
CONTROL CONSTRAINTS STATE CONSTRAINTS EXAMPLE

OPTIMAL CONTROL SYSTEMS
CONSTRAINTS

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics
Drexel University

OPTIMAL CONTROL



CONTROL CONSTRAINTS STATE CONSTRAINTS EXAMPLE

OUTLINE

CONTROL CONSTRAINTS
Necessary Conditions
Examples

STATE CONSTRAINTS
Necessary Conditions
Examples
More Conditions

EXAMPLE
Obstacle Avoidance

OPTIMAL CONTROL



CONTROL CONSTRAINTS STATE CONSTRAINTS EXAMPLE

NECESSARY CONDITIONS WITHOUT CONTROL OR STATE

CONSTRAINTS
Since we require δJ = 0 for arbitrary variations we obtain the key necessary
conditions for an optimal trajectory:

ẋ∗ = HT
λ (x

∗, λ∗, u∗) state equations
λ̇∗T = −Hx (x

∗, λ∗, u∗) adjoint equations
Hu = 0
H (x∗, λ∗, u∗) = c

with the boundary conditions:
I initial state x (t1) = x0

I transversality condition
(
`x − λT

)
t2
δx (t2) = 0

I if the terminal time is free, then [L + λf ]t2 = Ht2 = 0
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NECESSARY CONDITIONS

CONTROL CONSTRAINTS

I In this section we address problems with control constraints,

u ∈ U ⊂ Rm

I The important modification to the necessary conditions developed previously
is that the condition Hu = 0 is replaced by

u∗ = arg min
u∈U

H (x, u, λ, t)

I This result is called the Pontryagin Minimal Principle.
I First, we consider an example
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NECESSARY CONDITIONS

PRELIMINARY EXAMPLE
Let us reconsider the earlier problem, but with control constraint:

ẋ1 = x2

ẋ2 = −x2 + u, |u| ≤ 1

We wish to steer from an arbitrary initial state to the origin and minimize the cost

J =

∫ t2

0

(
1 + 1

2 u2
)

dt

As before
H = 1 +

1
2

u2 + λ1x2 + λ2 (−x2 + u)

Thus,
λ̇1 = 0, λ̇2 = −λ1 + λ2

But the control is

u∗ = arg min
|u|≤1

{
1
2

u2 + λ2u
}
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NECESSARY CONDITIONS

PRELIMINARY EXAMPLE, CONT’D
Thus we compute the control:

u∗ =


−1 λ2 > 1
−λ2 −1 ≤ λ2 ≤ 1

1 λ2 < −1
= −satλ2

We also have the terminal condition

Ht2 = 1 +
1
2

sat2λ2 (t2)− λ2 (t2) satλ2 (t2) = 0⇒ λ2 (t2) = ±3/2
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NECESSARY CONDITIONS

THE VARIATION WITH CONSTRAINTS
I We seek to find a control u∗ (t) that minimizes the cost J (u), i.e., J (u∗) ≤ J (u) for all

admissible u.
I Define ∆J ∆

= J (u)− J (u∗), then we require ∆J ≥ 0.
I Recall from previous calculations for unconstrained control

δJ =
(
`x − λT)

t2
δx (t2) + Ht2δt2

+
∫ t2

t1

[(
Hx + λ̇T

)
δx + Huδu + (f − ẋ)T δλ

]
dt

where u, x, λ, t2 admitted independent and unconstrained variations.
I Now, the variations of x, λ, t2 remain unconstrained so their coefficients must vanish as before.

What needs to be done with δu? First, apply the following replacement

Hu (x∗, λ∗, u∗) δu→ H (x∗, λ∗, u∗ + δu)− H (x∗, λ∗, u∗)

so that

δJ (u∗) =

∫ t2

t1

[H (x∗, λ∗, u∗ + δu)− H (x∗, λ∗, u∗)]dt ≥ 0
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NECESSARY CONDITIONS

THE VARIATION WITH CONSTRAINTS, CONT’D

LEMMA
It is necessary that

H (x∗, λ∗, u)− H (x∗, λ∗, u∗) ≥ 0

for all admissible δu (t) = u (t)− u∗ (t), ‖δu‖ < ε and all t ∈ [t1, t2].

