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DISCRETE TIME CONTINUOUS TIME LINEAR QUADRATIC REGULATOR

PROBLEM DEFINITION

PROBLEM SETUP

Consider the system

xk+1 = f (xk, uk) , x ∈ Rn, u ∈ U ⊂ Rm

on the discrete time interval k = 0, 1, . . . ,N − 1. A feedback
policy is a sequence of functions

π = {µ0 (x0) , µ1 (x1) , . . . , µN−1 (xN−1)}

such that uk = µk (xk). The problem is to find a policy that
minimizes the cost

Jπ (x0) = gN (xN) +
∑N−1

k=0
gk (xk, µk (xk))
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PROBLEM DEFINITION

PRINCIPLE OF OPTIMALITY
The optimal cost is

Jπ∗ (x0) = min
π∈Π

Jπ (x0)

and the optimal policy π∗ is one that satisfies

Jπ∗ (x0) ≤ Jπ (x0) ∀π ∈ Π

THEOREM (PRINCIPLE OF OPTIMALITY)
Suppose π∗ =

{
µ∗1, . . . , µ

∗
N−1

}
is an optimal policy. Then the

subpolicy π∗i =
{
µ∗i , . . . , µ

∗
N−1

}
, 1 ≤ i ≤,N − 1, is optimal with

respect to the cost function

Jπi (xi) = gN (xN) +
∑N−1

k=i
gk (xk, µk (xk))
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PROBLEM DEFINITION

PRINCIPLE OF OPTIMALITY - PROOF

The argument is based on contradiction as follows.
I Suppose π∗ = {µ∗1 , . . . , µ∗N−1} is an optimal policy with cost Jπ∗ (x0)

I Clearly, we can write the cost

Jπ∗ (x0) =
∑i

k=0
gk (x∗k , µ

∗
k (xk)) + Jπ∗

i
(x∗i )

I Suppose there exists an alternate subpolicy πi = {µi, . . . , µN−1} such
that Jπi

(x∗i ) < Jπ∗
i

(x∗i ).
I Then

Jπ∗ (x0) =
∑i

k=0
gk (x∗k , µ

∗
k (xk))+Jπ∗

i
(x∗i ) >

∑i

k=0
gk (x∗k , µ

∗
k (xk))+Jπi

(x∗i )

so π∗i is not optimal’
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RECURSIVE SOLUTION

THE DYNAMIC PROGRAMMING RECURSION

DEFINITION (COST TO GO)
Denote the optimal cost of a trajectory beginning in state x at time i as V (x, i).
V (x, i) is the cost to go’

The principle of optimality implies the recursion

V (xi−1, i− 1) = min
πi−1∈Π

Jπi−1 (xi−1) = min
πi−1∈Πi−1

{
gN (xN) +

∑N−1
k=i−1 gk (xk, µk (xk))

}
= min
µi−1
{gi−1 (xi−1, µi−1 (xi−1)) + V (xi, i)}

This equation is the basis for a recursive computation of the optimal policy.
I Step 1. Solve the single stage optimization problem with i = N

V (xN−1,N − 1) = min
µN−1
{gN−1 (xN−1, µN−1 (xN−1)) + V (xN ,N)}

I Step 2. Apply the recursion successively for i = N − 1, i = N − 2, . . .
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RECURSIVE SOLUTION

TWO TERMINAL CASES

1. Case 1. xN is fixed and g (xN) ≡ 0. In this case V (xN ,N) = 0. We also
have the constraint

xN = f (xN−1, µN−1)

We must assume that with xN specified there are solution pairs
(xN−1, µN−1). Otherwise, the problem is not well posed because xN is
not reachable. Then

V (xN−1,N − 1) = min
µN−1
{gN−1 (xN−1, µN−1)}

where the minimization is carried out with respect to the constraint.

2. Case 2. xN is free and V (xN ,N) = gN (xN). Now

V (xN−1,N − 1) = min
µN−1
{gN−1 (xN−1, µN−1) + V (xN ,N)}

= min
µN−1
{gN−1 (xN−1, µN−1) + V (f (xN−1, µN−1) ,N)}
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RECURSIVE SOLUTION

CONTINUING THE RECURSION

Once the pair µN−1,V (xN−1,N − 1) is obtained, compute the pair
µN−2,V (xN−2,N − 2) from

V (xN−2,N − 2) = min
µN−2
{gN−2 (xN−2, µN−2 (xN−2)) + V (xN−1,N − 1)}

= min
µN−2
{gN−2 (xN−2, µN−2 (xN−2)) + V (f (xN−2, µN−2) ,N − 1)}

Continuing in this way:

V (xN−i,N − i) = min
µN−i
{gN−i (xN−i, µN−i (xN−i)) + V (f (xN−i, µN−i) ,N − i + 1)}
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EXAMPLE

