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PROBLEM DEFINITION

PROBLEM SETUP
Consider the system
Xk4-1 :f(xk,uk) , XE R”,u ceUCR"

on the discrete time interval k = 0,1,...,N — 1. A feedback
policy is a sequence of functions

m={po (x0), 1 (x1),..., pun—1(xn—1)}

such that uy = u (xx). The problem is to find a policy that
minimizes the cost

Jr (x0) = gn (xn) + Zi:ol 8k (X, pik (X))

[m] = =
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PROBLEM DEFINITION

PRINCIPLE OF OPTIMALITY
The optimal cost is

J+ (x0) = minJ,
(x0) min (x0)

and the optimal policy 7* is one that satisfies
I (x0) < Jr(x9) Vmell
THEOREM (PRINCIPLE OF OPTIMALITY)
Suppose m* = {y},...,ux_, } is an optimal policy. Then the

subpolicy 7} = {pf, ..., uy_}, 1 <i<,N -1, is optimal with
respect to the cost function

T (xi) = gv (ov) + ZZ; 8k (ks e (xe))

o F
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PROBLEM DEFINITION

PRINCIPLE OF OPTIMALITY - PROOF

The argument is based on contradiction as follows.
» Suppose 7 = {uf,...,uy_;+ is an optimal policy with cost J= (xo)
> Clearly, we can write the cost

Tee () = 300 i () + T (3)

> Suppose there exists an alternate subpolicy m; = {u;, ..., uy_} such
that Jx, (x) < Jzr (x7).

» Then
Ter (0) = 30 gl () (35) > D0 g Ot i (), ()

so 7/ is not optimal’

[m] = =
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RECURSIVE SOLUTION

THE DYNAMIC PROGRAMMING RECURSION

DEFINITION (COST TO GO)

Denote the optimal cost of a trajectory beginning in state x at time i as V (x, i).
V (x,i) is the cost to go’

The principle of optimality implies the recursion

V(i-i—1)= min Jr_, (xio) = min {gN (ow) + Yoo 8 (e, e (xk))}

] w1 €1y
= min {gi—1 (i1, i1 (xi1)) +V (6, )}
i—1
This equation is the basis for a recursive computation of the optimal policy.

» Step 1. Solve the single stage optimization problem with i = N

V(xy—1,N — 1) = min {gv—1 (xv—1, tv—1 (xn—1)) + V (xn,N) }

HN—1

» Step 2. Apply the recursion successively fori=N—1,i=N—2,...

[m] = =
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RECURSIVE SOLUTION

TwoO TERMINAL CASES

1. Case 1. xy is fixed and g (xy) = 0. In this case V (xy,N) = 0. We also
have the constraint
v =f (xv—1, un—1)

We must assume that with xy specified there are solution pairs
(xn—1, uv—1). Otherwise, the problem is not well posed because xy is
not reachable. Then

V(xn—1,N—1) = :Lnin {gnv—1 (xv—1, unv—1)}

N—1
where the minimization is carried out with respect to the constraint.
2. Case 2. xy is free and V (xy,N) = gn (xn). Now
V(xn-1,N—1) = lnin {gv—1 (xn—1, tv—1) + V (xn,N)}
N—1
= min {gn—1 (xv—1, uv—1) + V (f (xn—1, v—1) , N) }

HN—1

[m] = =
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RECURSIVE SOLUTION

CONTINUING THE RECURSION

Once the pair uy—1, V (xy—1, N — 1) is obtained, compute the pair
un—2,V (xy—2, N — 2) from

V(xn—2,N —2) = I’ILniIl {gv—2 (xn—2, pv—2 (xnv—2)) + V (xy—1, N — 1)}
N—2
= min {gn—2 (xv—2, pv—2 (tv—2)) + V (f (w2, piv—2) ,N — 1)}

HUN—2
Continuing in this way:

