OPTIMAL CONTROL SYSTEMS VARIATIONAL CALCULUS & THE MINIMUM PRINCIPLE

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University

メロトメ部 トメミトメミト Þ 2990

OUTLINE

THE OPTIMAL CONTROL P[ROBLEM](#page-2-0) **[Definition](#page-2-0)**

NECESSARY C[ONDITIONS](#page-3-0) [Necessary Conditions](#page-3-0) [Hamiltonian Formulation](#page-4-0)

E[XAMPLES](#page-8-0)

[Fixed Time to Target](#page-8-0) [Free Time to Target](#page-12-0)

THE OPTIMAL CONTROL PROBLEM

We consider the system dynamics

$$
\dot{x} = f(x, u), \quad x \in R^n, u \in U \subset R^m
$$

and cost function

$$
J(u(\cdot)) = \ell(x(t_2)) + \int_{t_1}^{t_2} L(x(t), u(t), t) dt
$$

with the following terminal conditions:

- If fixed initial state $x(t_1) = x_0$
- **Exerging time** t_2 is free or fixed
- **Example 1** terminal state $x(t_2)$ is free or fixed by element

 $4 \Box + 4$

€.

THE VARIATION

Define the Lagrange multipliers $\lambda(t)$ and consider

$$
J(u(\cdot)) = \ell(x(t_2)) + \int_{t_1}^{t_2} \{L(x(t), u(t), t) + \lambda^T(t) (f(x(t), u(t)) - \dot{x}(t))\} dt
$$

We allow variations in u, x, λ, t_2 and we assume that these variations are completely arbitrary, other than the relationship implied by the system dynamics. There are no other constraints on *x* or *u*. Thus, we obtain

$$
\delta J = \ell_x \delta x (t_2)
$$

+ $\int_{t_1}^{t_2} \left[L_x \delta x + L_u \delta u + (f - \dot{x})^T \delta \lambda + \lambda^T (f_x \delta x + f_u \delta u - \delta \dot{x}) \right] dt$
+ $\left[L + \lambda^T (f - \dot{x}) \right]_{t_2} \delta t_2$

4日下

THE HAMILTONIAN

Define the Hamiltonian

$$
H(x, u, \lambda, t) = L(x, u, t) + \lambda^{T} f(x, u)
$$

so that the δ*J* can be written

$$
\delta J = \ell_x \delta x (t_2) + [L + \lambda^T (f - \dot{x})]_{t_2} \delta t_2 + \int_{t_1}^{t_2} [H_x \delta x + H_u \delta u + (f - \dot{x})^T \delta \lambda + \lambda^T \delta \dot{x}] dt
$$

Now apply integration by parts

$$
\int_{t_1}^{t_2} \lambda^T(t) \, \delta \dot{x} dt = -\lambda^T(t_2) \left(\delta x(t_2) - \dot{x}(t_2) \, \delta t_2 \right) + \int_{t_1}^{t_2} \dot{\lambda}^T(t) \, \delta x dt
$$

so that

$$
\delta J = (\ell_x - \lambda^T)_{t_2} \delta x (t_2) + [L + \lambda^T (f - \dot{x}) + \lambda^T \dot{x}]_{t_2} \delta t_2 + \int_{t_1}^{t_2} \left[\left(H_x + \dot{\lambda}^T \right) \delta x + H_u \delta u + (f - \dot{x})^T \delta \lambda \right] dt
$$

э

NECESSARY CONDITIONS WITHOUT CONTROL OR STATE CONSTRAINTS

Since we require $\delta J = 0$ for arbitrary variations we obtain the key necessary conditions for an optimal trajectory:

$$
\dot{x}^* = H_{\lambda}^T(x^*, \lambda^*, u^*)
$$
 state equations
\n
$$
\dot{\lambda}^{*T} = -H_x(x^*, \lambda^*, u^*)
$$
 adjoint equations
\n
$$
H_u = 0
$$