EXAMPLE
Consider a system

xi+1 = xi + u, u ∈ {−1, 0, 1}
on the time interval 0 ≤ k ≤ 10. We wish to steer the system from arbitrary
initial state to the origin in such a way as to minimize the cost

J =
∑10

k=0
x2

k

t

R Backward

Reachable Sets
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EXAMPLE

EXAMPLE, CONT’D

Values for ‘cost to go’

{181, 145, 113, 85, 61, 41, 25, 13, 5, 1, 0, 1, 5, 13, 25, 41, 61, 85, 113, 145, 181}
{145, 113, 85, 61, 41, 25, 13, 5, 1, 0, 1, 5, 13, 25, 41, 61, 85, 113, 145}
{113, 85, 61, 41, 25, 13, 5, 1, 0, 1, 5, 13, 25, 41, 61, 85, 113}
{85, 61, 41, 25, 13, 5, 1, 0, 1, 5, 13, 25, 41, 61, 85}
{61, 41, 25, 13, 5, 1, 0, 1, 5, 13, 25, 41, 61}
{41, 25, 13, 5, 1, 0, 1, 5, 13, 25, 41}
{25, 13, 5, 1, 0, 1, 5, 13, 25}
{13, 5, 1, 0, 1, 5, 13}
{5, 1, 0, 1, 5}
{1, 0, 1}
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PROBLEM DEFINITION

PROBLEM SETUP
Consider the system

ẋ = f (x, u) , x ∈ Rn, u ∈ U ⊂ Rm

x (0) = x0

over the time interval t ∈ [0,T], where T > 0 is not necessarily
fixed. The cost to be minimized is

J (u (·)) = ` (x (T)) +

∫ T

0
L (x (t) , u (t) , t) dt

Now, suppose that t is an arbitrary time in the interval 0 ≤ t ≤ T,
and consider the more general optimization problem starting at
time t in arbitrary state x and cost function

J (u (·) ; x, t) = ` (x (T)) +

∫ T

t
L (x (t) , u (t) , t) dt
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PROBLEM DEFINITION

PROBLEM DEFINITION

DEFINITION (FEEDBACK POLICY)
A feedback policy π is a family of functions µt (x), 0 ≤ t ≤ T such that
u (t) = µt (x (t)). An optimal policy is one that minimizes the cost

Jπ (x0) = ` (x (T)) +

∫ T

0
L (x (t) , µt (x (t)) , t) dt

The optimal policy satisfies

Jπ∗ (x0) ≤ Jπ (x0) , ∀π ∈ Π
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PROBLEM DEFINITION

PRINCIPLE OF OPTIMALITY

THEOREM (PRINCIPLE OF OPTIMALITY)
Suppose π∗ = {µ∗t (x) |0 ≤ t ≤ T } is an optimal policy. Then the
subpolicy π∗s = {µ∗t (x) |0 < s ≤ t ≤ T } is optimal with respect to
the cost

Jπs (xs) = ` (x (T)) +

∫ T

s
L (x (t) , µt (x (t)) , t) dt

DEFINITION (COST TO GO)
For x ∈ Rn, 0 ≤ t ≤ T define the cost to go to be the minimum cost if we start
in state x at time t:

V (x, t) ∆
= min

u⊂U
J (u; x, t)
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THE HJB EQUATION

THE HAMILTON-JACOBI-BELLMAN EQUATION

V (x, t) = min
πt

{
` (x (T)) +

∫ T

t
L (x (τ) , µτ (x (τ)) , τ) dτ

}
Divide the interval [t, T] to obtain

V (x, t) = min
πt

{ ∫ t+∆t
t L (x (τ) , µτ (x (τ)) , τ) dτ
+` (x (T)) +

∫ T
t+∆t L (x (τ) , µτ (x (τ)) , τ) dτ

}

The principle of optimality implies

V (x, t) = min
u(τ)

t≤τ≤t+∆t

{∫ t+∆t

t
L (x (τ) , u (τ) , τ) dτ + V (x (t + ∆t) , t + ∆t)

}

V (x, t) = min
u
{L (x, u, t) ∆t + V (x, t) + Vx (x, t) f (x, u) ∆t + Vt (x, t) ∆t + o (∆t)}

⇓
0 = Vt (x, t) ∆t + min

u
{L (x, u, t) + Vx (x, t) f (x, u)}∆t + o (∆t)
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THE HJB EQUATION

THE HJB EQUATION, CONT’D
Define

H∗ (x, λ, t) = min
u
{L (x, u, t) + λf (x, u)}

Then we obtain the Hamilton-Jacobi-Bellman equation

∂

∂t
V (x, t) + H∗

(
x,
∂

∂x
V (x, t) , t

)
= 0

with boundary condition

V (x,T) = ` (x)

