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Loss-of-Control (LOC) is a major factor in fatal aircraft accidents. Although definitions
of LOC remain vague in analytical terms, it is generally associated with a significantly
diminished capability of the pilot to control the aircraft. In previous work we considered
how the ability to regulate an aircraft deteriorates around stall points. In this paper we
examine how damage to control effectors impacts the capability to keep the aircraft within
an acceptable envelope and to maneuver within it. We show that even when a sufficient
set of steady motions exist, the ability to regulate around them or transition between them
can be difficult and nonintuitive, particularly for impaired aircraft.

Nomenclature

x State vector
y Measurements
z Regulated variables
µ System parameters
u Control inputs
α Angle of attack, deg
β Side slip angle, deg
V Velocity, ft/s
X x inertial coordinate, ft
Y y inertial coordinate, ft
Z z inertial coordinate, ft
p x body-axis angular velocity component, deg/s
q y body-axis angular velocity component, deg/s
r z body-axis angular velocity component, deg/s
u x body-axis translational velocity component, ft/s
v y body-axis translational velocity component, ft/s
w z body-axis translational velocity component, ft/s
φ Euler roll angle, deg
θ Euler pitch angle, deg
ψ Euler yaw angle, deg
Ψ Heading, deg
γ Flight path angle, deg
A System matrix of a linear system
B Control matrix of a linear system
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C Output matrix of a linear system
T Thrust, lbf
δe elevator input, deg
δa Aileron input, deg
δr Rudder input, deg
C envelope
S safe set
U control constraint set
T trim manifold

I. Introduction

There is ample evidence indicating that Loss-of-Control (LOC) is a major factor in fatal aircraft accidents
(for example, [1–3]). While definitions of LOC remain vague in analytical terms,4,5 it is generally

associated with flight outside the normal flight envelope, nonlinear behaviors and, most importantly, with
an inability of the pilot to control the aircraft. In previous work6,7 we considered how controllability and
the ability to regulate an aircraft deteriorate around static bifurcation (stall) points. It was shown that the
correct control strategies in neighborhoods of these points could change abruptly, contributing to confusion
and with the consequent possibility of inappropriate pilot inputs. In [7], we also illustrated how control
bounds can effect the ability of a pilot to keep the aircraft within its admissible flight envelope which
ordinarily excludes such bifurcation points.

In this paper we further examine the issues associated with keeping the aircraft, unimpaired or impaired,
within its prescribed envelope and the extent to which it can maneuver within it. Loosely stated, there are
four basic questions:

1. Is it possible to keep the aircraft within its flight envelope?

2. Can the aircraft maneuver satisfactorily within the envelope?

3. How can departure from it be prevented?

4. How can the aircraft state be restored to the envelope in the event that it departs from it?

Here we focus on the first two questions. The first question can be addressed in terms of the concept of
a safe set or viable set .8,9 Safe set theory could be used as a basis for envelope protection and prevention of
some forms of LOC, but this idea has not been fully developed. The idea of a safe set derives from a decades
old control problem in which the plant controls are restricted to a bounded set U and it is desired to keep
the system state within a convex, not necessarily bounded, subset C of the state space. Feuer and Heyman10

studied the question: under what conditions does there exist for each initial state in C an admissible control
producing a trajectory that remains in C for all t > 0? When C does not have this property we try to identify
the safe set, S, that is, the largest subset of C that does. Clearly, if we wish the aircraft to remain in C, we
must insure that it remains in S.

We would also like to know how the aircraft can maneuver within S. Controlled flight requires the
existence of a suitable set of steady motions and the ability to smoothly transition between them. This
means that we need to understand the equilibrium point structure within S and we need to identify any
impediments to regulating around them or steering from one to another. These questions are examined in
this paper.