\n
$$
H(x^*, \lambda^*, u^*) = c
$$

with the boundary conditions:

- initial state $x(t_1) = x_0$
- ► transversality condition $(\ell_x \lambda^T)_{t_2} \delta x(t_2) = 0$
- \blacktriangleright if the terminal time is free, then $\left[L + \lambda f\right]_{t_2} = H_{t_2} = 0$

◆ロト ◆伊

REMARKS

Note that the transversality condition

$$
\left(\ell_{x}-\lambda^{T}\right)_{t_{2}}\delta x\left(t_{2}\right)=0
$$

leads to different boundary conditions depending on the situation.

- If the final state (or component) is fixed, $x(t_2) = x_f$
- ► if the final state (or component) is free, then $\lambda(t_2) = \frac{\partial \ell}{\partial x}\big|_{t_2}$
- **In suppose that the terminal condition is given as a constraint** $\psi(x(t_2)) = 0$ **. This implies**

$$
\frac{\partial \psi(x)}{\partial x} \delta x = 0 \Rightarrow \delta x = \Psi \delta \alpha, \quad \text{span}\Psi = \ker \frac{\partial \psi(x)}{\partial x}
$$

so that if $x(t_2)$ is otherwise unconstrained

$$
\left[\left(\ell_{x}-\lambda^{T}\right)\Psi\right]_{t_{2}}=0
$$

 $4 \Box + 4$

医牙骨的牙骨的

REMARKS CONT'D

► It is easy to show that $H(x^*, \lambda^*, u^*) = c$

$$
\frac{d}{dt}H(x^*, \lambda^*, u^*) = H_x(x^*, \lambda^*, u^*) \dot{x} + H_\lambda(x^*, \lambda^*, u^*) \dot{\lambda} + H_u(x^*, \lambda^*, u^*) \dot{u}
$$

$$
\frac{d}{dt}H(x^*, \lambda^*, u^*) = H_x(x^*, \lambda^*, u^*) H_{\lambda}^T(x^*, \lambda^*, u^*) -H_x(x^*, \lambda^*, u^*) H_{\lambda}^T(x^*, \lambda^*, u^*) = 0
$$

÷,

メロトメ部 トメミトメミト

EXAMPLE - FIXED TIME TO TARGET

Consider a problem with dynamics

$$
\begin{aligned}\n\dot{x}_1 &= x_2\\ \n\dot{x}_2 &= -x_2 + u\n\end{aligned}
$$

and cost

$$
J = \frac{1}{2} \int_0^2 u^2 dt
$$

We wish to steer the system from an arbitrary initial state to the origin in specified time $t_2 = 2$ in such a way as to minimize cost. We compute

$$
H = \frac{1}{2}u^2 + \lambda_1 x_2 + \lambda_2 (-x_2 + u)
$$

\n
$$
\lambda_1 = -\frac{\partial H}{\partial x_1} = 0
$$

\n
$$
\lambda_2 = -\frac{\partial H}{\partial x_2} = -\lambda_1 + \lambda_2
$$

 $4 \Box$

EXAMPLE - CONT'D

The optimal control is given by

$$
\frac{\partial H}{\partial u} = 0 \Rightarrow u = -\lambda_2
$$

Thus, we need to solve

$$
\dot{x}_1 = x_2, \ \dot{x}_2 = -x_1 - \lambda_2 \n\dot{\lambda}_1 = 0, \ \dot{\lambda}_2 = -\lambda_1 + \lambda_2
$$

subject to the boundary conditions

$$
x_1(0) = a, x_2(0) = b, x_1(2) = 0, x_2(2) = 0
$$

Þ

 $4 \Box + 4$ 伊 重 \triangleright \rightarrow \exists \rightarrow

 \mathcal{A} .