The optimal control is given by

u∗ (x, t) = arg min
u
{L (x, u, t) + Vx (x, t) f (x, u)}
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EXAMPLE

EXAMPLE 1
Consider the dynamics

ẋ1 = x2
ẋ2 = u

on the time interval 0 ≤ t ≤ 50, and cost

J = x2
1 (50) +

∫ 50

0

1
2
(
x2

1 (t) + u2 (t)
)

dt

Now compute

H (x, λ, u, t) =
1
2
(
x2

1 (t) + u2 (t)
)

+ λ1x2 + λ2u

which implies

u∗ (x, λ) = −λ2, H∗ (x, λ) =
1
2
(
x2

1 + 2λ1x2 − λ2
2
)
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EXAMPLE

EXAMPLE 1, CONT’D

The HJB equation is

Vt (x, t) +
1
2

(
x2

1 + 2Vx1 (x, t) x2 − V2
x2 (x, t)

)
= 0

Assume a solution of the form

V (x, t) =
[

x1 x2
] [ s11 (t) s12 (t)

s12 (t) s22 (t)

] [
x1

x2

]
Substitution in HJB leads to

ṡ11 − 2s12 + 1
2 = 0

ṡ22 − 2s2
22 + 2s12 = 0

ṡ12 + 1
4 (4s11 − 8s12s22) = 0

and
u∗ (x, t) = −λ2 =

∂

∂x2
V (x, t) = −2s12 (t) x1 − 2s22 (t) x2
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EXAMPLE

EXAMPLE 1, CONT’D

-20 -15 -10 -5
t

0.2

0.4

0.6

0.8

1.0

sHtL

Notice that

{s11(−50), s12(−50), s22(−50)} = {0.707107, 0.5, 0.707107}

and

eig
[

0 1
−2× 0.5 −2× 0.707107

]
= −0.707107± i 0.707107
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SUMMARY

THEOREM

Consider the continuous dynamical system

ẋ = f (x, u) , x ∈ Rn, u ∈ U ⊂ Rm

x (0) = x0

with cost function J (u (·)) = ` (x (T)) +
∫ T

0 L (x (t) , u (t) , t) dt
The minimum cost optimal control is

u∗ (x, t) = arg min
u
{L (x, u, t) + Vx (x, t) f (x, u)}

where Vx (x, t) is the cost to go which satisfies the HJB equation

∂

∂t
V (x, t) + H∗

(
x,
∂

∂x
V (x, t) , t

)
= 0, V (x, T) = ` (x)

and H∗ (x, λ, t) = min
u
{L (x, u, t) + λf (x, u)}
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SIMPLE EXAMPLES

LINEAR QUADRATIC REGULATOR

Consider the linear dynamics
ẋ = Ax + Bu
y = Cx

and cost

J(u,w) = lim
T→∞

1
T

∫ T

0

[
yT(t)y(t) + ρuT(t)u(t)

]
dt

Suppose
I (A,B) is stabilizable
I (A,C) is detectable

Then
u (t) = −

1
ρ

BT Sx (t)

AT S + SA− S
(

1
ρ

BBT
)

S = −CT C

OPTIMAL CONTROL



DISCRETE TIME CONTINUOUS TIME LINEAR QUADRATIC REGULATOR

SIMPLE EXAMPLES

EXAMPLE 2
Consider, once again, the system

ẋ1 = x2

ẋ2 = u

However, suppose u is constrained

|u| ≤ 1

and our goal is to reach the origin in minimum time

J =

∫ T

0
dt = T

In this case, the ‘cost to go’ from any initial state x is independent of t, Thus,
the HJB equations is simply

H∗
(

x,
∂

∂x
V (x) , t

)
= 0
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SIMPLE EXAMPLES

EXAMPLE 2, CONT’D

Now,
H = 1 + λ1x2 + λ2u

and
u∗ = arg min

u
{1 + λ1x2 + λ2u}

⇒ u∗ = −sgnλ2 = −sgn ∂
∂x2

V (x1, x2)

Thus, the HJB equation is

x2Vx1 (x1, x2)− |Vx2 (x1, x2)|+ 1 = 0, V (0, 0) = 0

We can verify the solution

V (x1, x2) =

{
−x2 − 2

(
x1 + 1

2 x2
2
)1/2

x1 ≥ − 1
2 x2 |x2|

x2 − 2
(
−x1 + 1

2 x2
2
)1/2

x1 ≤ − 1
2 x2 |x2|
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SIMPLE EXAMPLES

EXAMPLE 2, CONT’D

-2 -1 0 1 2

-2

-1

0

1

2

x1

x 2

u∗ =

{
−1 white
1 blue
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BASIC RESULTS

LQR PROBLEM SETUP

Consider the linear time-invariant system:

ẋ (t) = Ax (t) + Bu (t) , x ∈ Rn, u ∈ Rm

with cost function

J =
1
2

xT (tf ) Qf x (tf ) +
1
2

∫ tf

0

{
xTQx + uTRu

}
dt

Q and Qf are symmetric and positive semi-definite. R is symmetric
positive definitite.
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BASIC RESULTS

OPEN LOOP SOLUTION
The Hamiltonian is

H (x, u, λ) =
1
2
(
xTQx + uTRu

)
+ λT (Ax + Bu)

from which

u∗ = −R−1BTλ, H∗ (x, λ) =
1
2

xTQx + λTAx− 1
2
λTBR−1BTλ

Combining the system and adjoint equations yields[
ẋ
λ̇

]
=

[
A −BR−1BT

−Q −AT

] [
x
λ

]
, x (0) = x0, λ (tf ) = Qf x (tf )

solving the two-point boundary value problem provides the open loop
optimal control

u∗ (t) = −R−1BTλ (t)
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BASIC RESULTS

CLOSED LOOP SOLUTION

To obtain the closed loop control, solve the HJB equation for the
cost-to-go function V (x, t)

∂V
∂t

+
1
2

xTQx +
∂V
∂x

Ax− 1
2
∂V
∂x

BR−1BT
(
∂V
∂x

)T

= 0, V (x, tf ) =
1
2

xTQf x

Assume V (x, t) takes the form

V (x, t) =
1
2

xTS (t) x⇒ ∂V
∂t

=
1
2

xT Ṡ (t) x,
∂V
∂x

= xTS (t)

with symmatric S. Then the HJB reduces to

xT {Ṡ (t) + Q +
(
S (t) A + ATS (t)

)
− S (t) BR−1BTS (t)

}
x = 0
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BASIC RESULTS

CLOSED LOOP – SUMMARY
The optimal feedback control is

u∗ (x, t) = −R−1BTλ = −R−1BTS (t) x

where S (t) satisfies the Riccati equation

Ṡ (t) + Q +
(
S (t) A + ATS (t)

)
− S (t) BR−1BTS (t) = 0

In the event that T →∞, S (t)→ S0, a constant, symmetric
matrix that satisfies the algebraic Riccati equation (ARE)

S0A + ATS0 − S0BR−1BTS0 = −Q

The optimal feedback control is

u∗ (x) = −Kx, K = R−1BTS0
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BASIC RESULTS

HAMILTONIAN MATRIX
Consider the Hamiltonian matrix:

H =

[
A −BR−1BT

−Q −AT

]
Notice that the ARE can be written

−Q− ATS0 = S0
[
A− BR−1BTS0

]
Direct computation leads to

H
[

I 0
S0 I

]
=

[
I 0

S0 I

] [
A− BR−1BTS0 −BR−1BT

0 −
(
A− BR−1BTS0

)T

]
Thus, H is similar to a block diagonal matrix. The 2n eigenvalues of H
composed of the n eigenvalues of

(
A− BR−1BTS0

)
and the n

eigenvalues of −
(
A− BR−1BTS0

)
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BASIC RESULTS

HAMILTONIAN MATRIX, CONT’D

I If S0 is a stabilizing solution of the ARE, then all eigenvalues of(
A− BR−1BTS0

)
are in the open left half plane and all

eigenvalues of −
(
A− BR−1BTS0

)
are their mirror image in the

open right half plane.
I In this case H has no eigenvalues on the imaginary axis.
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BASIC RESULTS

ALGEBRAIC RICCATI EQUATION
Recall the system and adjoint equations in Hamilton’s form[

ẋ
λ̇

]
= H

[
x
λ

]
, H =

[
A −BR−1BT

−Q −AT

]
Let, X1,X2 ∈ Rn×n be two matrices with X1 invertible, such that the n
subspace V ⊂ R2n

V = Im
[

X1
X2

]
is H-invariant. Invariance implies that there exists a matrix Λ such that

H
[

X1
X2

]
=

[
X1
X2

]
Λ

H
[

X1
X2

]
X−1

1 =

[
I
X

]
X1ΛX−1

1 , X = X2X−1
1
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BASIC RESULTS

ARE CONT’D

Premultiply by
[
−X I

]
to obtain

[
−X I

] [ A −BR−1BT

−Q −AT

] [
I
X

]
=
[
−X I

] [ I
X

]
X1ΛX−1

1 = 0

Expand and rearrange to obtain

XA + ATX − XBR−1BTX = −Q

Consequently, X as constructed above satisfies the ARE. It all begins
with constructing V. To do this select a set of n

eigenvalue-eigenvector pairs. While there are
(

2n
n

)
ways of doing

this, there is only one way with all eigenvalues in the left half plane.
Thus, only one stabilizing solution to the ARE.
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