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Modeling and simulation technologies perform an important role in understanding how
aircraft depart from nominal flight and in validating and verifying the design of recovery
techniques. Aircraft in-flight loss-of-control incidents often involve excursions into nonlin-
ear flight regimes and so methods used to analyze them must include nonlinear tools. It
has been previously shown that continuation methods can be employed very effectively to
generate the equilibrium surface by varying parameters of interest. On this surface we can
identify various point sets of interest, such as points where local stability characteristics are
significantly altered, limits of actuation and control bifurcation points. We describe a con-
tinuation method that allows us to unravel the complicated equilibrium structure related
to aircraft calculations. In this paper, we also describe software developed for the nonlinear
analysis of impaired aircraft and control design for recovery methods. The software pro-
vides tools to assemble smooth full envelope, six degree-of-freedom nonlinear models based
on multivariate orthogonal polynomial aerodynamics, to perform trim computations, to an-
alyze singular points, to design nonlinear controllers, to assemble and execute simulations
and to visualize results. The software can be used in mishap investigation, in assessing
maneuverability envelopes and validating and verifying control techniques for recovery. It
can also serve as a guide to aid experimentation by identifying the flight envelope of par-
ticular interest. We also present some calculations based on the Generic Transport Model

(GTM) developed by NASA.
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Velocity, ft/s

X body-axis angular velocity component, rad

Y body-axis angular velocity component, rad

Z body-axis angular velocity component, rad

X body-axis translational velocity component, ft/s
Y body-axis translational velocity component, ft/s
Z body-axis translational velocity component, ft/s
Euler roll angle, rad

Euler pitch angle, rad

Euler yaw angle, rad

Heading, rad

Flight path angle, rad

System matrix of a linear system

Control matrix of a linear system

Output matrix of a linear system

Jacobian matrix of a multivariable vector function
Eigenvalue and eigenvector of the Jacobian matrix .J
Thrust, 1b

Commanded Thrust, 1b

elevator input, rad

Aileron input, rad

Rudder input, rad
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I. Introduction

ONLINEAR modeling and analysis can provide great insight into off-nominal aircraft behavior. In-flight

loss-of-control incidents often involve excursions into nonlinear regimes and the methods for mishap
investigation, fault tolerant design and validation and verification must employ nonlinear techniques. It
has been previously shown that continuation methods can be employed to generate the equilibrium surface
by varying parameters of interest.! On this surface we can mark various regions of interest such as points
where local stability characteristics are significantly altered, actuator limits and control related bifurcations
points. These control bifurcation points are usually accompanied by an increased difficulty in regulating the
aircraft and are related to the zero structure of the system.? It has also been shown that the problem
of flight control reconfiguration following actuator failure can been formulated as a nonlinear regulator
problem.?* The post-fault controller uses the remaining functional actuators. It is designed to regulate key
flight parameters while rejecting the disturbance induced by the failed actuator. The idea is that the pilot
would maneuver the impaired aircraft by specifying the desired flight parameters. The post-fault system
dynamics however can differ significantly from normal conditions.

In order to evaluate the ability of the impaired aircraft to maneuver we have previously employed continu-
ation methods using a combination of Newton-Raphson (NR) and Newton-Raphson-Seydel (NRS)® methods.
This method by varying a single parameter such as airspeed, center of mass, or flight path angle generates a
codimension one surface in the space of states and (functional) controls.! However, even these surfaces can
have complicated folds and turns that cannot be easily accommodated by NR/NRS techniques. We have de-
veloped a novel continuation method using a technique previously used to generate linear parameter varying
families from parameter dependent nonlinear dynamics.® The essential idea is to define a local coordinate
system on the equilibrium surface and utilize the new parametric representation to unravel the structure of
the surface in the neighborhood of multiple folds where earlier methods failed. However, it is important to
note that the region of interest in these surfaces tends to be the first control bifurcation and the various
actuator limits that are ordinarily found before the more complex surface structures are encountered. These
limits define the maneuverability envelope associated with the aircraft. The static bifurcation points that
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occur in a control system are associated with the zero structure of the system. The approach to bifurcation
is accompanied by an increasing difficulty to regulate the aircraft. We can locate the bifurcation points
accurately in order to assess the specific degeneracy.

