OPTIMAL CONTROL SYSTEMS **CONSTRAINTS**

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics Drexel University

イロトメ部 トメミトメミト э 2990

OPTIMAL C[ONTROL](#page-31-0)

OUTLINE

CONTROL C[ONSTRAINTS](#page-3-0)

[Necessary Conditions](#page-3-0) [Examples](#page-13-0)

STATE C[ONSTRAINTS](#page-14-0)

[Necessary Conditions](#page-14-0) [Examples](#page-16-0) [More Conditions](#page-20-0)

E[XAMPLE](#page-23-0)

[Obstacle Avoidance](#page-23-0)

◆ロト ◆伊 $A\equiv\mathbb{R}^n, \quad A\equiv\mathbb{R}^n$ Þ 299

OPTIMAL C[ONTROL](#page-0-0)

NECESSARY CONDITIONS WITHOUT CONTROL OR STATE CONSTRAINTS

Since we require $\delta J = 0$ for arbitrary variations we obtain the key necessary conditions for an optimal trajectory:

$$
\dot{x}^* = H_{\lambda}^T(x^*, \lambda^*, u^*)
$$
 state equations
\n
$$
\dot{\lambda}^{*T} = -H_x(x^*, \lambda^*, u^*)
$$
 adjoint equations
\n
$$
H_u = 0
$$

\n
$$
H(x^*, \lambda^*, u^*) = c
$$

with the boundary conditions:

- initial state $x(t_1) = x_0$
- ► transversality condition $(\ell_x \lambda^T)_{t_2} \delta x(t_2) = 0$
- \blacktriangleright if the terminal time is free, then $\left[L + \lambda f\right]_{t_2} = H_{t_2} = 0$

◆ロト ◆伊

CONTROL CONSTRAINTS

 \blacktriangleright In this section we address problems with control constraints,

$$
u\in U\subset R^m
$$

 \triangleright The important modification to the necessary conditions developed previously is that the condition $H_u = 0$ is replaced by

$$
u^* = \arg\ \min_{u \in U} H\left(x, u, \lambda, t\right)
$$

- \triangleright This result is called the Pontryagin Minimal Principle.
- \blacktriangleright First, we consider an example

 $4 \Box + 4$

PRELIMINARY EXAMPLE

Let us reconsider the earlier problem, but with control constraint:

 $\dot{x}_1 = x_2$ $\dot{x}_2 = -x_2 + u, \quad |u| \leq 1$

We wish to steer from an arbitrary initial state to the origin and minimize the cost

$$
J = \int_0^{t_2} \left(1 + \frac{1}{2}u^2\right) dt
$$

As before

$$
H = 1 + \frac{1}{2}u^2 + \lambda_1 x_2 + \lambda_2 (-x_2 + u)
$$

Thus,

$$
\dot{\lambda}_1=0, \quad \dot{\lambda}_2=-\lambda_1+\lambda_2
$$

But the control is

$$
u^* = \arg\min_{|u| \le 1} \left\{ \frac{1}{2} u^2 + \lambda_2 u \right\}
$$

Þ

メロトメ部 トメミトメミト

PRELIMINARY EXAMPLE, CONT'D

Thus we compute the control:

$$
u^* = \begin{cases}\n-1 & \lambda_2 > 1 \\
-\lambda_2 & -1 \le \lambda_2 \le 1 \\
1 & \lambda_2 < -1\n\end{cases} = -\text{sat}\lambda_2
$$

We also have the terminal condition

$$
H_{t_2} = 1 + \frac{1}{2} \text{sat}^2 \lambda_2 (t_2) - \lambda_2 (t_2) \text{sat} \lambda_2 (t_2) = 0 \Rightarrow \lambda_2 (t_2) = \pm 3/2
$$

ă,

CONTROL C[ONSTRAINTS](#page-14-0) E[XAMPLE](#page-23-0) EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE NECESSARY C[ONDITIONS](#page-6-0)