The argument goes as follows:
I Let [ta, tb] be a nonzero but arbitrarily small subinterval of [t1, t2].
I Suppose

u (t) = u∗ (t) t /∈ [ta, tb]
u (t) = u∗ (t) + δu (t) t ∈ [ta, tb]

for arbitrary δu, ‖δu‖ < ε.
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NECESSARY CONDITIONS

THE VARIATION WITH CONSTRAINTS, CONT’D

I Suppose the desired result is not satisfied on [ta, tb], so that

H (x∗, λ∗, u) < H (x∗, λ∗, u∗)

Then ∫ t2
t1

[H (x∗, λ∗, u)− H (x∗, λ∗, u∗)] dt =∫ tb
ta

[H (x∗, λ∗, u)− H (x∗, λ∗, u∗)] dt < 0

I Since the interval [ta, tb] is arbitrary it follows that if

H (x∗, λ∗, u) < H (x∗, λ∗, u∗)

for any t, it is possible to construct an admissible variation of u∗ such that ∆J < 0 , violating the
condition for optimality of u∗.
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NECESSARY CONDITIONS

PONTRYAGIN MINIMAL PRINCIPLE

Necessary conditions for an optimal control:
I for all t ∈ [t1, t2],

ẋ∗ = HT
λ (x

∗, λ∗, u∗)
λ̇T = −Hx (x

∗, λ∗, u∗)
H (x∗, λ∗, u∗) ≤ H (x∗, λ∗, u) , ∀u ∈ U
H (x∗, λ∗, u∗) = c

I with boundary conditions:
I initial state x (t1) = x1

I transversality condition
(
`x − λT

)
t2
δx (t2) = 0

I if the terminal time is free, then H (x∗, λ∗, u∗)t2 = 0
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NECESSARY CONDITIONS

EXAMPLE
Consider the system

ẋ1 = x2
ẋ2 = u, |u| ≤ 1

with cost function

J =

∫ t2

t1
(1 + β |u|) dt

We want to steer the system from an arbitrary initial state to the origin in such a
way as to minimize J.

I Note that in spacecraft control problems
∫
|u| dt is referred to as a ‘fuel’

penalty, whereas
∫

u2dt is a ‘power’ penalty.
I consequently, the cost J characterizes a tradeoff between time to target and

fuel.
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NECESSARY CONDITIONS

EXAMPLE CONT’D

The Hamiltonian is
H = 1 + β |u|+ λ1x2 + λ2u

from which we obtain the adjoint dynamics

λ̇1 = 0
λ̇2 = −λ1

⇒ λ1 = c1
λ2 = −c1t + c2

and
u∗ = arg min

|u|≤1
[β |u|+ λ2u]
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NECESSARY CONDITIONS

EXAMPLE, CONT’D
The resulting control law is

u∗ =

 −1 λ2 > β
0 −β < λ2 < β
1 λ2 < −β

I Since λ2 is a linear function of t, there
can be at most 2 switches.

A free terminal time requires

2u uβ λ+

-1 +1

u

uβ

2uλ

H (t2) = 1 + β |u (t2)|+ λ2u (t2) = 0

Thus, it is not possible to have u∗ (t2) = 0. Furthermore, u∗ (t2) = 1 implies

1 + β + λ2 = 0⇒ λ2 (t2) = − (1 + β) < β

and u∗ (t2) = −1 implies
1 + β − λ2 = 0⇒ λ2 (t2) = (1 + β) > β

Both of which are consistent with the control law.
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EXAMPLES

EXAMPLE - FIXED TIME, CONTROL CONSTRAINTS
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NECESSARY CONDITIONS

STATE CONSTRAINTS

I Here, we consider problems in which the state is restricted to a subset of S ⊂ Rn.
I It will be assumed that the the allowable domain can be defined by a set of inequalities

φ1 (x, t) ≥ 0, . . . , φs (x, t) ≥ 0

where each φi is a smooth function of x, t.
I Introduce a new state variable xn+1 (t), defined by

ẋn+1 (t) = φ2
1 (x, t) u0 (−φ1) + · · ·+ φ2

s (x, t) u0 (−φs) , u0 denotes the unit step

with boundary conditions
xn+1 (t1) = 0, xn+1 (t2) = 0

note that these boundary conditions can be satisfied only if the constraints are satisfied along the entire
trajectory.