We apply the method to the study of a six degree of freedom Generic Transport Model (GTM). The
symbolic modeling of the GTM is facilitated by the polynomial aerodynamic models developed in 7. We
have developed the model in Mathematica® .® The symbolic model is used to generate the equilibrium curves.
In the analysis presented here we consider straight and level flight with velocity as the parameter. Other
motions that have been studied are wings level flight climbing and descending, coordinated turns and steady
sideslip in climb and descent.

To support this effort we have developed a comprehensive software package for the nonlinear analysis
of normal and impaired aircraft. The software provides tools to assemble smooth full envelope, six degree-
of-freedom nonlinear models based on multivariate orthogonal polynomial aerodynamics, to perform trim
computations, to analyze singular points, to design nonlinear controllers, to assemble and execute simulations
and to visualize results. The software can be used as the first step in validating and verifying maneuverability
envelopes and control techniques for recovery. It can also serve as a guide to aid experimentation by iden-
tifying the interesting parts of the flight envelope. This software leverages the strengths of widely available
scientific software such as Mathematica and MATLAB/Simulink®.° The associated graphical user interface
and database tools for models are developed using cross platform, plug-in architecture. The computational
tools for model assembly and analysis are provided in symbolic environment which also has tools for nonlin-
ear control design. Closed loop simulation models can be generated from the front-end and transferred to
MATLAB/Simulink. In addition to this, 3D tools are provided to aid visualization of the aircraft behavior.

The rest of the paper is organized as follows. Bifurcation analysis in the context of control systems, and
the continuation method to carry out the analysis is discussed in Section II. The nonlinear six degree of
freedom GTM model and the analysis presented in Section III. Section IV details the some of the features
of the developed software. Section V is the conclusion.

II. Bifurcation analysis of control systems

In this paper we consider the regulation of aircraft to a desired trim condition. In general the equations
of motion of a rigid aircraft involve six degrees of freedom involving the six coordinates ¢, 6, v, x,y, z and six
(quasi-) velocities p, g, r, u,v,w. In the study of steady motions it is usual to ignore the location (z,y, z) and
consider only the velocities and attitude of the vehicle. The reduced dynamics comprise a nine dimensional
system of state equation that are nonlinear and may be parameter dependent. We are concerned with steady
motions that can be defined in terms of these variables. In particular, these motions are trajectories in the
x,y,z space, that can be associated with equilibria of the nine state system. We would like to know whether
or not it is possible to regulate to and steer along these motions. Thus, we are naturally lead to the study
of the existence and stabilizability of equilibria.

A. Bifurcation of equilibria in control systems

Consider a parameter dependent, nonlinear control system given by
X f(x,u, p)
2 = h(x,p) (1)

where x € R™ are the states, u € RP are the control inputs, z € R" are the regulated variables and u € R
is any parameter. We assume that f, h are smooth (sufficiently differentiable). The parameter could be a
physical variable like the weight of the aircraft or the center of gravity location; or a regulated variable like
velocity, flight path angle, altitude or roll angle; or a stuck control surface. The regulator problem is solvable
only if p > r. Since the number of controls can always be reduced we henceforth assume p =r.
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A triple (x*,u*, u*) is an equilibrium point of (1) if
* * *
F(X*,u*,,u*) = (f(X ,'ll l;li )) — 0 (2)

Definition 2.1 7 An equilibrium point (x*, u*, u*) is reqular if there is a neighborhood of p* on which there
exist unique, continuously differentiable functions T(u), w(u) satisfying

F(z(p), u(p), p) = 0 (3)

If an equilibrium point is not a regular point it is a static bifurcation point. The Implicit Function Theorem
implies that an equilibrium point is a bifurcation point only if det J = 0. The Jacobian J is given by

J = [DxF(x*,u", ") DuF(x*,u*,u")] (4)
Now, if A, B, C, D denotes the linearization at (x*,u*, u*) of (1) with output z so that

A B
c 0

Then we have the following theorem for a static bifurcation point.

Theorem 2.2 7 An equilibrium point (z*, u*, u*) is a static bifurcation point only if
A B n—+r
Im ( ar ) 4R (5)

Recall that the system matrix is
M—-A B
P = ( —C 0)

From this observation, necessary conditions for a static bifurcation point can be obtained as follows:?