THE VARIATION WITH CONSTRAINTS

- ► We seek to find a control $u^*(t)$ that minimizes the cost $J(u)$, i.e., $J(u^*) \le J(u)$ for all admissible *u*.
- ► Define $\Delta J \stackrel{\Delta}{=} J(u) J(u^*)$, then we require $\Delta J \geq 0$.
- \blacktriangleright Recall from previous calculations for unconstrained control

$$
\delta J = \left(\ell_x - \lambda^T\right)_{t_2} \delta x (t_2) + H_{t_2} \delta t_2 + \int_{t_1}^{t_2} \left[\left(H_x + \lambda^T\right) \delta x + H_u \delta u + \left(f - \dot{x}\right)^T \delta \lambda \right] dt
$$

where u, x, λ, t_2 admitted independent and unconstrained variations.

 \triangleright Now, the variations of x, λ , t_2 remain unconstrained so their coefficients must vanish as before. What needs to be done with δ*u*? First, apply the following replacement

$$
H_u(x^*, \lambda^*, u^*) \, \delta u \to H(x^*, \lambda^*, u^* + \delta u) - H(x^*, \lambda^*, u^*)
$$

so that

$$
\delta J\left(u^{*}\right) = \int_{t_{1}}^{t_{2}} \left[H\left(x^{*}, \lambda^{*}, u^{*} + \delta u\right) - H\left(x^{*}, \lambda^{*}, u^{*}\right)\right] dt \ge 0
$$

THE VARIATION WITH CONSTRAINTS, CONT'D

LEMMA *It is necessary that*

H (x^* , λ^* , u) – *H* (x^* , λ^* , u^*) ≥ 0

for all admissible $\delta u(t) = u(t) - u^*(t)$, $\|\delta u\| < \varepsilon$ *and all* $t \in [t_1, t_2]$ *.*

The argument goes as follows:

- In Let $[t_a, t_b]$ be a nonzero but arbitrarily small subinterval of $[t_1, t_2]$.
- \blacktriangleright Suppose

$$
u(t) = u^*(t) \qquad t \notin [t_a, t_b]
$$

$$
u(t) = u^*(t) + \delta u(t) \qquad t \in [t_a, t_b]
$$

for arbitrary δu , $\|\delta u\| < \varepsilon$.

 $4 \Box + 4$

伊

 $A\ \overline{B}\ \rightarrow\ A\ \overline{B}\ \rightarrow$

THE VARIATION WITH CONSTRAINTS, CONT'D

 \triangleright Suppose the desired result is not satisfied on $[t_a, t_b]$, so that

 $H(x^*, \lambda^*, u) < H(x^*, \lambda^*, u^*)$

Then

$$
\int_{t_1}^{t_2} [H(x^*, \lambda^*, u) - H(x^*, \lambda^*, u^*)] dt =
$$

$$
\int_{t_a}^{t_b} [H(x^*, \lambda^*, u) - H(x^*, \lambda^*, u^*)] dt < 0
$$

 \triangleright Since the interval $[t_a, t_b]$ is arbitrary it follows that if

$$
H(x^*, \lambda^*, u) < H(x^*, \lambda^*, u^*)
$$

for any t, it is possible to construct an admissible variation of u^{*} such that ∆*J* < 0, violating the condition for optimality of *u* ∗ .

イロト イ伊 トイヨ トイヨト

PONTRYAGIN MINIMAL PRINCIPLE

Necessary conditions for an optimal control:

► for all $t \in [t_1, t_2]$,

$$
\dot{x}^* = H_{\lambda}^T(x^*, \lambda^*, u^*)
$$

\n
$$
\dot{\lambda}^T = -H_x(x^*, \lambda^*, u^*)
$$

\n
$$
H(x^*, \lambda^*, u^*) \le H(x^*, \lambda^*, u), \quad \forall u \in U
$$

\n
$$
H(x^*, \lambda^*, u^*) = c
$$

- \triangleright with boundary conditions:
	- initial state $x(t_1) = x^1$
	- **►** transversality condition $(\ell_x \lambda^T)_{t_2} \delta x(t_2) = 0$
	- ► if the terminal time is free, then $\tilde{H}(x^*, \lambda^*, u^*)_{t_2} = 0$

 $4 \Box + 4$

伺

 $A\ \overline{B}\ \rightarrow\ A\ \overline{B}\ \rightarrow$

EXAMPLE

Consider the system

$$
\begin{aligned}\n\dot{x}_1 &= x_2\\ \n\dot{x}_2 &= u, \quad |u| \le 1\n\end{aligned}
$$

with cost function

$$
J = \int_{t_1}^{t_2} (1 + \beta |u|) dt
$$

We want to steer the system from an arbitrary initial state to the origin in such a way as to minimize *J*.

