthesis.

» The open loop control is sometimes easier to compute, and the computations are
sometimes performed online — a method known as model predictive control.

» The closed loop control has the important advantage that it is robust with respect to
model uncertainty, and that once the (sometimes difficult) computations are
performed off-line, the control is easily implemented online.
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EXAMPLES
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THE OPTIMAL CONTROL PROBLEM

EXAMPLE — A MINIMUM TIME PROBLEM

Specifically,

Consider steering a unit mass, with bounded applied control force, from an
=v

arbitrary initial position and velocity to rest at the origin in minimum time.
The cost function is

V=u,

ul <1

T
J:/ dr=T
0

REMARK
This is an example of a problem with a control constraint.

OPTIMAL CONTROL
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EXAMPLES

THE OPTIMAL CONTROL PROBLEM
(o] le]e)

EXAMPLE — A MINIMUM FUEL PROBLEM
Consider the decent of a moon lander.

h=v

vV=—g+
m = —ku
The thrust u is used to steer the system to 2 = 0,v = 0. In addition we wish to
minimize the fuel used during landing, i.e.

t
J= / kudt
0
respected.

Furthermore, u is constrained, 0 < u < ¢, and the state constraint # > 0 must be
REMARK

This problem has both control and state constraints.
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THE OPTIMAL CONTROL PROBLEM

EXAMPLE — A LINEAR REGULATOR PROBLEM

Consider a system with linear dynamics
X =Ax+ Bu

We seek a feedback control that steers the system from an arbitrary initial state x
towards the origin in such a way as to minimize the cost

OPTIMAL CONTROL

T
J=x"(T)Qrx(T) + 21T/ {xT(¢) Qx (t) + u” (t) Ru (1)} dt
0
The final time T is considered fixed.
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THE OPTIMAL CONTROL PROBLEM

EXAMPLE — A ROBUST SERVO PROBLEM
Consider a system with dynamics

x=Ax+ Biw+ Bou
z=Cix+ Dyyw+ Dju
y = Cox + Dyyw + Dyu

where w is an external disturbance. The goal is to find an output (y) feedback synthesis
such that the performance variables (process errors) z remain close to zero. Note that w (¢)
can be characterized in several ways, stochastic (the H, problem)

J=E {/ zT(t)z(t)dt]
or deterministic (the H,, problem)

J = \|Hﬁax1/ ' (1)z(t)dt

OPTIMAL CONTROL
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LoCAL EXTREMA

DEFINITIONS

OPTIMIZATION BASICS
®00

Consider the scalar function

f(x), xerR"

which is defined and smooth on a domain D C R". We further assume that the
region D is defined by a scalar inequality ¢ (x) <0, i.e.,

intD={xeR"|¢(x) <0}
OD={xeR"|¢Y(x) =0}

OPTIMAL CONTROL
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LocAL EXTREMA

DEFINITIONS

OPTIMIZATION BASICS
(o] lo}

DEFINITION (LOCAL MINIMA & MAXIMA)
such that

It is a local maximum if

fx) = f(x")

An interior point x* € intD is a local minimum if there exists a neighborhood U of x*

Vxe U

fx) <fx")

Vxe U
Similarly, for a point x* € 9D, we use a neighborhood U of x* within dD. With this
modification boundary local minima and maxima are defined as above.

OPTIMAL CONTROL
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OPTIMIZATION BASICS
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LoCAL EXTREMA

OPTIMAL INTERIOR POINTS

» Necessary conditions. A point x* € intD is an extremal point (minimum or
maximum) only if

U o _
a(x)—o

» Sufficient conditions. x* is @ minimum if
0*f

@(X*) >0

a maximum if
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OPTIMIZATION BASICS
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CONSTRAINTS

OPTIMIZATION WITH CONSTRAINTS — NECESSARY CONDITIONS

We need to find extremal points of f (x), with x € dD. i.e., find extremal points of f (x)
subject to the constraint ¢ (x) = 0.

Consider a more general problem where there are m constraints, i.e., ¢ : R" — R™.