Theorem 2.3 The equilibrium point (x*, u*, u*) is a static bifurcation point of (1) only if one of the following
conditions is true for its linearization:

1. there is a transmission zero at the origin,

2. there is an uncontrollable mode with zero eigenvalue,
3. there is an unobservable mode with zero eigenvalue,
4. it has insufficient independent controls,

5. it has redundant regqulated variables.

It turns out that static bifurcations in regulators are always associated with a degeneracy in the linearized
system zero dynamics. Such degeneracies include the loss of linear observability or controllability. But this
does not imply that the system fails to be observable or controllable in a nonlinear sense. However, if the
bifurcation is associated with a breakdown in linear controllability or observability means that for a linear
controller change of input-output structure for the regulator problem is needed for design. Even if system
continues to be controllable and observable in the nonlinear sense it precludes the possibility of smooth
control action.? This connection with the input-output structure is the primary difference when considering
bifurcations in control systems rather than dynamical systems. For discerning the maneuverability of the
system we are interested in limits arising not just from static bifurcation points but also loss of stability and
actuation limits. The equilibrium equations are simpler for the open loop system. Once we have obtained
the bifurcation curves for the open loop system, the closed loop bifurcation curves can be obtained using the
control law.
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B. Computing bifurcation diagrams

Consider the system of algebraic equations:

F(z,u)=0 (6)

where F : R*t! = R z € R™, and u € R. We wish to generate a graph of = versus u. In general, one
can start with a specific parameter value, pp, and compute the corresponding xo = x (ug) that satisfies
F (z0, o) = 0. This could be done by applying the Newton-Raphson (NR) method with an initial estimate,
x). Then, the obvious procedure is to increment the parameter po — 11 = po + Ap and again apply the NR
method with initial estimate z¥ = x (o) to obtain z; = z (u;) that satisfies F (z1, 1) = 0. One continues
in this way to generate the sequence of pairs {(uo, zo) , (1, 1) , (2, 22), ...}, thereby generating the graph
data.

Unfortunately the procedure is almost certain to fail. A generic, smooth function (6) will contain fold
bifurcations. Thus, no matter how small the increment Ap, sooner or later there will be no values z;; near
x;that satisfies F' (x;41, i + Ap) = 0. The situation is illustrated in Figure .1. At the bifurcation point the
Jacobian of F' with respect to z is singular, so even with sufficiently small steps as the bifurcation point
is approached the NR iteration breaks down. One remedy for this is the Newton-Raphson-Seydel (NRS)
method® which has proved useful in some applications.'' The strategy, is to switch to the NRS method near
the bifurcation point and track the smallest eigenvalue as the curve passes through the bifurcation point,
and the eignenvalue through zero.

Bifurcation point

/

Figure .1. Computing near a fold bifurcation.

The above approach assumes that the smallest eigenvalue of the Jacobian, evaluated at the point where
NR breaks down, is the one that eventually goes to zero at the bifurcation point. When two or more
eigenvalues are close to the origin it is not clear which one will reach the origin eventually. Also, if the
eigenvalues closest to the origin are a complex pair, the path they take to the real axis, so that one of them
can eventually wind up at the origin, is not known a priori. Sufficiently close to the bifurcation point this
ambiguity gets resolved and typically only one eigenvalue approaches zero and then the associated eigenvector
can be used to proceed with the analysis using the NRS method. But ‘sufficiently close’ is not well-defined
for computational purposes.

It should also be noted that an eigenvalue of the Jacobian may become small because it is close to another
branch of the bifurcation diagram. In such instances, allowing the continuation parameter to approach zero
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results in the computed equilibrium to lie on the other branch of the curve. Also, in cases where there are
two consecutive bifurcation points on the bifurcation curve, the smallest eigenvalue may move away from the
origin and approach the origin from the same side, as we progress from the first to the second bifurcation
point. An interesting complexity is encountered when two eigenvalues approach zero along,or very near, the
imaginary axis. We have observed all of these situations in studying aircraft bifurcations. Consequently, we
use an alternative to the eigenvalue tracking strategy. Our method is described below.

First, initialize as follows. Specify the parameter range by defining i, and p + maz. Define maximum
(starting) and minimum parameter increments,Afimin, and Apmin. Specify a starting point g, o that
satisfies (6), and a starting direction, d, for the parameter (d = £1). Then proceed as follows.