Ordinarily, if a an aircraft is impaired we expect that the safe set will shrink. We will show that the
equilibrium point structure within the reduced safe set changes as well and the ability to maneuver is
significantly diminished. Furthermore, control strategies required to execute transition maneuvers and to
regulate around steady motions may be complex and non-intuitive. We suggest this as another mechanism
of LOC. Examples are based on NASA’s Generic Transport Model (GTM).11

The organization of the paper is as follows. In Section II we discuss the GTM and the mathematical
models we use. As a simple illustrative example, we will use the phugoid dynamics of the GTM. This model
is also described. In Section III we discuss the safe set, some of its properties, and provide examples for
unimpaired and impaired aircraft. In Section IV we consider maneuverability and illustrate the effect of
actuator impairment. Finally, Section V contains some concluding remarks.
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II. Dynamics of the GTM

In the subsequent discussion we will provide examples based on NASA’s Generic Transport Model (GTM).
Data obtained from NASA have been used to develop symbolic and simulation models. Nonlinear symbolic
models are used to perform bifurcation analysis and nonlinear control analysis and design. Linear Parameter
Varying (LPV) models are derived from the nonlinear symbolic model and have been used to study the
variation in the structure of the linear control system properties around bifurcation points. Simulation
models are also automatically assembled from the symbolic model in the form of optimized C-code that
compiles as a MEX file for use as an S-function in Simulink. The GTM model is described in Section A.

In the following discussion we will use a simple recurring example to illustrate several important concepts.
The example is based on the phugoid dynamics of the GTM. Besides being a useful example in its own right,
it has the distinct advantage for us in that it has a two dimensional state space allowing us to provide simple
graphical illustrations of complex general principles. In Section B we describe the model and illustrate some
basic steady motions predicted by the phugoid model.

A. The Generic Transport Model

The six degrees of freedom aircraft model has 12 or 13 states depending on whether we use Euler angles or
quaternions. In the Euler angle case the model is generated in the form of Poincaré’s equations,12

q̇ = V (q) p (1)

M (q, µ) ṗ + C (q, µ) p + F (p,q, µ,u) = 0 (2)

where q = (φ, θ, ψ,X, Y, Z)
T

is the generalized coordinate vector and p = (p, q, r, u, v, w)
T

is the (quasi-)
velocity vector. We can combine the kinematics (1) and dynamics (2) to obtain the state equations

ẋ = f(x, u, µ) (3)

where µ ∈ Rk is an explicitly identified vector of distinguished aircraft parameters such as mass or center of
mass location (or even set points for regulated variables), x ∈ Rn is the state vector, and u ∈ Rm is the control
vector. In the Euler angle case, n = 13 and the state is given by x = [φ, θ, ψ,X, Y, Z, p, q, r, u, v, w]T . There
are 4 control inputs, given by u = [T, δe, δa, δr]T . The controls are limited as follows: thrust 0 ≤ T ≤ 40 lbf,
elevator −40◦ ≤ δe ≤ 20◦, aileron −20◦ ≤ δe ≤ 20◦, and rudder −30◦ ≤ δe ≤ 30◦. Velocity is in ft/s.

Aerodynamic models were obtained from NASA. They are based on data obtained with a 5.5 % scale
model in the NASA Langley 14 ft × 22 ft wind tunnel as described in.13 Aerodynamic force and moment
coefficients are generated using a multivariate orthogonal function method as described in.14,15 In the original
NASA model several regions of angle of attack were used to capture severe nonlinearity. These models were
blended using Gaussian weighting. For simplicity we use only one of the models for the analysis herein.

B. The Phugoid Model

The longitudinal dynamics of a rigid aircraft can be written in path coordinates:

θ̇ = q

ẋ = V cos γ

ż = V sin γ

V̇ = 1
m

(
T cosα− 1

2ρV
2SCD (α, δe, q)−mg sin γ

)
γ̇ = 1

mV

(
T sinα+ 1

2ρV
2SCL (α, δe, q)−mg cos γ

)
q̇ = M

Iy
, M =

(
1
2ρV

2S c̄Cm (α, δe, q) + 1
2ρV

2S c̄CZ (α, δe, q) (xcgref − xcg)−mgxcg + ltT
)

α = θ − γ

(4)

