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NECESSARY CONDITIONS WITHOUT CONTROL OR STATE
CONSTRAINTS
conditions for an optimal trajectory:

Since we require §J = 0 for arbitrary variations we obtain the key necessary

):C* — Hg\" (X*,)\*,M*)
*

N = —H (x*, N, u*)
H,=0

state equations
adjoint equations
H(x*, \*,u*) =c¢
with the boundary conditions:
» initial state x (1) = xo

> transversality condition (¢, — A"), dx(12) =0

» if the terminal time is free, then [L 4 )f]
OPTIMAL CONTROL
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CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

CONTROL CONSTRAINTS

» In this section we address problems with control constraints,
ueUCR"

» The important modification to the necessary conditions developed previously
is that the condition H, = 0 is replaced by

u* = arg min H (x,u, A\, t)
uelU

» This result is called the Pontryagin Minimal Principle.
» First, we consider an example
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CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

PRELIMINARY EXAMPLE

Let us reconsider the earlier problem, but with control constraint:

X1:XQ
=—x+4u Ju <1

We wish to steer from an arbitrary initial state to the origin and minimize the cost
(]
J= / 1+ L) ar
(1)

1
H:]-i—iuz-i-)\]xZ-i-/\z(—)Q-i-u)

As before

Thus,

But the control is

* . 1 2
u = arg ‘rur‘ngnl{zu —l—)\zu}
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CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

PRELIMINARY EXAMPLE, CONT’D
Thus we compute the control:

—1 > 1
ut = X 1< <1l =—sat\
1 A< —1

We also have the terminal condition

Hy = 1+ %satz/\z (12) = Mo (12) satha (12) = 0 = Ao (1) = £3/2
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CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

THE VARIATION WITH CONSTRAINTS

> We seek to find a control u™ (¢) that minimizes the cost J (), i.e., J (u*) < J (u) for all
admissible u.
> Define AJ 2 J (u) —J (u*), then we require AJ > 0.
» Recall from previous calculations for unconstrained control

o = (&( — )\T)t ox (tz) -|—H;2(5[2

+ 7 (Hx - }\T) 6x + Hdu + (f —x)" 6>\] dt

where u, x, \, r, admitted independent and unconstrained variations.
Now, the variations of x, A, , remain unconstrained so their coefficients must vanish as before.
What needs to be done with §u? First, apply the following replacement

H, (x", X", u") 6u — H (X" X", u" + du) — H (X", \",u")
so that

o)
57 (") = / [H (", A", u* + ou) — H (&, \*, u)] de > 0
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CONTROL CONSTRAINTS
0000®00000

NECESSARY CONDITIONS

THE VARIATION WITH CONSTRAINTS, CONT’D

LEMMA

It is necessary that

H(x",\"u) —H @\, u")>0
for all admissible du (1) = u (t) — u* (¢), ||6ul| < e and allt € [n,1].

The argument goes as follows:

> Let (1, 1] be a nonzero but arbitrarily small subinterval of [z, 1,].
» Suppose

u(t) =u" (1) t & [ta, 1]
u(®) =u” (1) +0u(t) 1€ [ta,tr)
for arbitrary du, ||dul| < €.
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CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

THE VARIATION WITH CONSTRAINTS, CONT’D

» Suppose the desired result is not satisfied on [z, 7], so that
H(x", X" u) < H(x",\",u")
Then
fl? [H (x*, X" u) — H (x*, \*,u*)] dr =
ft;b [H (x*, X" u) — H (x*, \*,u*)]dt < 0
» Since the interval [z, 1,] is arbitrary it follows that if
H(x", X\ u) < H(x",\",u")

for any t, it is possible to construct an admissible variation of u* such that AJ < 0, violating the
condition for optimality of u™.
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CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

PONTRYAGIN MINIMAL PRINCIPLE

Necessary conditions for an optimal control:
» forallz € [1,1)],

X = HL (x*, \*,u*)
A = —H_(x*, \*,u*)
H(x*, X u*) <H(x"\u), YuelU
H(x*, \*,u*) =c¢
» with boundary conditions:
» initial state x (#;) = x!
» transversality condition (¢, — )\T)t2 5x (tp)

=0
» if the terminal time is free, then H (x*, \*,u*),, = 0
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CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

EXAMPLE

Consider the system

with cost function

J:/Z(I+B|u])dt

3l
We want to steer the system from an arbitrary initial state to the origin in such a
way as to minimize J.

» Note that in spacecraft control problems [ |u|dt is referred to as a ‘fuel’
penalty, whereas [ udt is a ‘power’ penalty.

» consequently, the cost J characterizes a tradeoff between time to target and
fuel. =

£ DA
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CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

EXAMPLE CONT’D

The Hamiltonian is

H=1+Ful + \x2 + Xu
from which we obtain the adjoint dynamics

A =0

)\1 = C]
A= —)\; A= —cit+ 2
and
u* = arg min [ |u| + A\u]
|u]<1
Fad
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CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

EXAMPLE, CONT’D

The resulting control law is

Blul+Au
—1 A>3 A
u* = O —ﬂ < )\2 < ﬁ
1 A < —p L

| |
» Since )\, is a linear function of ¢, there A Y
can be at most 2 switches.