V (xn—i, N — i) = min {gn—; (xn—i, pv—i (iv—i)) + V (f (ev—iy v—i) , N — i+ 1)}

HN—i

[m] = =
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EXAMPLE

EXAMPLE
Consider a system
Xit1 = Xi +u, ME{*I,O,I}
on the time interval 0 < k < 10. We wish to steer the system from arbitrary
initial state to the origin in such a way as to minimize the cost

10
2

J= E X
=0k

Backward
Reachable Sets

[m] = =
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EXAMPLE

EXAMPLE, CONT’D

Values for ‘cost to go’

{181,145,113,85,61,41,25,13,5,1,0,1,5,13,25,41,61,85, 113, 145, 181}
{145,113,85,61,41,25,13,5,1,0,1,5,13,25,41,61, 85, 113, 145}
{113,85,61,41,25,13,5,1,0,1,5,13,25,41,61,85, 113}
{85,61,41,25,13,5,1,0,1,5,13,25,41,61,85}
{61,41,25,13,5,1,0, 1,5, 13,25,41,61}
{41,25,13,5,1,0,1,5,13,25,41}

{25,13,5,1,0,1,5, 13,25}

{13,5,1,0,1,5,13}

{5,1,0,1,5}

{1,0,1}

[m] = =
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PROBLEM DEFINITION

PROBLEM SETUP
Consider the system

x=f(xu), xeR' uecUCR"
x(0) =xo

over the time interval ¢ € [0, T], where T > 0 is not necessarily
fixed. The cost to be minimized is

Now, suppose that ¢ is an arbitrary time in the interval 0 < < T,
and consider the more general optimization problem starting at
time ¢ in arbitrary state x and cost function

T
J(u(-);x,t)—ﬁ(x(T))—i—/t L(x(t),u(r),1) dt

[m] = =
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PROBLEM DEFINITION

PROBLEM DEFINITION

DEFINITION (FEEDBACK POLICY)
A feedback policy = is a family of functions u, (x), 0 < ¢ < T such that
u(t) = (x(¢)). An optimal policy is one that minimizes the cost

Jr (x0) = £ (x(T)) +/O L(x(t),pe (x(2)),1)dt
The optimal policy satisfies

Jre (x0) < Jr (x0), Vrell

[m] = =
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PROBLEM DEFINITION

PRINCIPLE OF OPTIMALITY

THEOREM (PRINCIPLE OF OPTIMALITY)

Suppose ™ = {u (x) |0 <t < T} is an optimal policy. Then the
subpolicy 7 = {u; (x) |0 <s <t < T} is optimal with respect to
the cost

T () = 0 (x (T)) + / LGe(6) o ae (x () 1)

DEFINITION (COST TO GO)
For x € R",0 < r < T define the cost to go to be the minimum cost if we start
in state x at time «:

V(x,1) 2 nélg‘l (u; x, 1)

[m] = =
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THE HIB EQUATION

THE HAMILTON-JACOBI-BELLMAN EQUATION

V (x,t) = min {E(x (1) + /tTL(x (1), pr (x (7)), 7) dr}

Divide the interval [z, T] to obtain

o f,’*A‘ux(r) (())
”"’”‘“3%“{ +0(x ( +f,+m x

The principle of optimality implies

77-)
(1) pr (x (7)), 7) dT }

t+ At
V()= min / L(x(r),u(r),7) dr+V (x (1 + A1) 1 + At)}
tSTug’t:)kAt !

V(x,t)= HEH{L (o, u, ) At + V (x, 1) + Vi (x, ) f (x,u) At + V; (x,1) At + o (A1)}

0=V, (x,t) At + min {L (x,u, 1) + Vi (x,1) f (x,u)} At + o (Ar)
[m] =5 =
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THE HIB EQUATION

THE HJB EQUATION, CONT’D
Define
H* (x,\, 1) = muin {L (x,u,t) + M (x,u)}

Then we obtain the Hamilton-Jacobi-Bellman equation

) ) B
aV(x,t)jLH <x,axV(x,t),t> =0

with boundary condition
V(x,T)=1/(x)
The optimal control is given by

u* (x,1) = arg muin {L(x,u,t) + Vi (x,0)f (x,u)}

[m] = =
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EXAMPLE

EXAMPLE 1
Consider the dynamics

561:XQ
Xo=1u

on the time interval 0 < ¢ < 50, and cost
50 1
J = x3 (50) +/0 > (x7 () +u? (1)) dt
Now compute

