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CLASSICAL VARIATIONAL CALCULUS

CALCULUS OF VARIATIONS: LAGRANGIAN SYSTEMS

A Lagrangian System is characterized as follows:

» The system is define in terms of a vector of configuration coordinates, ¢,
associated with velocities g.

» The system has kinetic energy T (¢,q) = 4" M (q) /2, and potential energy
V (¢) from which we define the Lagrangian

L(4,9)=T(4:9)—V(q)

» The system moves along a trajectory ¢ (¢), between initial and final times ¢, 7,
in such a way as to minimize the integral

J(q (1))
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CLASSICAL VARIATIONAL CALCULUS

NECESSARY CONDITIONS: FIXED TERMINAL TIME —1

» A real-valued, continuously differentiable function ¢ (¢) on the interval [¢;, 7] will be
called admissible.

> Let ¢* (¢) be an optimal admissible trajectory and ¢ (¢, ) a not necessarily optimal
trajectory, with

q(t;e) =q" (1) +en (1)

where ¢ > 0 is a small parameter and 7 (¢) is arbitrary.
» Then

J(q(1,€)) = /ttz L(q" (1) +en(1),q" (1) +en (1)) di

» An extremal of J is obtained from

b (g 1)) = 241D
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CLASSICAL VARIATIONAL CALCULUS

FIXED TERMINAL TIME — 2

g = [ (0

(1),q" (1))

04" 1
We can apply the ‘integration by parts’ formula

to the first term to obtain

/udv:uv—/vdu

: OL(4"(1).4" OL(G™ (1),4"
8 (q() = [’ (_% (G ét;*q (1) | 9L (q,zq )
4+ LG (1,9 (1)
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CLASSICAL VARIATIONAL CALCULUS

FIXED TERMINAL TIME — 3

Now, set §J (¢ (t)) = 0 to obtain:
» the Euler-Lagrange equations

dOL(g" (1), q" (1)) _ OL(q"(1),q" (1)

dt og* oq* =0
» the transversality conditions
IL (4" (1), 4" (1)) _ o LG (),q" (1)) _
aq* 6‘1 (tl) =0, aq* 5(] (1‘2) =0

REMARK

These results allow us to treat problems in which the initial and terminal times are fixed and individual

components of ¢(t;) and q¢(t,) are fixed or free. Other cases of interest include: 1) the terminal time is free, and
2) the terminal time is related to the terminal configuration, e.g., by a relation ¢ (¢ (12) ,t;) = %,'.
[}
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From this we obtain:

NECESSARY CONDITIONS: FREE TERMINAL TIME — 1
Consider the case of fixed initial state and free terminal time. Let ¢*(¢) be the optimal trajectory with
optimal terminal time #5. The perturbed trajectory terminates at time #; + ét,. Its end state is
q" () +en (5 +e7). The perturbed cost is

t2*+6t
I 5q,51) = / LG (1) +84(1) " (1) + 6 (1)) dr

i 4 (4% (1).a" ()
6]— ‘[’12 <_E

ag*

AL(4* (0.a* (1)) aL(a* (
e ) 0g (1) dt —
O () (5)

)0 (1))
Ere
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oq (17)
6q (3) + L (4" (5 +dt) ,q" (1)) 6t
Now, we want to allow both the final time and the end point to vary. The actual end state is:

52 2 6q (55 +61) = 5q (15) + ¢ (85) 6t
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FREE TERMINAL TIME — 2
5] — ft:; <_ g 3L(5i*l(92;q*(7)) n aL(z;*(zi,q*(z))
Lo () (5))

AL(q* (1 ),a™ (¢ «
y )5q(t)dt— G (ggf ) 5 (11)
* .k * * >k 8 - 5
B ) + (L (). ) - 0L
Thus, we have have the Euler-Lagrange Equations, as before, but the transversality conditions
» the previous conditions:

become:

2

HEGIEN )
OL(4" (1),q" (“))aq

og*
» plus, additional condition:

() =0,
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6q(n) =0
For free terminal time ¢z is arbitrary. Thus from the transversality conditions:

» If the terminal state is fixed, dq (1,) = 0 the terminal condition is:

FREE TERMINAL TIME — 3
Ordinarily, the initial state and time are fixed so that the transversality conditions require

L(q" (2).q" () —

OL(§" (13),4" (1)) .o 1 xy _
o4 ¢ (n)=0
» [f the terminal state is free, d¢. arbitrary the terminal condition is:
LG (5).4" (1))
og*
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0, L(¢" (),q" (7)) =0
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CONTROL EXAMPLE

First note that in the elementary variational calculus, we could simply replace ¢ by

x, and add the definition x = u, so that the cost function becomes
(5]
T = [ L x0) dr
151
Hence, we have a simple control problem. We consider 3 variants
1. Free endpoint, fixed terminal time
2. Fixed endpoint, fixed terminal time
3. Fixed endpoint, free terminal time
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EXAMPLE 1: FREE ENDPOINT, FIXED TERMINAL TIME
Supposex ER, 11 =0, = 1,and L = («* + u?) /2

'
s = [
0
The Euler-Lagrange equations become:

5 (x2 + uz) dt

d (0L oL i
The transversality conditions are:
x(0) = xo,
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EXAMPLE 1, CONT’D
Thus, we have the equations

o1
x(0) = xo, 8L(x(gu’“(l)) —0=u(l)=0
Consequently,
EARIRUF

INEI R

bcosh (t) + asinh (1) ]
2
a = an b = xO € xO
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EXAMPLE 1: FIXED ENDPOINT, FIXED TERMINAL TIME