A classic analysis problem of aeronautics was introduced by Lanchester16 over one hundred years ago – the
long period phugoid motion of an aircraft in longitudinal flight. The phugoid motion is a roughly constant
angle of attack behavior involving an oscillatory pitching motion with out of phase variation of altitude and
speed. The ability to stabilize the phugoid motion using the elevator or thrust is important. The inability
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to do so has been linked to a number of fatal airline accidents including Japan Airlines Flight 123 in 1985
and United Airlines Flight 232 in 1989.17

We will illustrate several computations by examining the controlled phugoid dynamics of the GTM. The
problem is similar to one considered in [8,18] to illustrate safe set computations. The key assumption is that
pitch rate rapidly approaches zero so that the the phugoid motion is characterized by q ≡ 0. Thus, we must
have

M =
(
1
2ρV

2S c̄Cm (α, δe, q) + 1
2ρV

2S c̄CZ (α, δe, q) (xcgref − xcg)−mgxcg + ltT
)

= 0 (5)

From (5) we obtain a quasi-static approximation for the angle of attack

α = α̂ (V, T, δe) (6)

so that the V − γ equations in (4) decouple from the remaining equations. Thus, we have a closed system
of two differential equations that define the phugoid dynamics:

V̇ = 1
m

(
T cos α̂− 1

2ρV
2SCD (α̂, δe, 0)−mg sin γ

)
γ̇ = 1

mV

(
T sin α̂+ 1

2ρV
2SCL (α̂, δe, 0)−mg cos γ

) (7)

The angle of attack, α can be considered as an output as given by equation (5).
We specify an operating envelope

C = {(V, γ) |90 ≤ V ≤ 240,−22 ≤ γ ≤ 22}

and control restraint set
U = {(T, δe) |0 ≤ T ≤ 40,−40 ≤ δe ≤ 20}

C. Steady Motion

We first examine the trim motion associated with a specified speed and flight path angle. In accordance
with (7), with V and γ specified, we need to find T and δe such that

0 = T cos α̂− 1
2ρV

2SCD (α̂, δe, 0)−mg sin γ

0 = T sin α̂+ 1
2ρV

2SCL (α̂, δe, 0)−mg cos γ
(8)

As an example suppose we wish to examine steady flight with γ = 0 and various speeds. Beginning
with the trim condition: V = 150 fps, γ = 0 deg, T = 4.0991 lbf, δe = 1.725 deg we perform a
continuation analysis to obtain the results in Figure .1. The corrsponding initial value for angle of attack is
α = 2.96644 deg.
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(c) Angle of Attack

Figure .1. The figure shows the trim values for thrust, elevator and angle of attack for various values of
airspeed, V , and γ = 0. Note that the starting point for the continuation is identified by the black dot.

Starting at the black dot, as airspeed drops the trim points follow the lower branch of the thrust and
angle of attack curves and the upper branch of the elevator curve until the bifurcation (stall) point is
reached (V = 85.9150 fps, T = 14.3440 lbf, δe = −11.5059 deg). These are the ‘normal’ trim points, but
the alternate branch is also comprised of viable trim points so long as the thrust and elevator are within
bounds. This observation can be important, as we will see below. We might refer to these as high angle of
attack trim points.
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An essential point is that the control behaviors around trim points on the two branches are considerably
different so that a strategy to regulate around a point on one branch will fail if applied to one on the other
branch. The theoretical basis for this is established in [6,19–21]. We will give a simple example. Consider the
two trim points at 90 fps, the normal trim point, V = 90 fps, γ = 0 deg, T = 7.58222 lbf, δe = −8.22916 deg
and the high angle of attack trim point, V = 90 fps, γ = 0 deg, T = 21.9189 lbf, δe = −13.8494 deg. The
linear dynamics at each of these trim points is, first for the normal trim:

d

dt

[
∆V

∆γ

]
=

[
−0.186044 −33.2125

0.008844275 0.0150152

][
∆V

∆γ

]
+

[
0.449195 62.3033

0.00416546 −0.751226

][
∆T

∆δe

]

and for the high angle of attack trim:

d

dt

[
∆V

∆γ

]
=

[
−0.310011 −33.2514

0.00638713 −0.0338864

][
∆V

∆γ

]
+

[
0.494357 31.5244

−0.00127241 1.22673

][
∆T

∆δe

]

Inspection of the control input matrix shows the reversal of the affect of the elevator, δe. Ay the normal
trim a positive (counterclockwise) rotation of the elevator causes a reduction of the flight path angle, i.e.,
pitch down. On the other hand, at the high angle attack trim a positive elevator rotation causes an increase
in flight path angle.