I The necessary condition stated above can be applied, with the additional state equation.
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NECESSARY CONDITIONS

SATISFYING THE NECESSARY CONDITIONS

Given an initial state there are two possibilities:
I There does not exist any trajectory that satisfies all of the necessary conditions

including the state constraints
I There exists one or more optimal trajectories, and these can be of two types

I the entire trajectory lies interior to the state constraint set S
I trajectory segments of finite length lie on the boundary of S
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EXAMPLES

EXAMPLE

Once again consider the problem:

ẋ1 = x2
ẋ2 = −x2 + u, |u| ≤ 1

We wish to steer from an arbitrary initial state to the origin and minimize the cost

J =

∫ t2

0

(
1 + 1

2 u2) dt

However, in this case we impose the state constraint

−2 ≤ x2 ≤ 2⇔ (x2 + 2) (2− x2) ≥ 0
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EXAMPLES

EXAMPLE, CONT’D

The expanded dynamics are:

ẋ1 = x2

ẋ2 = −x2 + u
ẋ3 = (x2 + 2)2 (2− x2)

2 u0 ((x2 + 2) (x2 − 2))

From which we obtain the Hamiltonian:

H = 1 + 1
2 u2 + λ1x2 + λ2 (−x2 + u) + λ3 (x2 + 2)2 (2− x2)

2 u0 ((x2 + 2) (x2 − 2))

Also as before (see preliminary example) the optimal control is

u∗ = −satλ2
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EXAMPLES

EXAMPLE, CONT’D

The adjoint equations are derived from H

λ̇1 = 0

λ̇2 =

{
−λ1 + λ2 −2 < x2 < 2

−λ1 + λ2 − 4x2
(
x2

2 − 4
)
λ3 x2 < −2 ∨ x2 > 2

λ̇3 = 0

And, we have the unchanged terminal condition

Ht2 = 1 +
1
2

sat2λ2 (t2)− λ2 (t2) satλ2 (t2) = 0⇒ λ2 (t2) = ±3/2
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EXAMPLES

EXAMPLE CONT’D

Trajectories computed via
backing out of target. Clearly,
the state constraint,
−2 < x2 < 2 has no effect.
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With the state constraint
changed to −0.5 < x2 < 2, the
trajectories are clearly altered.
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MORE CONDITIONS

MOTION ON THE CONSTRAINT BOUNDARY

Now, we will consider optimal trajectory segments on the constraint boundary. Suppose

the allowable region S ⊂ Rn is characterized by the scalar-valued function φ (x):

S = {x ∈ Rn |φ (x) ≤ 0}

Define
c (x, u) =

∂φ (x)
∂x

f (x, u)

If x (t) ∈ ∂S for some finite time interval ta ≤ t ≤ tb then c (x, u) ≡ 0 on ta ≤ t ≤ tb.
This simply means that ẋ lies in the tangent plane to the surface ∂S.

OPTIMAL CONTROL



CONTROL CONSTRAINTS STATE CONSTRAINTS EXAMPLE

MORE CONDITIONS

OPTIMAL MOTION ON THE CONSTRAINT BOUNDARY

LEMMA (MINIMAL PRINCIPLE ON BOUNDARY)
Suppose u∗(t) and x∗(t) are optimal and x∗ (t) ∈ ∂S for ta ≤ t ≤ tb. Then there exists
adjoint variables λ (t) and a scalar valued function α (t) such that on t ∈ [ta, tb]

λ̇∗ = −∂H (x∗, λ∗, u∗)
∂x

− α∂c (x∗, u∗)
∂x

H (x∗, λ∗, u∗) = min
u∈U
{H (x∗, λ∗, u) |c (x, u) = 0}

u∗, α∗ = arg min
u∈U,α∈R

{H (x∗, λ∗, u) + αc (x∗, u)}
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MORE CONDITIONS

REMARKS

I If x∗ (t) ∈ intS for times t1 ≤ t < ta, then the ordinary minimum principle holds
therein.

I The adjoint variables are continuous at ta, i.e.,

λ
(
t−a
)
= λ

(
t+a
)

I However, when leaving the boundary

λ
(
t+b
)
= λ

(
t−b
)
− α (tb)

∂φ (x (tb))
∂x
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OBSTACLE AVOIDANCE

EXAMPLE
Consider the problem of motion in a plane defined dynamics

ẋ1 = u1
ẋ2 = u2

with control constraint

U =
{

u ∈ R2 ∣∣u2
1 + u2

2 − 1 ≤ 0
}

We seek to steer an arbitrary state to the origin in minimum time

J =

∫ t2

t1
dt

while avoiding the obstacle - a unit circle centered at (2, 0). The admissible space
is defined by

φ (x, t) = 1− (x1 − 2)2 − x2
2 ≤ 0
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OBSTACLE AVOIDANCE

EXAMPLE, CONT’D
The ordinary minimum principle which holds while the trajectory is inside the
admissible space, S, i.e., outside of the circle.

