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APPROACH
o

MODELING

MODEL ENVIRONMENTS

> hybrid systems combine:
> Discrete event system
> Logical Constraints
> Continuous nonlinear
dynamics
» Simulink with Stateflow
> Close to physical situation
> Real-time implementation
> Hybrid Automaton
> Compact, well-defined
mathematical model
> Primary theoretical tool
» Dynamic mixed-integer
program
> Excellent design model

Hybrid /?‘utumalon

Dynamic Mixed Integer
Program
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APPROACH
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COMPUTATIONAL TOOLS

COMPUTATIONAL TOOLS
> Integrated symbolic and
numerical computing

» symbolic model assembly —
aircraft, power systems,
automotive, robotics

> setup for numerical
computation — e.g., NR,
NRS

» Model transformation
> Stateflow diagram to logical
specification
> Logical specification to IP
formulas
» Symbolic model to
simulation model

> mixed-integer dynamic
programming

Model definition
and assembly

Mathematica
Tsi ProPac

Code
generation

function

O5HO

Manipula-
tion

Symbolic
model
Controller
design
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PROBLEM DEFINITION
°
THE PROBLEM

PROBLEM DEFINITION
Xep1 =f (e, Oy diy zisur), k=0,1,...,N—1
h (xk, Ok, diy Zhs Uiy O—1, di—1,2k—1) < 0
x; the continuous state (real numbers)
ok the discrete state (mode) (binary or integer numbers)

uy the control, may be composed of discrete and continuous elements
dy discrete (binary) auxiliary variables

vy vV v VY

zx continuous (real) auxiliary variables

A control policy is a sequence of functions

™= {,U,() ()C(), 50) N (xl, (51) yee ey N1 ()CNfl, 5N — 1)}, such that U = [k (xk, 5k)
The optimal control problem is: given an initial state xy, do, is find a control policy that
minimizes the cost function:

N-1
Jr (x0,00) = gn (xn, 0n) + Zk:o 8 (Xes Oy piic (X, k)

=] F = z £ DA
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RECURSION

PRINCIPLE OF OPTIMALITY

PROBLEM DEFINITION
e0

The optimal cost is

J* (x0,00) = anelRJ” (x0, 9)
The optimal control policy p* is one that satisfies

S (XO, 5()) <Jx (x0,50) Vrell
The Principle of Optimality: If 7* = {4,
wt = i

,Wy_1 } is an optimal policy, the the subpolicy
JMy_1}, 1 <i<N—1,is optimal with respect to the cost function
1

N—1
Jr (xi,0:) = gn (xv, On) + Zk:[ 8k (Xes Oy puic (Xicy Ok) )
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PROBLEM DEFINITION
oce

RECURSION

From each state at EN-1 compute the

RECURS IO N optimal control for this stage The

optimization is carried out with
constraints: mixed integer inequalities
and dynamics.

3;71(Xk71v5k71) = uH(T,if-lp){gk’l (xk—llgkfll ukfl) + J; (kaak )}];\lfi(XNfl’ngl) = . mi n‘sNd){ngl (XN71'6N711UN71)+ J;u (XN \On )}
Ueo1% 0 1€C Un-1 Xy Oya€C

_oxrh
X=QxR 3 (%,8) = 9, (x.)

7/ . . )
i=k-1 i=N-1 i=
For computational purposes
discretize the state space

i=0




PROBLEM DEFINITION
o

ALGORITHM

ALGORITHM

There are many inequality constraints so that determining feasible points is the essential computation. Moreover, most of the constraints are linear in
binary variables.

1. Identify the binary and real variables and separate the inequalities into binary and real sets, binary
equations contain only binary variables, real equations can contain both binary and real variables.

2. Use the Mathematica function Reduce to obtain all feasible solutions of the binary inequalities. Reduce is a
very efficient solver, especially when the inequalities are linear although it is not limited to linear
inequalities. In general, if there are N binary variables then there are 2¥ combinations that need to be
evaluated if one were to attempt to optimize by enumeration. But the feasible combinations are almost
certainly much fewer.

3. Use Reduce to solve the real inequalities for the real variables for every feasible combination of binary
variables. Many of these combinations of binary variables will not admit feasible real variables, so they can
be dropped. The remaining combinations typically produce unique values for the real variables.

4. Enumerate the values of the cost for each feasible pair of binary and real variables and select the minimum.




POWER CONDITIONINC

POWER CONDITIONING SYSTEM DYNAMICS

EXAMPLES
0000000
S switching event
~.
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Switch closed

Switch open
qu%aré—\

&+ £ —iL switchclosed
g=—ir switchopen
i= 5(11 (E
4= 0q, (

R_%)
vo=%

e zL)+5q2(
t1+l

ql( RCq t)+ [1—e” RC](CE_RCiL(ti)))"‘(qu( (1) — i (t:) At)
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POWER CONDITIONINC

POWER CONDITIONING LOGIC

(@1(1) & 2(1) A (g1 (1)  q2(t7))
ANar () As = g2 (1)) Agr (1) A s = g1 (1))
NMaz () As =i (17)) Alg2 (1) A=s = g2 (1F))
I
1 -

(5q+—(5+ >0

1+5++5+>0
1—6—

(5 +52+20
=8, = b 48, >0
5, — by + 6,0 20
.~ by, + 0,0 20
0<6,<1,0<9,<1,0<6, <1
0<é,+ <1,0<0,+ <1
1
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POWER CONDITIONING

OPTIMIZATION

EXAMPLES

» With i; = 0 an equilibrium point is g = EC.