- \triangleright Note that in spacecraft control problems $\int |u| dt$ is referred to as a 'fuel' penalty, whereas $\int u^2 dt$ is a 'power' penalty.
- ► consequently, the cost *J* characterizes a tradeoff between time to target and fuel.

EXAMPLE CONT'D

The Hamiltonian is

$$
H = 1 + \beta |u| + \lambda_1 x_2 + \lambda_2 u
$$

from which we obtain the adjoint dynamics

$$
\begin{aligned}\n\dot{\lambda}_1 &= 0\\ \n\dot{\lambda}_2 &= -\lambda_1 \n\end{aligned} \Rightarrow \n\begin{aligned}\n\lambda_1 &= c_1\\ \n\lambda_2 &= -c_1t + c_2\n\end{aligned}
$$

and

$$
u^* = \arg\min_{|u| \le 1} [\beta |u| + \lambda_2 u]
$$

÷,

メロトメ 倒 トメ きとメ きと

EXAMPLE, CONT'D

The resulting control law is

$$
u^* = \begin{cases} \n-1 & \lambda_2 > \beta \\ \n0 & -\beta < \lambda_2 < \beta \\ \n1 & \lambda_2 < -\beta \n\end{cases}
$$

 \blacktriangleright Since λ_2 is a linear function of *t*, there can be at most 2 switches.

A free terminal time requires

H $(t_2) = 1 + \beta |u(t_2)| + \lambda_2 u(t_2) = 0$

Thus, it is not possible to have $u^*(t_2) = 0$. Furthermore, $u^*(t_2) = 1$ implies

$$
1 + \beta + \lambda_2 = 0 \Rightarrow \lambda_2(t_2) = -(1 + \beta) < \beta
$$

and $u^*(t_2) = -1$ implies

$$
1 + \beta - \lambda_2 = 0 \Rightarrow \lambda_2(t_2) = (1 + \beta) > \beta
$$

 $4 \Box + 4$ 伊 $A\ \overline{B}\ \rightarrow\ A\ \overline{B}\ \rightarrow$

EXAMPLE - FIXED TIME, CONTROL CONSTRAINTS

STATE CONSTRAINTS

- If Here, we consider problems in which the state is restricted to a subset of $S \subset R^n$.
- \blacktriangleright It will be assumed that the the allowable domain can be defined by a set of inequalities

$$
\phi_1(x,t) \geq 0, \ldots, \phi_s(x,t) \geq 0
$$

where each ϕ_i is a smooth function of $x,t.$

Introduce a new state variable x_{n+1} (*t*), defined by

 $\dot{x}_{n+1}(t) = \phi_1^2(x, t) u_0(-\phi_1) + \cdots + \phi_s^2(x, t) u_0(-\phi_s)$, *u*₀ denotes the unit step

with boundary conditions

$$
x_{n+1}(t_1) = 0, x_{n+1}(t_2) = 0
$$

note that these boundary conditions can be satisfied only if the constraints are satisfied along the entire trajectory.

 \blacktriangleright The necessary condition stated above can be applied, with the additional state equation.