This behavior is organized by the singular zero dynamics at the bifurcation point that separates the two
branches. The state equations linearized at the bifurcation point are

d

dt

[
∆V

∆γ

]
=

[
−0.27235 −33.8550

0.00791414 −0.00286013

][
∆V

∆γ

]
+

[
0.400642 62.5119

0.00170008 0.265262

][
∆T

∆δe

]

Inspection of the two columns of the control input matrix shows that they are dependent – the second
obtained from the first by multiplication by 156.029. Thus, the controls are redundant. There is only one
effective control direction. The important implication is that, from a linear perspective, both V and γ
cannot be simultaneously regulated.22 Another indication of the degeneracy of the linearized system at the
bifurcation point is the degeneracy of the transfer matrix, G (s), (T, δe)→ (V, γ):

G (s) =
1

s2 + 0.27521s+ 0.268712

[
0.400642s− 0.0564101 62.5119s− 8.80163

0.001700086 + 0.00363376 0.265262s+ 0.566973

]

A simple computation shows that |G (s)| ≡ 0.

III. The Safe Set

The idea of the safe set was introduced in18,23 and subsequently developed in several other papers
including.8,9

A. Control with state and control constraints

All aircraft are required to operate within a specified flight envelope. For example, a typical unimpaired
aircraft will have limitations and on load factor, attitude and speed. Indeed most aircraft employ envelope
protection strategies. While there is no comprehensive theory of envelope protection, it has been addressed
in the literature, for example.23–25 An important factor is that protective control actions are themselves
limited. For example, control surfaces have a restricted range of motion and are limited in the control forces
that can be generated by them.

Consider a controlled dynamical system

ẋ = f (x, u) , x ∈ Rn, u ∈ U ⊂ Rm (9)

where the set U is closed, bounded and convex. Also, suppose the desired envelope is a convex, not necessarily
bounded, subset C of the state space Rn. Feuer and Heyman10 study the general control problem of interest.
Specifically, under what conditions does there exist for each x0 ∈ C a control u (t) ⊂ U and a corresponding
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unique solution x (t;x0, u) that remains in C for all t > 0? While some basic results are provided in [10], the
general case is unresolved. Concrete results have subsequently been obtained for special cases, particularly
for linear dynamics with polyhedral constraint sets.8,9, 18,26–30 In the following paragraphs we apply some
of the more recent results.8,9, 18

Suppose that prescribed envelope C is defined by

C = {x ∈ Rn |l (x) > 0} (10)

where l : Rn → R is continuous. The boundary of C is the zero level set of l, i.e., ∂C = {x ∈ Rn |l (x) = 0}.

Definition 3.1 (Controlled-Invariant Set) A set I is a controlled-invariant set over a time interval
[t, T ], if for each x (t) ∈ I there exists a control u (τ) ∈ U , τ ∈ [t, T ] such that the solution of (9) emanating
from x (t), φ (τ ;x (t) , u (·)), defined on τ ∈ [t, T ] is entirely contained in I.

Definition 3.2 (Safe Set) Given the envelope C as defined in (10), the safe set is defined as the largest
controlled-invariant set on [t, T ] contained in C, i.e.,

S (t, C) = {x ∈ Rn |∃u (τ) ⊂ U ,∀τ ∈ [t, T ] : φ (τ ;x (t) , u (·)) ⊂ C } (11)

Several investigators have considered the computation of the safe set, the most compelling of which
involve solving the Hamilton-Jacobi equation. We describe one of several variants; this one due to Lygeros.8

The main result in [8] is the following. Suppose V (x, t) is a viscosity (or, weak) solution of the terminal
value problem

∂V

∂t
+ min

{
0, sup

u∈U

∂V

∂x
f (x, u)