THE OPTIMAL CONTROL P[ROBLEM](#page-2-0)
→ NECESSARY C[ONDITIONS](#page-3-0)→ NECESSARY CONDITIONS
→ DESAMPLES
→ FIXED T[IME TO](#page-10-0) TARGET

EXAMPLE - CONT'D

 299

EXAMPLE - CONT'D

- \blacktriangleright The figures on the right illustrate how terminal time affects the optimal trajectories.
- \blacktriangleright The terminal time can be reduced arbitrarily, leading to large control peak magnitude.

EXAMPLE: FREE TIME TO TARGET

Once again consider a system with dynamics

$$
\begin{aligned}\n\dot{x}_1 &= x_2\\ \n\dot{x}_2 &= -x_2 + u\n\end{aligned}
$$

We wish to steer the system from the initial state $x_1(0) = a$, $x_2(0) = b$ to the origin with cost function

$$
J = \int_0^{t_2} (1 + \frac{1}{2}u^2) \, dt
$$

where the terminal time $t₂$ is free. Note that the cost is a combination of 'time to target' and control effort. The Hamiltonian is

$$
H = 1 + \frac{1}{2}u^2 + \lambda_1 x_2 + \lambda_2 (-x_2 + u)
$$

and the adjoint dynamics are

$$
\dot{\lambda}_1 = 0, \quad \dot{\lambda}_2 = -\lambda_1 + \lambda_2
$$

 $4 \Box + 4$

EXAMPLE - CONT'D

As before

$$
\frac{\partial H}{\partial u} = 0 \Rightarrow u = -\lambda_2
$$

So the optimal system is described by the differential equations

$$
\dot{x}_1 = x_2, \ \dot{x}_2 = -x_1 - \lambda_2
$$

\n $\dot{\lambda}_1 = 0, \ \dot{\lambda}_2 = -\lambda_1 + \lambda_2$

Now, let us consider the terminal conditions:

- initial state: $x_1 (0) = a, x_2 (0) = b$
- **Figure 1** terminal state: $x_1(t_2) = 0$, $x_2(t_2) = 0$
- ► free terminal time: $H_{t_2}^* = 1 \frac{1}{2}\lambda_2^2$ (t_2) = 0 $\Rightarrow \lambda_2$ (t_2) = \pm √ 2

 $4 \Box + 4$

伊

医牙骨的牙骨的

EXAMPLE - CONT'D

重

SYNTHESIS BY BACKING OUT OF THE TARGET

Suppose our goal is to steer a system from an initial state to a target set *S* defined by $\psi(x) \leq 0$, with cost function *J* and free terminal time. Our necessary conditions include:

- \blacktriangleright state and adjoint equations
- ► control $u^*(x, \lambda)$
- \blacktriangleright terminal state belongs to the target set boundary
- ▶ transversality condition at terminal time, $(\ell_x \lambda^T)_{t_2} \delta x(t_2) = 0$
- ► free terminal time condition, $H_{t_2}^* = 0$

We also have an initial state but we ignore it (for now).

- ^I choose a state *^x^T* [∈] [∂]*^G*
- \blacktriangleright choose a λ_T that satisfies the transversality condition
- solve the state and adjoint equations backward in time
- find unique terminal data such that the trajectory passes though the initial dat[a,](#page-14-0) $x(0)$ $x(0)$ $x(0)$ 4 ロ ▶ 4 伊

THE OPTIMAL CONTROL P[ROBLEM](#page-2-0)
 α FREE T[IME TO](#page-16-0) TARGET

EXAMPLE - CONT'D

The target set is the origin. However, consider

Scale λ so that $\lambda_2^2 = 2$. Backwards in time with $\gamma \rightarrow 0$,

$$
\begin{aligned} x_1\left[t\right] &\rightarrow -\sqrt{2} \text{Sign}\big[\text{Sin}[\theta]\big] \big(-1+\text{Cosh}[t]-r\text{Cot}[\theta]+\text{Cot}[\theta] \text{Sinh}[t]\big) \\ x_2\big[t\big] &\rightarrow \frac{e^{-t}\big(-1+e^t\big)\big(1+e^t+\big(-1+e^t\big)\text{Cot}[\theta]\big)\text{Sign}\big[\text{Sin}[\theta]\big]}{\sqrt{2}} \end{aligned}
$$