SATISFYING THE NECESSARY CONDITIONS

Given an initial state there are two possibilities:

- \triangleright There does not exist any trajectory that satisfies all of the necessary conditions including the state constraints
- \triangleright There exists one or more optimal trajectories, and these can be of two types
	- \triangleright the entire trajectory lies interior to the state constraint set *S*
	- \triangleright trajectory segments of finite length lie on the boundary of *S*

 $4 \Box + 4$

EXAMPLE

Once again consider the problem:

$$
\dot{x}_1 = x_2 \n\dot{x}_2 = -x_2 + u, \quad |u| \le 1
$$

We wish to steer from an arbitrary initial state to the origin and minimize the cost

$$
J = \int_0^{t_2} \left(1 + \frac{1}{2}u^2\right) dt
$$

However, in this case we impose the state constraint

$$
-2 \le x_2 \le 2 \Leftrightarrow (x_2 + 2)(2 - x_2) \ge 0
$$

 $4 \Box + 4$

EXAMPLE, CONT'D

The expanded dynamics are:

$$
\begin{array}{l}\n\dot{x}_1 = x_2 \\
\dot{x}_2 = -x_2 + u \\
\dot{x}_3 = (x_2 + 2)^2 (2 - x_2)^2 u_0 ((x_2 + 2) (x_2 - 2))\n\end{array}
$$

From which we obtain the Hamiltonian:

$$
H = 1 + \frac{1}{2}u^2 + \lambda_1x_2 + \lambda_2(-x_2 + u) + \lambda_3(x_2 + 2)^2(2 - x_2)^2 u_0((x_2 + 2)(x_2 - 2))
$$

Also as before (see preliminary example) the optimal control is

$$
u^* = -\mathrm{sat}\lambda_2
$$

Þ

メロトメ部 トメミトメミト

EXAMPLE, CONT'D

The adjoint equations are derived from *H*

$$
\begin{aligned}\n\dot{\lambda}_1 &= 0\\ \n\dot{\lambda}_2 &= \begin{cases}\n-\lambda_1 + \lambda_2 & -2 < x_2 < 2\\ \n-\lambda_1 + \lambda_2 - 4x_2 (x_2^2 - 4) \lambda_3 & x_2 < -2 \vee x_2 > 2\n\end{cases} \\
\dot{\lambda}_3 &= 0\n\end{aligned}
$$

And, we have the unchanged terminal condition

$$
H_{t_2} = 1 + \frac{1}{2} \text{sat}^2 \lambda_2 (t_2) - \lambda_2 (t_2) \text{sat} \lambda_2 (t_2) = 0 \Rightarrow \lambda_2 (t_2) = \pm 3/2
$$

Þ

メロトメ部 トメミトメミト

CONTROL C[ONSTRAINTS](#page-14-0) E[XAMPLE](#page-23-0) EXAMPLE CONSTRAINTS EXAMPLE CONSTRAINTS EXAMPLE CONSTRAINTS E[XAMPLES](#page-19-0)

EXAMPLE CONT'D

With the state constraint changed to $-0.5 < x_2 < 2$, the trajectories are clearly altered.

MOTION ON THE CONSTRAINT ROUNDARY

Now, we will consider optimal trajectory segments on the constraint boundary. Suppose the allowable region $S \subset \mathcal{R}^n$ is characterized by the scalar-valued function $\phi \left(x \right)$:

S = { $x \in R^n | \phi(x) \le 0$ }

Define

$$
c(x, u) = \frac{\partial \phi(x)}{\partial x} f(x, u)
$$

If $x(t) \in \partial S$ for some finite time interval $t_a \le t \le t_b$ then $c(x, u) \equiv 0$ on $t_a \le t \le t_b$. This simply means that *x*˙ lies in the tangent plane to the surface ∂*S*.

4 口) 4 伺

医阿里氏阿里氏

OPTIMAL MOTION ON THE CONSTRAINT BOUNDARY

LEMMA (MINIMAL PRINCIPLE ON BOUNDARY)

Suppose $u^*(t)$ *and* $x^*(t)$ *are optimal and* $x^*(t) \in \partial S$ *for* $t_a \le t \le t_b$ *. Then there exists adjoint variables* λ (*t*) *and a scalar valued function* α (*t*) *such that on* $t \in [t_a, t_b]$

$$
\dot{\lambda}^* = -\frac{\partial H(x^*, \lambda^*, u^*)}{\partial x} - \alpha \frac{\partial c(x^*, u^*)}{\partial x}
$$

$$
H(x^*, \lambda^*, u^*) = \min_{u \in U} \{ H(x^*, \lambda^*, u) | c(x, u) = 0 \}
$$

$$
u^*, \alpha^* = \arg \min_{u \in U, \alpha \in R} \{ H(x^*, \lambda^*, u) + \alpha c(x^*, u) \}
$$

