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THE OPTIMAL CONTROL PROBLEM
o

DEFINITION

THE OPTIMAL CONTROL PROBLEM
We consider the system dynamics

x=f(xu),

xeR' ueUCR"
and cost function

J(u (") E(x(tz))+/t2L(x(t)7u(t),t) dt

1
with the following terminal conditions:
» fixed initial state x (#;) = xo
» terminal time 1, is free or fixed

» terminal state x () is free or fixed by element

&

[m]
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NECESSARY CONDITIONS

THE VARIATION

NECESSARY CONDITIONS
o

Define the Lagrange multipliers \ () and consider

J (u( x(12)) / {L(x

0+ N (1) (F (x (1), u (1)
We allow variations in u, x, A\, r, and we assume that these variations are
0J = Lox (1)

(1)} ar
completely arbitrary, other than the relationship implied by the system dynamics
There are no other constraints on x or u. Thus, we obtain

+ [ | Lydx + Lydu+ (f — &) (5)\+)\T()§5x+fu6u—5x)]d
[L + )\T (f — 56)][2 (Slz
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HAMILTONIAN FORMULATION

THE HAMILTONIAN

NECESSARY CONDITIONS
@000

Define the Hamiltonian

so that the §J can be written

H (x,u, M\, t) = L (x,u,t) + \f (x,u)

o0J = £.0x (l‘z) + [L + AT (f — X)]tz ot
Now apply integration by parts

i [Hdx + Hdu+ (f = )7 o\ + AT ar
so that

/ "N (1)t = — N (12) (63 (12) — & (22) 612) + / "5 (1) bxai

0J = (b= AT), 0x(n) + [L+ N (f — %) + N3], o
OPTIMAL CON L
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HAMILTONIAN FORMULATION

NECESSARY CONDITIONS
CONSTRAINTS

NECESSARY CONDITIONS WITHOUT CONTROL OR STATE

Since we require §J = 0 for arbitrary variations we obtain the key necessary
conditions for an optimal trajectory:

):C* — Hg\" (X*,)\*,M*)
*

N = —H (x*, N, u*)
H,=0

state equations
adjoint equations
H(x*, \*,u*) =c
with the boundary conditions:
» initial state x (11) = xo

> transversality condition (¢, — A") dx(12) =0
» if the terminal time is free, then [L + )f]
OPTIMAL CONTROL
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HAMILTONIAN FORMULATION

REMARKS

NECESSARY CONDITIONS
[e]e] o)

Note that the transversality condition

(f — )\T)t2 ox ([2) =0
leads to different boundary conditions depending on the situation

» if the final state (or component) is fixed, x (1) = x¢
» if the final state (or component) is free, then X (1,) = 2¢
3¢( )

- E %)
» suppose that the terminal condition is given as a constraint ¢ (x (1)) = 0. This implies

—x=0= dx = ¥dq,
so that if x (,) is otherwise unconstrained

span¥ = ker o ()
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HAMILTONIAN FORMULATION

REMARKS CONT’D

NECESSARY CONDITIONS
[e]o]e] )

» Itis easy to show that H (x*, \*,u*) = ¢

%H (o, N, u*) = Hy (x5, N, u*) X+ Hy (3%, X, u*) A
+H, (x*, X*,u*) i

%H(x*, N u*) = Hy (X%, \*, u*)Hf (x*, %, u*)
=0

H, (x*, A", u*) H§ (o, A" u™)
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FIXED TIME TO TARGET

EXAMPLES
EXAMPLE - FIXED TIME TO TARGET
Consider a problem with dynamics
X1 =x2
Xo=—x2+u
and cost

1 2
J:/ u*dt
2 Jo

We wish to steer the system from an arbitrary initial state to the origin in specified
time r, = 2 in such a way as to minimize cost. We compute

H = %u2+)\1xz+)\2 (—xp +u)
N\ = —9H _

‘1 Ox|

N =08 —
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FIXED TIME TO TARGET

EXAMPLE - CONT’D

The optimal control is given by

EXAMPLES
0e00

OH
ou
Thus, we need to solve

Oél/t:—)\z

X1 =X, o = —x1 — A2
A=0, o=\ + X\
subject to the boundary conditions

x1(0)=a, x(0)=0b, x;(2) =0, x2(2) =0
OPTIMAL CONTROL
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EXAMPLES
[e]e] o]

FIXED TIME TO TARGET

EXAMPLE - CONT’D
e*’< a(—]+e? (—e2+e2'—et(—3+ez(—1+t)+t)) )

+b (02' -3 +ez) — e (1 +e2) — e (—3 +e4(—1 +1)+1r— 2e21))
sl = 4(—1+ )
et (—ez +e') (be’ (—3 +ez) —b (I +ez) +a (—I +ez) (-1 +e’))
x[] — YR
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EXAMPLES

[e]e]e] ]

FIXED TIME TO TARGET

EXAMPLE - CONT’D

Final time is 5 sec

X1, U

> The figures on the right
illustrate how terminal
time affects the optimal
trajectories.