H(x,\u,t) = (x% (1) + u? (1)) + Aix2 + Aou

N —

which implies

W) ==X, H(x,\) == (6] +2\x0 — A))

N —

[m] = =
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EXAMPLE

EXAMPLE 1, CONT’D

The HJB equation is
| 2 o
V(o0 + 5 (x, 2V (1) %0 — V2 (x, t)) =0

Assume a solution of the form

Vi) =[x x| { su(r) sz (1) } [m ]

S12 (l) 522 (t) X2
Substitution in HJB leads to

11 —2S12+%:0
§$20 — 25%2 + 251 =0
S12 + % (4511 — 8s12522) =0

and

* 0
u (x, t) =)\ = %V(x, l‘) = —2s12 (Z) X1 — 252 (t) X2

[m] = =
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CONTINUOUS TIME

EXAMPLE 1, CONT’D

st

0
Notice that

.
-15

10
and

t
{511(=50), s12(=50), s22(—50)} = {0.707107, 0.5, 0.707107}
. [ 0
eig

! = 1 Drexel
2% 05 —2x%0.707107 :| = —0.707107 £ i 0.707107 b
oo 2> «E ae

2

N
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SUMMARY

THEOREM

Consider the continuous dynamical system

x=f(xu), x€ER ueUCR"
x(0) = xo

with cost function J (u (-)) = € (x (7)) + [ L(x (1) ,u(r) 1) dt
The minimum cost optimal control is

u* (x,1) = argmin {L (x,u, 1) + Vi (x, 1) f (x, )}
where V, (x,1) is the cost to go which satisfies the HJB equation
QV(xt)—i—H* xQV(xt) t) =0, V(xT)=1~(x)
at ) 78x ) ) - ) ) -

and H* (x, \,1) = min {L (x,u, 1) + N (x,u)}

[m] = =
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SIMPLE EXAMPLES

LINEAR QUADRATIC REGULATOR

Consider the linear dynamics

X =Ax+ Bu
y=Cx
and cost r
J(u,w) = lim 1 / BT (@)y(t) + pu® (1)u(r)]dt
T—oo T Jo
Suppose

> (A, B) is stabilizable
> (A, C) is detectable
Then
u(t) = —%BTSx 0

1
ATS+5A—8 (7BBT> s=-clc
P

[m] = =
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SIMPLE EXAMPLES

EXAMPLE 2
Consider, once again, the system

X1ZX2
jCzZM

However, suppose u is constrained
lu <1

and our goal is to reach the origin in minimum time

T
1= [fa=t
0

In this case, the ‘cost to go’ from any initial state x is independent of ¢, Thus,
the HJB equations is simply

a -
H (X,aV(X),t) =0
[m] =5 =
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SIMPLE EXAMPLES

EXAMPLE 2, CONT’D

Now,
H=14+Xix2+ \u

and
u* = argmin {1 + A\jx2 + Xou}

= u" = —sgn\, = fsgna%zV (x1,x2)
Thus, the HJB equation is
xoVy, (X],XZ)— ‘sz (X|,X2)|—|—1 =0, V(0,0) =0
We can verify the solution

—x2 — 2 xl—i—l
V(XI,XZ) = ( ? 2 1/2 1
X2 —2 (—Xl +3 2) x1 < =322 ||

12
) / X1 > —%xz 2]

[m] = =
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SIMPLE EXAMPLES

EXAMPLE 2, CONT’D
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BASIC RESULTS

LQR PROBLEM SETUP

Consider the linear time-invariant system:
x(t)=Ax(t)+Bu(t), x€R' ueR"

with cost function
1
J=5x x" (1) Qpx (1) + / {x"Qx + u"Ru} at

Q and Qy are symmetric and positive semi-definite. R is symmetric
positive definitite.

