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PONTRYAGIN MINIMAL PRINCIPLE

Necessary conditions for an optimal control:
I for all t ∈ [t1, t2],

ẋ∗ = HT
λ (x

∗, λ∗, u∗)
λ̇T = −Hx (x

∗, λ∗, u∗)
H (x∗, λ∗, u∗) ≤ H (x∗, λ∗, u) , ∀u ∈ U
H (x∗, λ∗, u∗) = c

I with boundary conditions:
I initial state x (t1) = x1

I transversality condition
(
`x − λT

)
t2
δx (t2) = 0

I if the terminal time is free, then H (x∗, λ∗, u∗)t2 = 0
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PRELIMINARY EXAMPLE
Let us reconsider the earlier problem, but with control constraint:

ẋ1 = x2

ẋ2 = −x2 + u, |u| ≤ 1

We wish to steer from an arbitrary initial state to the origin and minimize the cost

J =

∫ t2

0

(
1 + 1

2 u2
)

dt

As before
H = 1 +

1
2

u2 + λ1x2 + λ2 (−x2 + u)

Thus,
λ̇1 = 0, λ̇2 = −λ1 + λ2

But the control is

u∗ = arg min
|u|≤1

{
1
2

u2 + λ2u
}
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PRELIMINARY EXAMPLE, CONT’D
Thus we compute the control:

u∗ =


−1 λ2 > 1
−λ2 −1 ≤ λ2 ≤ 1

1 λ2 < −1
= −satλ2

We also have the terminal condition

Ht2 = 1 +
1
2

sat2λ2 (t2)− λ2 (t2) satλ2 (t2) = 0⇒ λ2 (t2) = ±3/2
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PRELIMINARY EXAMPLE, CONT’D

Ht2 = 1 + 1
2 sat2λ2 (t2)− λ2 (t2) satλ2 (t2) = 0⇒ λ2 (t2) = ±3/2(

`x − λT)
t2
δx (t2) = 0⇒ λT (t2)

∂φ(x)
∂x

∣∣∣
x=x∗

, φ (x) = x2
1 + x2

2 − ε2 = 0
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STATE CONSTRAINTS

I Here, we consider problems in which the state is restricted to a subset of S ⊂ Rn.
I It will be assumed that the the allowable domain can be defined by a set of inequalities

φ1 (x, t) ≥ 0, . . . , φs (x, t) ≥ 0

where each φi is a smooth function of x, t.
I Introduce a new state variable xn+1 (t), defined by

ẋn+1 (t) = φ2
1 (x, t) u0 (−φ1) + · · ·+ φ2

s (x, t) u0 (−φs) , u0 denotes the unit step

with boundary conditions
xn+1 (t1) = 0, xn+1 (t2) = 0

note that these boundary conditions can be satisfied only if the constraints are satisfied along the entire
trajectory.

I The necessary condition stated above can be applied, with the additional state equation.

OPTIMAL CONTROL



RECAP STATE CONSTRAINTS OBSTACLE AVOIDANCE MOON LANDER

SATISFYING THE NECESSARY CONDITIONS

Given an initial state there are two possibilities:
I There does not exist any trajectory that satisfies all of the necessary conditions

including the state constraints
I There exists one or more optimal trajectories, and these can be of two types

I the entire trajectory lies interior to the state constraint set S
I trajectory segments of finite length lie on the boundary of S
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MOTION ON THE CONSTRAINT BOUNDARY

Now, we will consider optimal trajectory segments on the constraint boundary. Suppose

the allowable region S ⊂ Rn is characterized by the scalar-valued function φ (x):

S = {x ∈ Rn |φ (x) ≤ 0}

Define
c (x, u) =

∂φ (x)
∂x

f (x, u)

If x (t) ∈ ∂S for some finite time interval ta ≤ t ≤ tb then c (x, u) ≡ 0 on ta ≤ t ≤ tb.
This simply means that ẋ lies in the tangent plane to the surface ∂S.
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OPTIMAL MOTION ON THE CONSTRAINT BOUNDARY