4 0 8 4

医间距医间距区

REMARKS

- ► If $x^*(t) \in \text{int}S$ for times $t_1 \le t < t_a$, then the ordinary minimum principle holds therein.
- \triangleright The adjoint variables are continuous at t_a , i.e.,

$$
\lambda\left(t_a^-\right) = \lambda\left(t_a^+\right)
$$

 \blacktriangleright However, when leaving the boundary

$$
\lambda(t_b^+) = \lambda(t_b^-) - \alpha(t_b) \frac{\partial \phi(x(t_b))}{\partial x}
$$

メイラメ

 $\mathbf{A} \quad \mathbf{B} \quad \mathbf{B} \quad \mathbf{A}$ 伊 → 重

EXAMPLE

Consider the problem of motion in a plane defined dynamics

 $\dot{x}_1 = u_1$ $\dot{x}_2 = u_2$

with control constraint

$$
U = \left\{ u \in \mathbb{R}^2 \left| u_1^2 + u_2^2 - 1 \le 0 \right. \right\}
$$

We seek to steer an arbitrary state to the origin in minimum time

$$
J=\int_{t_1}^{t_2}dt
$$

while avoiding the obstacle - a unit circle centered at $(2, 0)$. The admissible space is defined by

$$
\phi(x,t) = 1 - (x_1 - 2)^2 - x_2^2 \le 0
$$

◆ロト ◆伊

э.

EXAMPLE, CONT'D

The ordinary minimum principle which holds while the trajectory is inside the admissible space, *S*, i.e., outside of the circle.

$$
H(x, \lambda, u) = 1 + \lambda_1 u_1 + \lambda_2 u_2
$$

so that

$$
u_1^* = -\frac{\lambda_1}{\sqrt{\lambda_1^2 + \lambda_2^2}}, \quad u_2^* = -\frac{\lambda_2}{\sqrt{\lambda_1^2 + \lambda_2^2}}
$$

and the adjoint equations are

$$
\dot{\lambda}_1=0,\quad \dot{\lambda}_2=0
$$

and we require the free time condition

$$
H(t_2) = \lambda_1^2(t_2) + \lambda_2^2(t_2) - 1 = 0 \Rightarrow \lambda_1(t_2), \lambda_2(t_2)
$$
 on unit circle

EXAMPLE CONT'D

Without the obstacle we have

$$
\lambda_1(t) = \cos \theta, \quad \lambda_2(t) = \sin \theta
$$

$$
u_1^* = -\cos \theta, \quad u_2^* = -\sin \theta
$$

All trajectories are straight lines!

Now suppose that $x^*(t) \in \partial S$ for $t_a \le t \le t_b$. Compute

$$
c(x, u) = -2(x_1 - 2)u_1 - 2x_2u_2 = 0
$$

and

$$
\dot{\lambda}_1 = 2\alpha u_1, \quad \dot{\lambda}_2 = 2\alpha u_2
$$

Þ

イロト イ押 トイヨ トイヨト

EXAMPLE, CONT'D

Now, we need to find u^* by minimizing H subject to the constraint $c(x, u) = 0$.

 $\min_{u \in U, \alpha \in R} \{ H(x, \lambda, u) + \alpha c(x, u) \}$

First, consider a transformation

$$
x_1 \to 2 + \cos \theta, \ x_2 \to \sin \theta
$$

so that points on ∂*S* are parameterized by θ as shown in the figure.

There are two solutions

$$
u_1 = -\sin \theta, \ u_2 = \cos \theta,
$$

\n
$$
\alpha = (\lambda_1 \cos \theta + \lambda_2 \sin \theta) / 2
$$

\n
$$
u_1 = \sin \theta, \ u_2 = -\cos \theta,
$$

\n
$$
\alpha = (\lambda_1 \cos \theta + \lambda_2 \sin \theta) / 2
$$

The first minimizes *H* on the upper half circle and the second on the lower half circle.

