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PRELIMINARIES

WHAT IS OPTIMAL CONTROL?

I Optimal control is an approach to control systems design that seeks the best possible
control with respect to a performance metric.

I The theory of optimal control began to develop in the WW II years. The main result of
this period was the Wiener-Kolmogorov theory that addresses linear SISO systems
with Gaussian noise.

I A more general theory began to emerge in the 1950’s and 60’s
I In 1957 Bellman published his book on Dynamic Programming
I In 1960 Kalman published his multivariable generalization of Wiener-Kolmogorov
I In 1962 Pontryagin et al published the maximal principle
I In 1965 Isaacs published his book on differential games
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PRELIMINARIES

COURSE CONTENT
1. Introduction

I Optimization basics
I Intro to Variational Calculus

2. Variational Calculus and the Minimum Principle
I Unconstrained Control problems
I Control and State Constraints

3. Dynamic programming
I Principle of Optimality
I The Hamilton-Jacobi-Bellman Equation

4. Min-Max Optimal Control
I Min-Max Control
I Game Theory

5. Hybrid Systems
I Hybrid Systems Basics
I Hybrid Systems Optimal Control

OPTIMAL CONTROL



INTRODUCTION THE OPTIMAL CONTROL PROBLEM OPTIMIZATION BASICS VARIATIONAL CALCULUS

BIBLIOGRAPHY

BIBLIOGRAPHY

I E. B. Lee and L. Markus, Foundations of Optimal Control Theory. New York:
John Wiley and Sons, Inc., 1967.

I A. E. Bryson and Y.-C. Ho, Applied Optimal Control. Waltham: Blaisdell, 1969.
I S. J. Citron, Elements of Optimal Control. New York: Holt, Rinehart and

Winston, Inc., 1969.
I D. E. Kirk, Optimal Control Theory: An Introduction. Englewood Cliffs, NJ:

Prentice-Hall, 1970. (now available from Dover)

OPTIMAL CONTROL



INTRODUCTION THE OPTIMAL CONTROL PROBLEM OPTIMIZATION BASICS VARIATIONAL CALCULUS

DEFINITION

PROBLEM DEFINITION
We will define the basic optimal control problem:

I Given system dynamics

ẋ = f (x, u) , x ∈ X ⊂ Rn, u ∈ U ⊂ Rm

I Find a control u (t) , t ∈ [0,T] that steers the system from an initial state
x (0) = x0 to a target set G and minimizes the cost

J (u (·)) = gT (x (T)) +

∫ T

0
g (x (t) , u (t)) dt

REMARK
gT is called the terminal cost and g is the running cost. The terminal time T can be fixed or
free. The target set can be fixed or moving.
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DEFINITION

OPEN LOOP VS. CLOSED LOOP

I If we are concerned with a single specified initial state x0, then we might seek the
optimal control control u (t), u : R→ Rm that steers the system from the initial state to
the target. This is an open loop control.

I On the other hand, we might seek the optimal control as a function of the state u (x),
u : Rn → Rm. This is a closed loop control; sometimes called a synthesis.

I The open loop control is sometimes easier to compute, and the computations are
sometimes performed online – a method known as model predictive control.

I The closed loop control has the important advantage that it is robust with respect to
model uncertainty, and that once the (sometimes difficult) computations are
performed off-line, the control is easily implemented online.
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EXAMPLES

EXAMPLE – A MINIMUM TIME PROBLEM

Consider steering a unit mass, with bounded applied control force, from an
arbitrary initial position and velocity to rest at the origin in minimum time.
Specifically,

ẋ = v
v̇ = u, |u| ≤ 1

The cost function is

J =

∫ T

0
dt ≡ T

REMARK
This is an example of a problem with a control constraint.
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EXAMPLES

EXAMPLE – A MINIMUM FUEL PROBLEM
Consider the decent of a moon lander.

ḣ = v
v̇ = −g + u

m
ṁ = −ku

The thrust u is used to steer the system to h = 0, v = 0. In addition we wish to
minimize the fuel used during landing, i.e.