+1
A free terminal time requires

H (1) = 14 B u(n2)| + A (12) = 0
Thus, it is not possible to have u* (r,) = 0. Furthermore, u* (1) = 1 implies

1+B8+X=0=XH)=—(1+8) <8
and u* (1) = —1 implies

I+8-X=0=>X({H)=>01+p5)>28
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CONTROL CONSTRAINTS

L]
EXAMPLES

EXAMPLE - FIXED TIME, CONTROL CONSTRAINTS

A X
_le
X sz )

1 S u=-1

><1=(—+2ﬁ X7 N
> X

\

u=1 |\
~1v — -
‘\1 coastphase U :O
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NECESSARY CONDITIONS

STATE CONSTRAINTS
0

STATE CONSTRAINTS

» Here, we consider problems in which the state is restricted to a subset of § C R".

> It will be assumed that the the allowable domain can be defined by a set of inequalities

é1 (x,1) > 0,.
where each ¢; is a smooth function of x, r.

) ¢)S (X, t) 2 0
> Introduce a new state variable x,; (¢), defined by

Xﬂ+l (t) = ¢% (x7 t) Z0] (_d)l) +- ¢§ (x7 t) Z0] (_¢S) )
with boundary conditions

ug denotes the unit step
X1 (1) = 0,x,41 (2) =0
note that these boundary conditions can be satisfied only if the constraints are satisfied along the entire
trajectory.

»> The necessary condition stated above can be applied, with the additional state equation.
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NECESSARY CONDITIONS

STATE CONSTRAINTS
(o] J

SATISFYING THE NECESSARY CONDITIONS

Given an initial state there are two possibilities:

including the state constraints

» There does not exist any trajectory that satisfies all of the necessary conditions

» the entire trajectory lies interior to the state constraint set S

» There exists one or more optimal trajectories, and these can be of two types
» trajectory segments of finite length lie on the boundary of §
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EXAMPLES

EXAMPLE

STATE CONSTRAINTS
0000

Once again consider the problem:

jC] = X2

dp=-xp+u, [uf<1
We wish to steer from an arbitrary initial state to the origin and minimize the cost

1
J:/Z(H;zﬂ)dt
0

However, in this case we impose the state constraint

OPTIMAL CON DL

—2§x2§2<:>(XZ+2)(2—XQ)ZO
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EXAMPLES

EXAMPLE, CONT’D

STATE CONSTRAINTS
(o] le]e)

The expanded dynamics are:

X1 =x
X=—-x2+4u

From which we obtain the Hamiltonian:

3= (v + 2)2 (2- )52)2 uo ((x2 +2) (x2 — 2))

*

Also as before (see preliminary example) the optimal control is
u

H=1+ %uz + A2+ X (—x2 +u) + A3 (0 + 2)2 (2—=x2)"uo ((x2 +2) (2 — 2))

= —sat\,
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EXAMPLES

EXAMPLE, CONT’D

STATE CONSTRAINTS
ooeo

The adjoint equations are derived from H
A=0

|

A+
A =0

—2<xn<?2
—A1+ X —4dxo (x% 74) A3 < —2Vxy>2
And, we have the unchanged terminal condition

Hy, = 1+ Ssahs (12) — Ao (12) satha (12) = 0 = X (1) = £3/2
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STATE CONSTRAINTS
[o]e]e] )

EXAMPLES

EXAMPLE CONT’D

Trajectories computed via With the state constraint
backing out of target. Clearly, changed to —0.5 < x, < 2, the
the state constraint, trajectories are clearly altered.
—2 < x2 < 2 has no effect. %

X, 02
20
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MORE CONDITIONS

STATE CONSTRAINTS

MOTION ON THE CONSTRAINT BOUNDARY

Now, we will consider optimal trajectory segments on the constraint boundary. Suppose

the allowable region S C R" is characterized by the scalar-valued function ¢ (x):
S={xeR'o(x) <0}
Define

c(x,u) = 99 (x)

ax f('x7 I/l)
If x (¢) € 0S for some finite time interval 1, < ¢ <1, then c (x,u) =0onz, <t <.
This simply means that x lies in the tangent plane to the surface 35.
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MORE CONDITIONS

STATE CONSTRAINTS

oeo

OPTIMAL MOTION ON THE CONSTRAINT BOUNDARY

LEMMA (MINIMAL PRINCIPLE ON BOUNDARY)

)'\* — _8H (X*7)\*>u*)

Suppose u*(t) and x*(t) are optimal and x* (¢) € 9S fort, <t < t,. Then there exists
Ox

adjoint variables X (t) and a scalar valued function o (t) such that ont € [t,, 1)

_aﬁc(x ,u*)

Ox

uclU,aeR

H(x", A" u*) = néi[r]l{H (x*, A\ u) |c (x,u) =0}
', =arg min {H (", \*,u) + ac (x*,u)}
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MORE CONDITIONS

REMARKS

STATE CONSTRAINTS

ooe

therein.