ŧ

EXAMPLE: FREE TIME WITH TERMINAL COST

Consider a system with dynamics

 $\dot{x}_1 = x_2$ $\dot{x}_2 = u$

and cost function

$$
J = x^{T} (t_{f}) x (t_{f}) + \int_{0}^{t_{f}} (1 + u^{2}) dt
$$

with free terminal time and free terminal state.

The Hamiltonian is

$$
H = 1 + u^2 + \lambda_1 x_2 + \lambda_2 u
$$

◆ロト ◆伊

重 \triangleright \rightarrow \exists \rightarrow

 \mathcal{A} .

EXAMPLE, CONT'D

$$
\frac{\partial H}{\partial u} = 0 \Rightarrow u^* = -\frac{1}{2}\lambda_2 \Rightarrow H^* = 1 + \lambda_1 x_2 - \frac{\lambda_2^2}{4}
$$

from which the adjoint differential equations are obtained:

$$
\dot{\lambda}_1=0,\dot{\lambda}_2=-\lambda_1
$$

The general solution to the state and adjoint equations are easy to determine:

$$
\lambda_1(t) = c_1, \ \lambda_2(t) = c_2 - c_1 t
$$

\n
$$
x_1(t) = d_1 + d_2 t - \frac{1}{4} c_2 t^2 + \frac{1}{12} c_1 t^3, x_2(t) = d_2 - \frac{1}{2} c_2 t + \frac{1}{4} c_1 t^2
$$

Direct substitution yields

$$
H^* = 1 - \frac{c_2^2}{4} + c_1 d_2
$$

which shows that *H*[∗] is a constant along optimal trajectories.

4. 17. 6. 4.

 \sim

EXAMPLE CONT'D: STEERING TO THE ORIGIN

First consider steering from x_1 (0) = 1, x_2 (0) = 0 to x_1 (t_f) = 0, x_2 (t_f) = 0 with free terminal time. With these initial conditions, the state trajectory reduces to:

$$
x_1(t) = 1 + \frac{1}{4}c_2t^2 + \frac{1}{12}c_1t^3
$$

$$
x_2(t) = -\frac{1}{2}c_2t + \frac{1}{4}c_1t^2
$$

and *H* ∗ reduces to

$$
H^* = 1 - \frac{c_2^2}{4}
$$

So, the terminal conditions are

$$
1 + \frac{1}{4}c_2t_f^2 + \frac{1}{12}c_1t_f^3 = 0, -\frac{1}{2}c_2t_f + \frac{1}{4}c_1t_f^2 = 0, 1 - \frac{c_2^2}{4} = 0
$$

Solve for $c_1, c_2, t_f \ge 0$

$$
c_1 = 2\sqrt{\frac{2}{3}}, c_2 = 2, t_f = \sqrt{6}
$$

 $A\equiv\mathbb{R} \rightarrow A\equiv\mathbb{R}$

EXAMPLE CONT'D: STEERING TO FREE TERMINAL STATE

- \triangleright As before the same adjoint equations obtain
- ► As before the free time condition requires $H^* = 0 \Rightarrow c_2 = 2$
- \triangleright With free terminal state, the two additional terminal conditions are:

$$
\lambda\left(t_{f}\right) = \frac{\partial \ell\left(x\left(t_{f}\right)\right)}{\partial x} \Rightarrow x_{1}\left(t_{f}\right) = \frac{1}{2}\lambda_{1}\left(t_{f}\right), x_{2}\left(t_{f}\right) = \frac{1}{2}\lambda_{2}\left(t_{f}\right)
$$

 $4 \Box + 4$