J =

∫ t

0
kudt

Furthermore, u is constrained, 0 ≤ u ≤ c, and the state constraint h ≥ 0 must be
respected.

REMARK
This problem has both control and state constraints.
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EXAMPLES

EXAMPLE – A LINEAR REGULATOR PROBLEM

Consider a system with linear dynamics

ẋ = Ax + Bu

We seek a feedback control that steers the system from an arbitrary initial state x0
towards the origin in such a way as to minimize the cost

J = xT (T) QTx (T) +
1

2T

∫ T

0

{
xT (t) Qx (t) + uT (t) Ru (t)

}
dt

The final time T is considered fixed.
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EXAMPLES

EXAMPLE – A ROBUST SERVO PROBLEM
Consider a system with dynamics

ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u

where w is an external disturbance. The goal is to find an output (y) feedback synthesis
such that the performance variables (process errors) z remain close to zero. Note that w (t)
can be characterized in several ways, stochastic (the H2 problem)

J = E
[∫ ∞
−∞

zT (t) z (t) dt
]

or deterministic (the H∞ problem)

J = max
‖w‖2=1

∫ ∞
−∞

zT(t)z(t)dt
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LOCAL EXTREMA

DEFINITIONS

Consider the scalar function
f (x) , x ∈ Rn

which is defined and smooth on a domain D ⊂ Rn. We further assume that the
region D is defined by a scalar inequality ψ (x) ≤ 0, i.e.,

intD = {x ∈ Rn |ψ (x) < 0}
∂D = {x ∈ Rn |ψ (x) = 0}
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LOCAL EXTREMA

DEFINITIONS

DEFINITION (LOCAL MINIMA & MAXIMA)
An interior point x∗ ∈ intD is a local minimum if there exists a neighborhood U of x∗

such that
f (x) ≥ f (x∗) ∀x ∈ U

It is a local maximum if
f (x) ≤ f (x∗) ∀x ∈ U

Similarly, for a point x∗ ∈ ∂D, we use a neighborhood U of x∗ within ∂D. With this
modification boundary local minima and maxima are defined as above.
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LOCAL EXTREMA

OPTIMAL INTERIOR POINTS

I Necessary conditions. A point x∗ ∈ intD is an extremal point (minimum or
maximum) only if

∂f
∂x

(x∗) = 0

I Sufficient conditions. x∗ is a minimum if

∂2f
∂x2 (x∗) > 0

a maximum if
∂2f
∂x2 (x∗) < 0
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CONSTRAINTS

OPTIMIZATION WITH CONSTRAINTS – NECESSARY CONDITIONS

We need to find extremal points of f (x), with x ∈ ∂D. i.e., find extremal points of f (x)
subject to the constraint ψ (x) = 0.

Consider a more general problem where there are m constraints, i.e., ψ : Rn → Rm.

Let λ be an m-dimensional constant vector (called Lagrange multipliers) and define the
function

H (x, λ)
∆
= f (x) + λTψ (x)

Then x∗ is an extremal point only if

∂H (x∗, λ)

∂x
= 0,

∂H (x∗, λ)

∂λ
≡ ψ (x) = 0

Note there are n + m equations in n + m unknowns x, λ
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CONSTRAINTS

SIGNIFICANCE OF THE LAGRANGE MULTIPLIER
Consider extremal points of f (x1, x2) subject to the single constraint ψ (x1, x2) = 0. At an extremal
point (x∗1 , x

∗
2 ) we must have

df (x∗1 , x
∗
2 ) =

∂f (x∗1 , x
∗
2 )

∂x1
dx1 +

∂f (x∗1 , x
∗
2 )

∂x2
dx2 = 0 (1)

but dx1 and dx2 are not independent. They satisfy

dψ (x∗1 , x
∗
2 ) =

∂ψ (x∗1 , x
∗
2 )

∂x1
dx1 +

∂ψ (x∗1 , x
∗
2 )

∂x2
dx2 = 0 (2)