» The terminal time can be Final time is 2 sec
reduced arbitrarily, leading
to large control peak
magnitude.




FREE TIME TO TARGET

EXAMPLE: FREE TIME TO TARGET

Once again consider a system with dynamics

EXAMPLES
000000000

jC] = X2
Xo=—X24+u

cost function

We wish to steer the system from the initial state x; (0) = a, x, (0) = b to the origin with

J/tz (1+ Ju?) dt

where the terminal time ¢, is free. Note tk?at the cost is a combination of ‘time to target’ and

control effort. The Hamiltonian is
H=1+ 1142-&-)\1%24-)\2(—%24-14)

and the adjoint dynamics are

OPTIMAL CONTROL
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FREE TIME TO TARGET

EXAMPLE - CONT’D

As before

EXAMPLES

So the optimal system is described by the differential equations
X =x, p = —x1— XA
M=0 A=-\+\
Now, let us consider the terminal conditions:
> initial state: x; (0) = a, x, (0) =b

» terminal state: x; () =0, x, (%) =0

» free terminal time: H; = 1— 1) (1) =0= X\ () = £V2
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EXAMPLES
00@000000

FREE TIME TO TARGET

EXAMPLE - CONT’D

X%,




EXAMPLES
000@00000

FREE TIME TO TARGET

SYNTHESIS BY BACKING OUT OF THE TARGET

Suppose our goal is to steer a system from an initial state to a target set S defined by
¥ (x) < 0, with cost function J and free terminal time. Our necessary conditions include:
> state and adjoint equations

control u* (x, )

terminal state belongs to the target set boundary

vV vy

transversality condition at terminal time, (£, — AT)tz Sx(t) =0
> free terminal time condition, Hj; = 0

We also have an initial state but we ignore it (for now).
> choose a state xr € 9G
» choose a \r that satisfies the transversality condition

» solve the state and adjoint equations backward in time

&

> find unique terminal data such that the trajectory passes though the initial data, x (0)
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EXAMPLES
[o]e]e]e] Ielele]e]

FREE TIME TO TARGET

EXAMPLE - CONT’D

The target set is the origin. However, consider
the target set shown below. A(r,)7 8x (1)
%

(7cos8,ysing)

Scale X so that A3 = 2. Backwards in time with
5 =0,

x[] = —+/2Sign[Sin[0]](—1 + Cosh[r] — tCot[#] + Cot[0]Sinh[1])
e (—iel) (14e!+ (= 1+¢") Cotl0] ) Sign[sin[6]]

x[f] — —




FREE TIME TO TARGET

EXAMPLE: FREE TIME WITH TERMINAL COST
Consider a system with dynamics

EXAMPLES
00000@000
561 = X2
and cost function

Xo=u
I
J=x" (i) x (1) +/0 (1+?) di
with free terminal time and free terminal state.
The Hamiltonian is

OPTIMAL CONTROL
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FREE TIME TO TARGET

EXAMPLE, CONT’D

EXAMPLES

000000e00

1
—5)\2 =H"=1+ Xy —
from which the adjoint differential equations are obtained:
M =0, =-)\

Direct substitution yields

The general solution to the state and adjoint equations are easy to determine:
)\1(1‘) =cy, (t) =) —Cit
x1 (1) =dy + dot — %Cztz + ﬁclﬁ,xg (t) =dp — %Czl‘—l— %Cllz

2

OPTIMAL CONTROL

H =1- % + c1dy
which shows that H* is a constant along optimal trajectories.
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FREE TIME TO TARGET

EXAMPLE CONT’D: STEERING TO THE ORIGIN

000000080
and H* reduces to

EXAMPLES
First consider steering from x; (0) = 1,x, (0) = 0 to x; () = 0,x, (tr) = 0 with free terminal
time. With these initial conditions, the state trajectory reduces to:
x()=1+ %cztz + T12c1t3

x () = f%czt + iclt2

So, the terminal conditions are

2
C
H* =1- 2
4

1 1

1+ ot + —citf> =0, —=

+462f -|-12€1f TS

Solve for ¢i, ¢, > 0

2
@

e —)
4

2

clzz\[ycz:z,rf:\/é

1
ooty + zety? = 0,1 =
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FREE TIME TO TARGET

EXAMPLES

00000000e

EXAMPLE CONT’D: STEERING TO FREE TERMINAL STATE

» As before the same adjoint equations obtain

» As before the free time condition requires H* =0 = ¢, =2

_ 90(x(x))
) =

» With free terminal state,the two additional terminal conditions are:
A(t
() P

=31 1) = 501 () 02 () = 2o ()
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