H (x, λ, u) = 1 + λ1u1 + λ2u2

so that
u∗1 = − λ1√

λ2
1 + λ2

2

, u∗2 = − λ2√
λ2

1 + λ2
2

and the adjoint equations are

λ̇1 = 0, λ̇2 = 0

and we require the free time condition

H (t2) = λ2
1 (t2) + λ2

2 (t2)− 1 = 0⇒ λ1 (t2) , λ2 (t2) on unit circle
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OBSTACLE AVOIDANCE

EXAMPLE CONT’D

Without the obstacle we have

λ1 (t) = cos θ, λ2 (t) = sin θ
u∗1 = − cos θ, u∗2 = − sin θ

All trajectories are straight lines!

Now suppose that x∗ (t) ∈ ∂S for ta ≤ t ≤ tb. Compute

c (x, u) = −2 (x1 − 2) u1 − 2x2u2 = 0

and
λ̇1 = 2αu1, λ̇2 = 2αu2
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OBSTACLE AVOIDANCE

EXAMPLE, CONT’D
Now, we need to find u∗ by minimizing H subject to the constraint c (x, u) = 0.

min
u∈U,α∈R

{H (x, λ, u) + αc (x, u)}

First, consider a transformation
x1 → 2 + cos θ, x2 → sin θ

so that points on ∂S are parameterized by θ as shown in the figure.

There are two solutions

u1 = − sin θ, u2 = cos θ,
α = (λ1 cos θ + λ2 sin θ) /2

u1 = sin θ, u2 = − cos θ,
α = (λ1 cos θ + λ2 sin θ) /2

The first minimizes H on the
upper half circle and the second
on the lower half circle.

2x

1x2

θ

u

OPTIMAL CONTROL



CONTROL CONSTRAINTS STATE CONSTRAINTS EXAMPLE

OBSTACLE AVOIDANCE

EXAMPLE: OBSTACLE APPROACH
Let us focus on the top half circle. Consider the two relations

H∗ = 1 + λ1u1 + λ2u2 ≡ 0, α = (λ1u2 − λ2u1) /2

Use these equations and the first of the adjoint differential equations

λ̇1 = 2αu1

to obtain
λ̇1 = −λ1 tan θ + sin θ tan θ
λ2 = λ1 tan θ − sec θ

Now, solve the differential equation first to obtain

λ1 = c1 cos θ − θ cos θ + sin θ
λ2 = c1 sin θ − θ sin θ − cos θ
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OBSTACLE AVOIDANCE

EXAMPLE: OBSTACLE APPROACH, CONT’D
2x

1x2

aθ
0φ ( )1x t

( )ax t

Continuity of the adjoint variables yields

λ1 (t−a ) = λ1 (t+a )⇒ cosφ0 = c1 cos θa − θa cos θa + sin θa

λ2 (t−a ) = λ2 (t+a )⇒ − sinφ0 = c1 sin θa − θa sin θa − cos θa

c1 = θa, θa + φ0 =
π

2
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OBSTACLE AVOIDANCE

EXAMPLE: OBSTACLE DEPARTURE
2x

1x2

dθ

( )2x t

( )bx t

0φ

Just before departure we have

λ1
(
t−b
)
= θa cos θd − θd cos θd + sin θd

λ2
(
t−b
)
= θa sin θd − θd sin θd − cos θd

Just after departure, since the usual equations obtain, we have

λ1
(
t+b
)
= cosφ0, λ2

(
t+b
)
= sinφ0
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OBSTACLE AVOIDANCE

EXAMPLE: OBSTACLE DEPARTURE, CONT’D
Now, we need to satisfy the departure continuity equations

λ
(
t+b
)
= λ

(
t−b
)
− α (tb)

∂ϕ (x (tb))
∂x

Compute:
∂ϕ

∂x

∣∣∣∣
θd

=
[
−2 (x1 − 2) −2x2

]
=
[
−2 cos θd −2 sin θd

]
α|θd

=
1
2
(
λ1
(
t−d
)

cos θd + λ2
(
t−d
)

sin θd
)
=
θa − θd

2
Consequently,

λ1
(
t+b
)
= λ1

(
t−b
)
− α (tb)

∂ϕ(x(tb))
∂x1

⇒ cosφ0 = sin θd

λ2
(
t+b
)
= λ2

(
t−b
)
− α (tb)

∂ϕ(x(tb))
∂x2

⇒ sinφ0 = − cos θd

⇒ φ0 = π/6, θd = 2π/3
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OBSTACLE AVOIDANCE

EXAMPLE: OPTIMAL TRAJECTORIES

2x

1x2( )2x t

( )bx t
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