» If x* (¢) € intS for times 1, <t < t,, then the ordinary minimum principle holds
» The adjoint variables are continuous at 7, i.e.,

i) = A (1)
» However, when leaving the boundary

OPTIMAL CONTROL
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OBSTACLE AVOIDANCE

EXAMPLE

EXAMPLE

000000000

Consider the problem of motion in a plane defined dynamics
X1 =u
with control constraint

X2 = up
U={ueRui+u;—1<0}
We seek to steer an arbitrary state to the origin in minimum time

5]
J= / dt
n
is defined by

while avoiding the obstacle - a unit circle centered at (2,0). The admissible space
OPTIMAL CONTROL
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OBSTACLE AVOIDANCE

EXAMPLE, CONT’D

EXAMPLE

so that

0@0000000

The ordinary minimum principle which holds while the trajectory is inside the
admissible space, S, i.e., outside of the circle.

H(x, A\ u) =14+ MNuy + \up

* )\l * )\2
ul - — 5 u2 - —
AT+ A3
and the adjoint equations are

\AT+ A3
Al
and we require the free time condition

OPTIMAL CONTROL

H() =X () + M () —1=0= X (1), (12) on unit circle
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OBSTACLE AVOIDANCE

EXAMPLE CONT’D

Without the obstacle we have

EXAMPLE
A1 (1) =cosf, X, (t) =sind
uy = —cost, u; = —sinf
All trajectories are straight lines!
Now suppose that x* (r) € 9S for 1, <t < 1,. Compute
c(x,u) ==2(x1 —2)u; — 2xup =0
and

)\1 = 2au1,
OPTIMAL CONTROL

)'\2 =2auy
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OBSTACLE AVOIDANCE

EXAMPLE, CONT’D

EXAMPLE

000@00000

uelU,a€R

Now, we need to find «* by minimizing H subject to the constraint ¢ (x, u) = 0.
First, consider a transformation

min {H (x, A\, u) + ac (x,u)}

x1 — 2+ cosf, x — sinf
so that points on 9S are parameterized by 6 as shown in the figure.
There are two solutions

uy = —sinf, uy = cos b,

a = (Aicosf+ Arsinf) /2
u; = sinf, u, = —cosb,

a = (Aicosd+ N\rsinf) /2
The first minimizes H on the

OPTIMAL

upper half circle and the second
on the lower half circle.
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OBSTACLE AVOIDANCE

EXAMPLE: OBSTACLE APPROACH

Let us focus on the top half circle. Consider the two relations
H*:1+)\1u1+>\2u250, a:()\luz—)\zm)/z
Use these equations and the first of the adjoint differential equations

to obtain

)‘\1 = 2au1

A; = —\; tan 6 + sinf tan 6
Ay = A tan@ — sec 6
Now, solve the differential equation first to obtain

OPTIMAL CONTROL

Al =cj1cosf —Gcosb +sinb
Ay = c18inf — 0sinf — cosf
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OBSTACLE AVOIDANCE

%,

EXAMPLE: OBSTACLE APPROACH, CONT’D

EXAMPLE

[o]e]e]e]e] lele]e]

Continuity of the adjoint variables yields

OPTIMAL CONTROL

A (7)) =\ (£7) = cospp = ¢y cosb, — 0,cos b, + sinb,
]l = 9(17

X (£7) =X (£F) = —singy = ¢y sinf, — 0,sinb, — cos b,

T
9a+¢0:§
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OBSTACLE AVOIDANCE

EXAMPLE: OBSTACLE DEPARTURE

X,

EXAMPLE

000000e00

(%) U X
Just before departure we have

A (1) = 6acos 0y — B4 cos 0, + sinby

A2 (tb_) =0,sin8; — 6;sin6,; — cos b,
Just after departure, since the usual equations obtain, we have

M (5) =cosgo, X (1) =singy
OPTIMAL CONTROL
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OBSTACLE AVOIDANCE

EXAMPLE: OBSTACLE DEPARTURE, CONT’D

Compute:

EXAMPLE

Now, we need to satisfy the departure continuity equations

000000080

Ao) =2 (1) —aln)

9 (x (1))
Ox
9¢ =[] -2x—-2) —2x, |=] —2cosb; —2sinb, |
Ox |g,
1 0, — 0
alg, = 5 (A1 (17) cos g + Xz (17 ) sinby) = 5 d
Consequently,
Al (t;—) =\ (t_)
)\2 (t;_) = )\2 (l‘

OPTIMAL CON DL

o (tb) 84,0((9);(tb)) = coS ¢0 = sin 95[
) — () 25580 = singy = —costy
= ¢O e 71'/67

9d227{'/3

G

it

)

»
?)




OBSTACLE AVOIDANCE

EXAMPLE: OPTIMAL TRAJECTORIES

X, A

EXAMPLE

00000000e

\

OPTIMAL CONTROL

G




	Control Constraints
	Necessary Conditions
	Examples

	State Constraints
	Necessary Conditions
	Examples
	More Conditions

	Example
	Obstacle Avoidance