LEMMA (MINIMAL PRINCIPLE ON BOUNDARY)
Suppose u∗(t) and x∗(t) are optimal and x∗ (t) ∈ ∂S for ta ≤ t ≤ tb. Then there exists
adjoint variables λ (t) and a scalar valued function α (t) such that on t ∈ [ta, tb]

λ̇∗ = −∂H (x∗, λ∗, u∗)
∂x

− α∂c (x∗, u∗)
∂x

H (x∗, λ∗, u∗) = min
u∈U
{H (x∗, λ∗, u) |c (x, u) = 0}

u∗, α∗ = arg min
u∈U,α∈R

{H (x∗, λ∗, u) + αc (x∗, u)}
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REMARKS

I If x∗ (t) ∈ intS for times t1 ≤ t < ta, then the ordinary minimum principle holds
therein.

I The adjoint variables are continuous at ta, i.e.,

λ
(
t−a
)
= λ

(
t+a
)

I However, when leaving the boundary

λ
(
t+b
)
= λ

(
t−b
)
− α (tb)

∂φ (x (tb))
∂x
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EXAMPLE
Consider the problem of motion in a plane defined dynamics

ẋ1 = u1
ẋ2 = u2

with control constraint

U =
{

u ∈ R2 ∣∣u2
1 + u2

2 − 1 ≤ 0
}

We seek to steer an arbitrary state to the origin in minimum time

J =

∫ t2

t1
dt

while avoiding the obstacle - a unit circle centered at (2, 0). The admissible space
is defined by

φ (x, t) = 1− (x1 − 2)2 − x2
2 ≤ 0
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EXAMPLE, CONT’D
The ordinary minimum principle which holds while the trajectory is in the interior of
S:

H (x, λ, u) = 1 + λ1u1 + λ2u2

so that
u∗1 = − λ1√

λ2
1 + λ2

2

, u∗2 = − λ2√
λ2

1 + λ2
2

and the adjoint equations are

λ̇1 = 0, λ̇2 = 0

and we require the free time condition

H (t2) = λ2
1 (t2) + λ2

2 (t2)− 1 = 0⇒ λ1 (t2) , λ2 (t2) are on a unit circle in λ− space
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EXAMPLE CONT’D

Without the obstacle we have

λ1 (t) = cos θ, λ2 (t) = sin θ
u∗1 = − cos θ, u∗2 = − sin θ

All trajectories are straight lines!

Now suppose that x∗ (t) ∈ ∂S for ta ≤ t ≤ tb. Compute

c (x, u) = −2 (x1 − 2) u1 − 2x2u2 = 0

and
λ̇1 = 2αu1, λ̇2 = 2αu2
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EXAMPLE, CONT’D
Now, we need to find u∗ by minimizing H subject to the constraint c (x, u) = 0.

min
u∈U,α∈R

{H (x, λ, u) + αc (x, u)}

First, consider a transformation
x1 → 2 + cos θ, x2 → sin θ

so that points on ∂S are parameterized by θ as shown in the figure.

There are two solutions

u1 = − sin θ, u2 = cos θ,
α = (λ1 cos θ + λ2 sin θ) /2

u1 = sin θ, u2 = − cos θ,
α = (λ1 cos θ + λ2 sin θ) /2

The first minimizes H on the
upper half circle and the second
on the lower half circle.