[m] = =
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OPEN LOOP SOLUTION

The Hamiltonian is

LINEAR QUADRATIC REGU
0®000000

H (x,u,\) =
from which

| —

(x"Ox + u"Ru) + A" (Ax + Bu)
u* = —R7'BT),

H* (x,\) =

%xTQx + \TAx — %/\TBR*IBT)\
Combining the system and adjoint equations yields
x| A
5=

—BR™'BT
-0

X
—AT A
optimal control

| 20 =x0A6) =0 (1)

solving the two-point boundary value problem provides the open loop
u* (t) = —R'B"\ (1) -
(] = = = A
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BASIC RESULTS

CLOSED LOOP SOLUTION

To obtain the closed loop control, solve the HJB equation for the
cost-to-go function V (x, 1)

v 1, % 1ov o (av\" 1,
E‘i’i.x Qer aA}C*EaBR B a —0, V(.X,tf) = 2.x Qf.x
Assume V (x, t) takes the form
1 v 1 4. v
Vx, 1) = 7% S(t)x= 5 = 5~ S (1) x, ik S(1)

with symmatric S. Then the HJB reduces to

LS+ 0+ (SH)A+ATS (1) —S()BR'B'S (1)} x=0

[m] = =
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BASIC RESULTS

CLOSED LOOP — SUMMARY
The optimal feedback control is

u* (x,1) = —R7'BTA\ = —R7'BTS (1) x
where S (¢) satisfies the Riccati equation
S(t)+0+ (S()A+A"S(t)) —S(t)BR'B"S (1) =0

In the event that T — oo, S (1) — So, a constant, symmetric
matrix that satisfies the algebraic Riccati equation (ARE)

SoA +ATSO — S()BRilBTSO = -0
The optimal feedback control is

u* (x) = —Kx, K =RT'B’S,

[m] = =
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BASIC RESULTS
HAMILTONTIAN MATRIX
Consider the Hamiltonian matrix:

o
Notice that the ARE can be written

—Q—A"Sy =S, [A—BR'B"S]
Direct computation leads to

gl o]l_[1 0 A — BR™'B'S, —BR'BT
So 1| TS I 0 —(A—BR™'BTS;)"

Thus, H is similar to a block diagonal matrix. The 2n eigenvalues of H
composed of the n eigenvalues of (A — BR™'B”S,) and the n
eigenvalues of —(A — BR™'BS;)

[m] =5 =
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BASIC RESULTS

HAMILTONIAN MATRIX, CONT D

» If Sy is a stabilizing solution of the ARE, then all eigenvalues of
(A — BR™'B"S,) are in the open left half plane and all
eigenvalues of — (A — BR™'B"S,) are their mirror image in the
open right half plane.

» In this case H has no eigenvalues on the imaginary axis.

[m] = =
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BASIC RESULTS

ALGEBRAIC RICCATI EQUATION
Recall the system and adjoint equations in Hamilton’s form

X x A —BR7'BT
] e[S T
Let, X;,X, € R"*" be two matrices with X; invertible, such that the n

subspace V C R*
V=Im [ X ]

X5

is H-invariant. Invariance implies that there exists a matrix A such that
x 1 [x
GRS

H[Xl ]Xl_' = [ )I( }XlAXl_', X = XX,

[m] = =
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BASIC RESULTS

ARE CONT’D

Premultiply by [ =X 1 ] to obtain
A —BR'BT I I _
[ X 1] Ly ar }[X]:[_XI][X]XIAXH:O
Expand and rearrange to obtain
XA +ATX —XBR7'B'X = —Q

Consequently, X as constructed above satisfies the ARE. It all begins
with constructing V. To do this select a set of n
eigenvalue-eigenvector pairs. While there are < 2nn ) ways of doing

this, there is only one way with all eigenvalues in the left half plane.
Thus, only one stabilizing solution to the ARE.

[m] =5 =
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