» We wish to steer the system from the initial state ¢, to near g over the time interval
t € [0, T] along a trajectory that minimizes

1 T
J:a[q(T)—é]z—i—f/ i di
T Jo
With E=1,C = 1,R = 1, the equations reduce to

é]:(sql (_q+1_iL)+5112( iL)
i= 61]1 (1 - Q)
Vo=4¢g
In discrete time
q(tiy1) = g, (e—Az

q () + [1
OPTIMAL CONTROL
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POWER CONDITIONING

TRICKS

Note that we can always write

EXAMPLES
[e]e]e] lele]le]e]
4=z
(g =z=—q+1—it) N(~q1 = z=—iL)

with i, = 0 and bounds on capacitor charge 0 < ¢ <2

1—-di+2z>0
1-2d+q+2>0 2+04 20
dr — 64 >0
—14+d+8, >0

1— d1 —Z 2 0

l4+qg+z—26, >0
3-2d—qg—2>0

0gy —22>0
3—-26, —q—22>0
-1<z<1,0<4, <1,

-1<z<1,0<d <1,0<d <1,
0<d, <1,0<g<2

0<g<2
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POWER CONDITIONING

TRICKS

Similarly,we can set

EXAMPLES
[e]e]e]e] lelele)

and w satisfies

w+0dg >0
Il+qg+w—20 >0
0gy —w >0

3—204 —q—w=>0
—1<w<1,0<4,<1,0<g<2
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POWER CONDITIONING

SOLUTION-1

EXAMPLES

[e]e]e]e]e] lele)
1 N—1

J=oalgy — g +

with dynamics

N2

q(i+1)=1z(i)

1—dy+2z2>0
2.5592 — 2.7625d; — 0.2296q + z < 0
dy — 64 >0
—14+dy+d4 >0
—1+d,+2<0
—140.7967d, — 0.7796q + z < 0
—1<z<1,0541 1,082, <1,05¢<2,0<6, <1
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POWER CONDITIONINC

SOLUTION 2

and transition logic

EXAMPLES
[e]e]e]e]o]e] o)

1—5+—6+>0

*1+5++5+ >0
1 -6 —

51+5q;-20
1 — & 6q2+6q2+20
5S75q]+5q]+20
dy 5q2+5q1+20
0<6,<1,0<6,<1,0<4, <1
0<d,+ <1,0< 54 <1
and current

w464 >0
l+g+w—24, >0
0y —w >0
3—20, —q—w=>0
—1<w<1,0<6,<1,0<g<2

G

it

)

»
?)




EXAMPLES
0000000e

POWER CONDITIONING

SOLUTION SUMMARY

With zero load current, we get exactly as expected. For high current cost the
switch remains open for all initial charge in the admissible range. For low current
cost, the switch remains closed. With load, the switching strategy is more
interesting although it still has a strong dependency on relative cost. For instance,
with a current load of 0.1 amp, a time horizon of 2.5 sec, and terminal cost weight
a = 0.25 , we obtain for ¢ < 1 the switch is closed, for ¢ > 1 the switch is open. If

the weight is increased to a = 0.28 the switch is closed forg < land g > 1.4 . ltis
openforl <g<14.
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SIMPLE NETWORK

SIMPLE NETWORK EXAMPLE — SETUP

EXAMPLES

90000

Sk+1 =
N d2
E=(1—y) Yot

\%
a/n :
(Va=1A0<E<2)
q1=>1n=0,

V(E=2)

¢ =n=04
1=
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SIMPLE NETWORK

EXAMPLES

SIMPLE NETWORK EXAMPLE — TRANSITION LOGIC

0@000

Load Shed Level 0

%

Load Shed Level2

%
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SIMPLE NETWORK

SIMPLE NETWORK EXAMPLE — IP FORMULAS 1
Voltage Control Logical Constraint

3—dy—E>0, 1-di+E>0, -2, +E>0
—2d1+V, >0, —24+d+V,<0
0<d,d,<1, 0<EV,<2
Load shed parameter logic

—0.4ds +7 >0,
dy =5, 20,
—1+@+n<0

—0.8ds+71 >0
0<ds <1,

dy=0,4 20, ds—84 >0
-4+06m+n<o —1402d5+7<0
0<dy <1, 0<ds<1, 0<n<l
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EXAMPLES
00080
SIMPLE NETWORK

G

SIMPLE NETWORK EXAMPLE — IP FORMULAS 2

Transition logic:
—08q, — 0y —0q; =0, —1+0q, +3dq, +d¢, 20
1—(5+ (5+ 5+>0 —1+(5++5++5+>0
6ql+6+ 5Y1>0, 5q2+6+ 6”20
1—5q2+6q+ ds, > 0, 1—6(,3+6q+ 05, >0
2
~Bg, + 8,4 +05 20
g, 0 4 40, >0, =g +0 4 +0,>0
3 3 3

0< 8y, <1,0<08, <1,0<8, <1
08,1 SLOSE,y S1,0<8, <1
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EXAMPLES

[e]e]e]e] }

SIMPLE NETWORK

SIMPLE NETWORK EXAMPLE
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