2x

1x2

θ

u
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EXAMPLE: OBSTACLE APPROACH
Let us focus on the top half circle. Consider the two relations

H∗ = 1 + λ1u1 + λ2u2 ≡ 0, α = (λ1u2 − λ2u1) /2

Use these equations and the first of the adjoint differential equations

λ̇1 = 2αu1

to obtain
λ̇1 = −λ1 tan θ + sin θ tan θ
λ2 = λ1 tan θ − sec θ

Now, solve the differential equation first to obtain

λ1 = c1 cos θ − θ cos θ + sin θ
λ2 = c1 sin θ − θ sin θ − cos θ
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EXAMPLE: OBSTACLE APPROACH, CONT’D
2x

1x2

aθ
0φ ( )1x t

( )ax t

Continuity of the adjoint variables yields

λ1 (t−a ) = λ1 (t+a )⇒ cosφ0 = c1 cos θa − θa cos θa + sin θa

λ2 (t−a ) = λ2 (t+a )⇒ − sinφ0 = c1 sin θa − θa sin θa − cos θa

c1 = θa, θa + φ0 =
π

2
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EXAMPLE: OBSTACLE DEPARTURE
2x

1x2

dθ

( )2x t

( )bx t

0φ

Just before departure we have

λ1
(
t−b
)
= θa cos θd − θd cos θd + sin θd

λ2
(
t−b
)
= θa sin θd − θd sin θd − cos θd

Just after departure, since the usual equations obtain, we have

λ1
(
t+b
)
= cosφ0, λ2

(
t+b
)
= sinφ0
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EXAMPLE: OBSTACLE DEPARTURE, CONT’D
Now, we need to satisfy the departure continuity equations

λ
(
t+b
)
= λ

(
t−b
)
− α (tb)

∂ϕ (x (tb))
∂x

Compute:
∂ϕ

∂x

∣∣∣∣
θd

=
[
−2 (x1 − 2) −2x2

]
=
[
−2 cos θd −2 sin θd

]
α|θd

=
1
2
(
λ1
(
t−d
)

cos θd + λ2
(
t−d
)

sin θd
)
=
θa − θd

2
Consequently,

λ1
(
t+b
)
= λ1

(
t−b
)
− α (tb)

∂ϕ(x(tb))
∂x1

⇒ cosφ0 = sin θd

λ2
(
t+b
)
= λ2

(
t−b
)
− α (tb)

∂ϕ(x(tb))
∂x2

⇒ sinφ0 = − cos θd

⇒ φ0 = π/6, θd = 2π/3
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EXAMPLE: OPTIMAL TRAJECTORIES

2x

1x2( )2x t

( )bx t
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EXAMPLE – MOON LANDER

Consider the decent of a moon lander.

ḣ = v
v̇ = −g + k u

m
ṁ = −u

The thrust u is used to steer the system to h = 0, v = 0. In addition we wish to minimize the
fuel used during landing, i.e.

J =

∫ t

0
|u| dt

or, minimize time,

J =

∫ t

0
dt

Control constraint: 0 ≤ u ≤ c, state constraints: h ≥ 0, m > 0
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MOON LANDER, NECESSARY CONDITIONS, MIN TIME

H (x, u, λ) = 1 + λ1x2 + λ2

(
−g +

k
x3

u
)
+ λ3u

From which,
u∗ = arg min

u

[(
λ2 + λ3

x3
k

)
u
]
= cu0

(
−
(
λ2

k
x3
+ λ3

))
H∗ = λ1x2 − λ2g +

(
λ2 + λ3

x3
k

)
cu0
(
−
(
λ2 + λ3

x3
k

))
and

λ̇1 = 0
λ̇2 = λ1

λ̇3 = −λ2
k
x2

3
cu0
(
−
(
λ2 + λ3

x3
k

))
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MOON LANDER, NECESSARY CONDITIONS, MIN FUEL

H (x, u, λ) = |u|+ λ1x2 + λ2

(
−g +

k
m

x3

)
+ λ3u

From which,

u∗ = arg min
u

[
|u|+

(
λ2

k
x3
+ λ3

)
u
]
= cu0

(
−
(

1 + λ2
k
x3
+ λ3

))
H∗ = λ1x2 − λ2g +

(
1 + λ2

k
x3
+ λ3

)
cu0

(
−
(

1 + λ2
k
x3
+ λ3

))
λ̇1 = 0
λ̇2 = λ1

λ̇3 = −λ2
k
x2

3
cu0

(
−
(

1 + λ2
k
x3
+ λ3

))
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