Suppose we consider a fixed end point, say x () = 0 with the terminal time still
boundary conditions change to:

fixed at r, = 1. Then the Euler-Lagrange equations remain the same, but the
Thus, we compute

x(0) =xp, x(1)=0

x0+62x0
a=xy, b=—

_1+€2
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EXAMPLE 1: FIXED ENDPOINT, FREE TERMINAL TIME

Suppose we consider a fixed end point, say x (t,) = x; with the terminal time #,
free. Then the Euler-Lagrange equations remain the same, but the boundary
conditions change to:

x(0) = x0,x(t2) = x¢, (L — Lyu)
From this we compute

l, =0
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a = xo,a> = b*,acosh (t,) + bsinh (1) = x;
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EXAMPLE 1, CONT’D
The figures below show the optimal control and state trajectories from the initial
xp = 0.01.

state xo = 1,xy = 0, with 1, = 1 for the fixed time case. For the free time case
Free terminal state, Fixed
time:

Fixed terminal state,
Fixed Time:

REMARK

Fixed terminal state,
Free time:

10|
o5
'

04 05 08 10

-10

In the free time case, with x; = 0.01, the final time is t, = 4.60517. With x; = 0 the final time is t, = oco. Note that
the case of free terminal state and free terminal time (not shown) is trivial with t, = 0.
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SYSTEMS WITH CONSTRAINTS
VARIATIONAL CALCULUS WITH DIFFERENTIAL CONSTRAINTS
functional:

Systems with ‘nonintegrable’ differential , i.e., nonholonomic, constraints have
been treated by variational methods. As before, we seek extremals of the

But now subject to the constraints:

where ¢ : R* X R" x R — R™.

©(q(t),q(1),1)=0
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DIFFERENTIAL CONSTRAINTS, CONT’D

SYSTEMS WITH CONSTRAINTS
The constraints are enforce for all time, so introduce the m Lagrange multipliers
A (t) and consider the modified functional
15}
Ha@)= [ LG a0.0+N (02 @0.a0).0 d
n
parts yields

We allow variations in both ¢ and A and r,, Taking the variation and integrating by

6] = ftjz ({=4 [Ly+ Npy] + [Lg+ ATg) } 6q () + ©TN) dt
+[Lg + ANpg], daa + ([L+ M| — [Lg + Ay] 4), 02
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NECESSARY CONDITIONS WITH CONSTRAINTS

Again we have the Euler-Lagrange equations, now in the form:

dr [Liz + AT@%] - [Lq + )‘T%] =0
The differential constraints:
® (q7 q, t) =0
and the boundary conditions

[5)
With free terminal time, we also have

[Lg] + )\T(pq] 0gp =0

OPTIMAL CONTROL

([L+ M| = [La+ 2] d), =0
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EXAMPLE

Once again consider the problem

SYSTEMS WITH CONSTRAINTS

X =u,
But now, add the constraint

The Euler-Lagrange equations now become

px)=—1=u?—1=0—u==+I

— [Lu+)\Tg0u] — [Lx+)\Tgpx] —0=\= x
t 2u
REMARK
> Note thatu = £1 — i = 0 almost everywhere,
> Also, fyuldt =t
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EXAMPLE CONTINUED

SYSTEMS WITH CONSTRAINTS

We now consider three cases:

» free end point, fixed terminal time
» fixed end point, fixed terminal time

» fixed end point, free terminal time
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Steer from x (0) = xp
> system x = u

» Euler equation A\ =

X

2u
» constraintu = +1

» initial condition x (0) = xo

n

» terminal condition [L, + ATp,] =0=A(1)=—
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EXAMPLE: FREE END POINT, FIXED TERMINAL TIME
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OPTIMAL CONTROL

SYSTEMS WITH CONSTRAINTS
> A0) = X

EXAMPLE: FREE END POINT, FIXED TERMINAL TIME-2
The control is piecewise constant, switching between u = +1 and u = —1. Assume:

> there is only one switch that takes place atr = T with 0 < T < 1 with u(0) = up = +1 and u(t) = —up,t > T

o Xo + uot 0<t<T
x(t)_{ xo—|—u0T—u0(t—T)
)\(t):{ )\0+2170(

T<t<1
Ao + ﬁ (Xo + %oﬂ)

0+ 58T = (8 +4T) (= T)+ 40 -7 T<i<1
1
A1) =

0<t<T
3 X
7,:>)\ —_
5 0+4+<

20 g

T+T>=0
2140 > +
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x1J
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EXAMPLE: FREE END POINT, FIXED TERMINAL TIME—3

Consider the case x(0) = 0. The necessary conditions are satisfied with

3 1
=F+I)A[—=< < —= A [T=
(o = £1) (4— 0= 2) (

Two examples are given below. Only the case \g =

1

5+ %\/—2 — X

is optimal.

o5
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SYSTEMS WITH CONSTRAINTS

EXAMPLE: FIXED END POINT, FIXED TERMINAL TIME

Steer from x (0) = xp to x (1) = x;.

> systemi =u

> Euler equation A = &
> constraint u = +1

» boundary conditions x (0) = xop,x (1) = x;

Assume single switch at time T

xo+uT —upg(1—=T)=x1 A(ug =) ANOL<T <1
= —1+x SX()§1+X1/\(M0::|:1)/\T: 7”07;0+x1
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SYSTEMS WITH CONSTRAINTS

EXAMPLE: FREE TERMINAL TIME, FIXED END POINT

Steer from x (0) = xptox (1) =0
> systemi=u
> Euler equation A = £
> constraint u = £1
> initial condition x (0) = xq,x (t2) =0
>

terminal time condition (L + A ¢,) — (L — M) =0=> A () = & + %

(X0 > 0,62 > x0) A (g = 1) A (T = 2=toxe “OXO) (ho = =221

vV
(XoSO,lzZ—Xo)/\ I/t()—:tl /\( T = 2—tex u(,xo) (/\0:(&%”271)
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