From (1) and (2) it must be that

∂f (x∗1 , x
∗
2 )/∂x1

∂ψ (x∗1 , x
∗
2 )/∂x1

=
∂f (x∗1 , x

∗
2 )/∂x2

∂ψ (x∗1 , x
∗
2 )/∂x2

∆
= −λ

Accordingly, (1) and (2) yield

∂f (x∗1 , x
∗
2 )

∂x1
+ λ

∂ψ (x∗1 , x
∗
2 )

∂x1
= 0,

∂f (x∗1 , x
∗
2 )

∂x2
+ λ

∂ψ (x∗1 , x
∗
2 )

∂x2
= 0
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CONSTRAINTS

OPTIMIZATION WITH CONSTRAINTS – SUFFICIENT CONDITIONS

df =
∂H
∂x

dx +
1
2

dxT ∂
2H
∂x2 dx− λTdψ + h.o.t.

but
dψ =

∂ψ

∂x
dx = 0⇒ dx ∈ ker

∂ψ

∂x
⇒ dx = Ψdα

Ψ = span ker
∂ψ (x)

∂x
Thus, for x∗ extremal (∂H/∂x = 0, ψ = 0)

df (x∗) =
1
2

dαTΨT ∂
2H (x∗)
∂x2 Ψdα+ h.o.t.

ΨT ∂
2H (x∗)
∂x2 Ψ > 0⇒ min, ΨT ∂

2H (x∗)
∂x2 Ψ < 0⇒ max
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CONSTRAINTS

EXAMPLE

f (x1, x2) = x1

(
x2

1 + 2x2
2 − 1

)
, ψ (x1, x2) = x2

1 + x2
2 − 1

Interior:
(x1, x2, f ) = (0,−0.707, 0) ∨ (0, 0.707, 0) ∨ (−0.577, 0, 0.385) ∨ (0.577, 0.− 0.385)

Boundary:
(x1, x2, λ, f ) = (−0.577,−0.8165, 1.155,−0.385) ∨ (−0.577, 0.8165, 1.155,−0.385)

∨ (0.577,−0.8165,−1.155, 0.385) ∨ (0.577, 0.8165,−1.155, 0.385)
∨ (−1, 0, 1, 0) ∨ (1, 0,−1, 0)
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CLASSICAL VARIATIONAL CALCULUS

OPTIMIZING A TIME TRAJECTORY

I We are interested in steering a controllable system along a trajectory that is
optimal in some sense.

I Three methods are commonly used to address such problems:
I The ‘calculus of variations’
I The Pontryagin ‘maximal Principle’
I The ‘principle of optimality’ and dynamic programming

I The calculus of variations was first invented to characterize the dynamical
behavior of physical systems governed by a conservation law.
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CLASSICAL VARIATIONAL CALCULUS

CALCULUS OF VARIATIONS: LAGRANGIAN SYSTEMS
A Lagrangian System is characterized as follows:

I The system is define in terms of a vector of configuration coordinates, q,
associated with velocities q̇.

I The system has kinetic energy T (q̇, q) = q̇TM (q) q̇/2, and potential energy
V (q) from which we define the Lagrangian

L (q̇, q) = T (q̇, q)− V (q)

I The system moves along a trajectory q (t), between initial and final times t1, t2
in such a way as to minimize the integral

J (q (t)) =

∫ t2

t1
L (q̇ (t) , q (t)) dt
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CLASSICAL VARIATIONAL CALCULUS

EXAMPLES OF LAGRANGIAN SYSTEMS

T = 1
2 q̇TM (q) q̇

M (q) =

(
`2

1 (m1 + m2) + `2
2m2 + 2`1`2m2 cos θ2 `2m2 (`2 + `1 cos θ2)

`2m2 (`2 + `1 cos θ2) `2
2m2

)
V (q) = m1g (g`1 (m1 + m2) sin θ1 + g`2m2 sin (θ1 + θ2))

m1

m2

�1

� 2

1θ

2θ
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