Let A be an m-dimensional constant vector (called Lagrange multipliers) and define the
function

A
H(x,\) = f(x) + Ao (x)
Then x* is an extremal point only if

OH (x*, \) 0 OH (x*,\)

o 0 T TYW=0

Note there are n + m equations in n + m unknowns x, \
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CONSTRAINTS

OPTIMIZATION BASICS
0e00

point (x7,x>) we must have

SIGNIFICANCE OF THE LAGRANGE MULTIPLIER
Consider extremal points of f (xi,x») subject to the single constraint ¥ (x;,x2) = 0. At an extremal

df (o) = L

of (x1,%3)
d dx; =0
Oxi et ox2 2
but dx; and dx, are not independent. They satisfy

(1)
i (s ) = PO g OVEE) @
From (1) and (2) it must be that
Of (x1,x3)/0x1 _ Of (x1,x3)/0x2 A
O (xf,x3)/0x1 O (x7,x3) /Ox2
Accordingly, (1) and (2) yield

A
of (51, x3) | O (xf,%5) _ of (xf,%3) |\ OY (a7, x3)
axl + A 8x1 - O’ 8)62 + A axQ =0
OPTIMAL CONTROL
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OPTIMIZATION BASICS
OPTIMIZATION WITH CONSTRAINTS — SUFFICIENT CONDITIONS
_OH 1, ,0°H T
but
o
Ox

dw:—dx:0:>dx€kera—w:>dx:\l'da

Y (x)
Ox

U = span ker
Thus, for x* extremal (0H/0x = 0, = 0)

2 *
df (x*) = %daT\I/Ta H(x')

Ox?
(x)

Ox?
OPTIMAL CONTROL

Yda + h.o.t.

O’H (x*)
T
v Ox?

¥ < 0 = max
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CONSTRAINTS

EXAMPLE

IMIZATION BASICS

fx,x0) =x (x%+2x§ - 1) v P (1, x)

Interior:

Boundary:

(x1,%2,f) = (0, =0.707,0) V (0,0.707,0) V (—0.577,0,0.385) V (0.577, 0. — 0.385)

V (=1,0,1,0) Vv (1,0, —1,0)

(x1,%2, X, f) = (—0.577, —0.8165, 1.155, —0.385) V (—0.577, 0.8165, 1.155, —0.385)
vV (0.577, —0.8165, —1.155,0.385) \/ (0.577, 0.8165, —1.155, 0.385)
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CLASSICAL VARIATIONAL CALCULUS

OPTIMIZING A TIME TRAJECTORY

VARIATIONAL CALCULUS
@00

optimal in some sense.

» The ‘calculus of variations’

» We are interested in steering a controllable system along a trajectory that is
» Three methods are commonly used to address such problems:

» The Pontryagin ‘maximal Principle’

» The ‘principle of optimality’ and dynamic programming

OPTIMAL CON DL

» The calculus of variations was first invented to characterize the dynamical
behavior of physical systems governed by a conservation law.
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CLASSICAL VARIATIONAL CALCULUS

VARIATIONAL CALCULUS
CALCULUS OF VARIATIONS: LAGRANGIAN SYSTEMS

A Lagrangian System is characterized as follows:

» The system is define in terms of a vector of configuration coordinates, ¢,
associated with velocities g.

» The system has kinetic energy T (¢,q) = ¢'M (¢) ¢/2, and potential energy
V (¢) from which we define the Lagrangian

L(q,9)=T(4,9)—V(q)
» The system moves along a trajectory ¢ (), between initial and final times 7, ,
in such a way as to minimize the integral

J(q (1))
OPTIMAL CONTROL
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VARIATIONAL CALCULUS
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CLASSICAL VARIATIONAL CALCULUS

EXAMPLES OF LAGRANGIAN SYSTEMS

T=34"M(q)q
M( ) _ Z% (m1 + n’lz) + é%mz + 2016,my cos 0y Lomy (52 + /¢4 cos 02)
9= lomy (52 + ¢, cos 92) E%mz

V(q) = mig (g€, (my + my)sinf; + glomy sin (6; + 6,))
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