EXAMPLE: OBSTACLE APPROACH

Let us focus on the top half circle. Consider the two relations

$$
H^* = 1 + \lambda_1 u_1 + \lambda_2 u_2 \equiv 0, \quad \alpha = (\lambda_1 u_2 - \lambda_2 u_1)/2
$$

Use these equations and the first of the adjoint differential equations

$$
\dot{\lambda}_1=2\alpha u_1
$$

to obtain

$$
\dot{\lambda}_1 = -\lambda_1 \tan \theta + \sin \theta \tan \theta
$$

$$
\lambda_2 = \lambda_1 \tan \theta - \sec \theta
$$

Now, solve the differential equation first to obtain

$$
\lambda_1 = c_1 \cos \theta - \theta \cos \theta + \sin \theta
$$

$$
\lambda_2 = c_1 \sin \theta - \theta \sin \theta - \cos \theta
$$

 $4 \Box + 4$

EXAMPLE: OBSTACLE APPROACH, CONT'D

Continuity of the adjoint variables yields

$$
\lambda_1(t_a^-) = \lambda_1(t_a^+) \Rightarrow \cos\phi_0 = c_1\cos\theta_a - \theta_a\cos\theta_a + \sin\theta_a
$$

$$
\lambda_2(t_a^-) = \lambda_2(t_a^+) \Rightarrow -\sin\phi_0 = c_1\sin\theta_a - \theta_a\sin\theta_a - \cos\theta_a
$$

$$
c_1 = \theta_a, \quad \theta_a + \phi_0 = \frac{\pi}{2}
$$

Þ

君主 大唐主

EXAMPLE: OBSTACLE DEPARTURE

Just before departure we have

$$
\lambda_1 \left(t_b^- \right) = \theta_a \cos \theta_d - \theta_d \cos \theta_d + \sin \theta_d \n\lambda_2 \left(t_b^- \right) = \theta_a \sin \theta_d - \theta_d \sin \theta_d - \cos \theta_d
$$

Just after departure, since the usual equations obtain, we have

$$
\lambda_1(t_b^+) = \cos \phi_0, \quad \lambda_2(t_b^+) = \sin \phi_0
$$

 $\leftarrow \Xi \rightarrow$

OPTIMAL C[ONTROL](#page-0-0)

EXAMPLE: OBSTACLE DEPARTURE, CONT'D

Now, we need to satisfy the departure continuity equations

$$
\lambda(t_b^+) = \lambda(t_b^-) - \alpha(t_b) \frac{\partial \varphi(x(t_b))}{\partial x}
$$

Compute:

$$
\frac{\partial \varphi}{\partial x}\Big|_{\theta_d} = \left[\begin{array}{cc} -2(x_1 - 2) & -2x_2 \end{array} \right] = \left[\begin{array}{cc} -2\cos\theta_d & -2\sin\theta_d \end{array} \right]
$$

$$
\alpha\big|_{\theta_d} = \frac{1}{2} \left(\lambda_1(t_d^-) \cos\theta_d + \lambda_2(t_d^-) \sin\theta_d \right) = \frac{\theta_a - \theta_d}{2}
$$

Consequently,

$$
\lambda_1(t_b^+) = \lambda_1(t_b^-) - \alpha(t_b) \frac{\partial \varphi(x(b))}{\partial x_1} \Rightarrow \cos \phi_0 = \sin \theta_d
$$

$$
\lambda_2(t_b^+) = \lambda_2(t_b^-) - \alpha(t_b) \frac{\partial \varphi(x(b))}{\partial x_2} \Rightarrow \sin \phi_0 = -\cos \theta_d
$$

$$
\Rightarrow \phi_0 = \pi/6, \quad \theta_d = 2\pi/3
$$

Þ

メ団 トメ ミトメ ミト

OPTIMAL C[ONTROL](#page-0-0)

EXAMPLE: OPTIMAL TRAJECTORIES