1. Given (u;,x;):

(a) If p; & [Hmin, Hmax], StoOp.

(b) Else, at point (u;,z;)obtain a local parametric approximation to the equilibrium surface; s € R —
w(s),x(s). We use the method of® to construct a cubic approximation.

2. Solve p(s) = p; + Ap.
(a) If there are real solutions of the same sign as previous step, take the smallest, Smin, set pir1 =
it (S$min), and apply NR to f (11, i+1) = 0 to obtain x;+1. Return to Step 1.
(b) Else, there are no real solutions of proper sign, replace Ay — Ap/2 and try (a) again, until
Ap < Apimin. Then go to Step 3.

3. Solve the equation du (s)/ds = 0 to obtain real s = s* of the same sign as previous step. See Remark
24

(a) If, | (s*) — pi] < Apimin, go to Step 4.

(b) Else, solve pu(s) = u; + dApmin using NR to obtain real s = § of same sign as previous step.
Determine the eigenvalue of least magnitude, Ao, of Jacobian dF (CU (5) ,u(’s\)) / Oz, and its
associated eigenvector, vo. Set up Newton-Raphson-Seydel (NRS) equations in the form:

lg(w,u) =0
)y — Ny (7)

v =1

Solve for z, i, vusing NR with initial estimate z;, u;, vo. Set z;4+1 — x, ;41 — p, update the
function p (s) and repeat 3.

4. Precisely locate bifurcation point by solving (7) with Ay = 0 and using last computed z,u,v. Save
result and proceed to 5.

5. Reverse direction, d — —d, and solve u(s) = p; + dApmin using NR to obtain real s = § of same
sign as previous step. Note that u (s) was determined before the bifurcation point. Determine the

eigenvalue of least magnitude,\g, of Jacobian OF (a: (E) ) b (§)) / Oz, and its associated eigenvector,
vp. Solve (7) as in Step 3. Return to Step 1.

Remark 2.4 Note that since u (s) is a cubic with real coefficients it can be proved that for any p; and any
increment Ap in the direction of progress, there is either real solution of u(s) = u; + A in the direction of
progress or an extreme point, a solution of du (s)/ds =0, in the direction of progress.
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ITI. Six degree of freedom Generic Transport Model and analysis

The aircraft model has 9 states, given by x = [¢ 6 ) p ¢ 7 u v w]T, and 4 control inputs, given by u =
[T, be,04,0,]T. The controls are limited as follows: thrust 0 < 7' < 35.4372 [bf, elevator —40° < §, < 20°,
aileron —20° < ¢, < 20°, and rudder —30° < §, < 30°. Velocity is in ft/s

The state space representation of the model is

)'(:f(x,u)

Aerodynamic models were based on wind tunnel data obtained with a 5.5 percent scale model in the NASA
Langley 14 ft X 22 ft tunnel. Aerodynamic force and moment coefficients are based on a polynomial
formulation using multivariate orthogonal function method as decribed in 12 and 13. In the original model
several breakpoints in angle of attack were used to capture the nonlinearity and to make sure the endpoints
of each subspace were modeled with an approximately correct sign from each side of the subspace boundary.
The subspace models were blended using Gaussian weighting, as was done for the static data. For simplicity
we use only one of the models for analysis. The characteristics of the full scale airplane are achieved by specific
dynamic scaling requirements imposed on the subscale aircraft.'* The trim computations and bifurcation
analysis are performed on the open loop model. Trim computations are performed for level flight. This
computed trim is used as the initial starting point for the algorithm described in the previous section. For the
curves presented below it is (¢,0.), (6,0.149134), (v, 0.), (p,0.), (¢,0.), (r,0.), (V,100.), («,0.149134), (5, 0.)
and (7, 3.95663), (0., —0.0951322), (44, 0.), (., 0.).

e, deg @, deg
10- =r
0 . | . 1V, fps
85 90 95 100 20l
-10+
-20F
15+
-30+
—40F 10+
50+
S S ——— VS {01
-60" 80 85 90 95 100

Figure .2. Bifurcation curves for elevator and angle of attack Generic Transport Model in level flight with
velocity as a parameter

As shown in Figures .2 and .3, as velocity is decreased from a nominal value the equilibrium curve
indicates several bifurcation best discerned when the elevator deflection is plotted versus velocity. As the
velocity is decreased from 100 fps along the upper branch — which represent the normal trim conditions —
it approaches a bifurcation point that characterizes a classical stall condition. As stall is approached the
aircraft pitches up, and angle of attack increases as does thrust. The increase in thrust with decrease in
velocity is not unexpected at very low speed. In this case the limits for the actuators are not reached before
the model reaches stall.

The equilibrium surface is a co-dimension one surface in the space of dependent variables. The number
of dependent variables can vary depending on the model and the specific scenario. In the case just described
there are 4. In general, the structure of the surface can be examined by plotting each of the variables against
the parameter, in this case, velocity. The limits of actuation can also be marked on these curves in order to
isolate the relevant equilibria. The stability of the equilibria can be ascertained through examination of the
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Figure .3. Bifurcation curves for pitch angle and thrust Generic Transport Model in level flight with velocity
as a parameter

eigenvalues of the linearized system. Unlike dynamical systems, bifurcation of equilibria in control systems
does not correspond to a change in eigenvalue structure.

IV. Software design

We have designed software with a cross platform front end to guide users define an aircraft flight dynamics
problem or to utilize stored model definitions from a database. The software is developed using rich client
platform tools and architecture is based on plug-ins. We have developed a wizard for model entry and
manipulation as well as visualization tools for plotting the curves. Plug-ins also provide connectivity to
tools developed in Mathematica and MATLAB/Simulink. The software is intended for use by engineers and
scientists, who need to be mobile, work offline, integrate content, collaborate and take advantage of local
or other available computing resources. The database tools associated with the software can store both the
mathematical models and generated results to aid flexibility.

For new model definitions a wizard guides the user through various necessary steps in defining the model.
The model definition begins by storing some general informaion about the model. The model is defined by
entering the various inertial parameters. The multivariate polynomials that define the aerodynamic behavior
of the aircraft can be entered or can be generated from data. When generating the polynomials from data,
selected orthogonal modeling functions are included in the model based on minimizing the predicted square
error. The final identified model consists of selected terms from the multivariate power series expansion for
the dependent variable in terms of the independent variables. The software provides flexibility in entering
the functional descriptions by creating all the terms of the polynomial series automatically. The user then
selects the appropriate terms for the current model. The user has the flexibility to add or remove control
input variables in the framework. The default configuration is customizable making the software flexible in
the ability to accomodate wide range of aircraft models.

After the model parameters and aerodynamic forces and moments are entered the user can assemble the
model using a connection to Mathematica kernel. Mathematica functions have been created to assemble the
smooth model. Additionally, functions to enable trim computations, generation of linear parameter varying
models are also provided. Using assumption of flat earth and rigid body for the aircraft under which the
smooth aerodynamic model applies, we can assemble the nine fundamental equations of motion that include
the force, moment balance and the three kinematic equations for the propagation of the Euler angles, which
describe the attitude of the aircraft, and the rotations are measured from a right handed inertial frame whose
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Figure .4. Model definition using the Java front end of the designed software.

z-axis points to the center of the earth.

The tools for nonlinear analysis are designed to identify control bifurcation points as they relate to the
control of regulated variables, stability limits in the dynamics and saturation of the control surfaces. The
continuation parameters that can be used are set points of regulated variables (such as velocity, flight path
angle, roll angle, etc.), physical aircraft parameters (such as total weight, center of mass, relative location of
center of gravity and aerodynamic center, etc.) or for mishap investigation or safety analysis change in the
actuation parameters (stuck position of the actuation surfaces, etc.). State-space models can be obtained
by inverting the non-singular mass matrix. The bifuration curves can be obtained by previously described
global reparameterization of the equilibrium surface. The data from analysis can be stored in a database
and can be plotted using an Open GL library which is a part of the software. Finally, the models can be
transferred to MATLAB/Simulink for simulation and a 3D viewer for visualization.

V. Conclusions

We have developed a novel continuation procedure to unravel the control bifurcation structure for aircraft
models. Nonlinear analysis techniques have been implemented in symbolic software to aid aircraft safety
goals of control upset prevention and recovery of aircraft. The computational tools can also be employed in
mishap investigation and to guide flight experiments. An example calculation using these tools is presented
for the Generic Transport Model. These tools have been integrated into a stability and bifurcation analysis
software which includes a front end and visualization tools.
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