}
= 0, V (x, T ) = l (x) (12)

then
S (t, C) = {x ∈ Rn |V (x, t) > 0} (13)

The function V (x, t) is in fact the ‘cost-to-go’ associated with an optimal control problem in which the goal
is to choose u (t) so as to maximize the minimum value of l (x (t)). The function V (x, t) inherits some nice
properties from this fact. For instance it is bounded and uniformly continuous. Define the Hamiltonian

H (p, x) = min

{
0, sup

u∈U
pT f (x, u)

}
(14)

so that (12) can be rewritten:

∂V

∂t
+H

(
∂V

∂x
, x

)
= 0, V (x, T ) = l (x) (15)

V (x, t) is the unique, bounded and uniformly continuous solution of (12) or (15). Notice that the control
obtained in computing the Hamiltonian (14) insures that when applied to each state along any trajectory
initially inside of S the resulting trajectory will remain in S. It follows that this control should be applied
for states on its boundary to insure that the trajectory does not leave S.

The envelope defined by (10) can be generalized to an envelope with piecewise continuous boundary. For
example, suppose the envelope is defined by

C = {x ∈ Rn |li (x) > 0, i = 1, . . . ,K } (16)

Where each of the li (x) are continuous functions. Then we need to solve K problems with

Cj = {x ∈ Rn |lj (x) > 0} , j = 1, . . . ,K

to obtain the largest control invariant set in each Cj and then take their intersection. There are many physical
problems in which the tracking of moving boundaries separating to regions of space are important. So it is
not surprising that the numerical computation of propagating surfaces is a mature field. The most powerful
methods exploit the connection with the Hamilton-Jacobi equation and associated conservation laws; see the
survey [31].
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Figure .2. Safe set with various levels of elevator impairment. The figure on the left shows the safe set for
the unimpaired aircraft in which case the elevator position ranges from -40 deg (-0.698 rad) to +20 deg (0.349
rad). It is the entire envelope. In the center figure, the elevator motion is restricted in the positive direction
to + 3 deg. On the right is the safe set for the aircraft with elevator jammed at 3 deg. The safe set is the
subset of the flight envelope bounded by the black curve.

B. Example: GTM Phugoid Motion

Figure .2 shows the safe set, S for unimpaired and impaired aircraft. As expected, the safe set shrinks
when the aircraft is impaired. The points in C\S produce trajectories that exit the envelope. With limited
control authority the safe set is reduced in lower left quadrant of (b,c) because at slower speeds, even with
the application of both maximum thrust and elevator deflection, it is not possible to generate enough lift to
prevent the aircraft from descending along an unacceptably low flight path angle and leaving the prescribed
envelope C. In the case where the elevator is jammed, the safe set is reduced in the upper right quadrant
(c) where the higher speeds cause excessive lift to be generated forcing the aircraft to ascend along a flight
path angle which exceeds the upper bound of C.

IV. Maneuverability

Diminished maneuverability is a central aspect of LOC - whether due to impairment of the aircraft or
its entry into an unfavorable flight regime. Maneuverability performance is usually assessed by evaluating
an aircraft’s capability to perform certain basic tasks under a variety of conditions. Such tasks – including
wings level climb and descent, coordinated turns, pull-ups and push-downs – correspond to steady-state or
equilibrium motions in an appropriate mathematical setting. The vehicle must be able to transition between
these steady motions.

In earlier work6 we introduced an approach to investigating steady motions of aircraft by examining
the equilibrium point structure of a regulator problem associated with the desired motion. We used a
continuation method to identify bifurcation surfaces in multi-parameter problems and linked bifurcation
points to structural instability of the zero dynamics. The limits imposed on the ability of a vehicle to
perform a maneuver where thereby associated with both the absence of appropriate equilibria for certain
parameter values and also with the difficulty to regulate the vehicle when operating near the bifurcation sets.
These ideas were further developed and applied in several papers including [7, 32, 33]. A somewhat similar
approach was recently given by Goman et al,34 referred to therein as a constrained trim formulation. The
stability of each equilibrium point is evaluated but no connections are made to control system properties as
advocated in [6].

A. Basic Steady Maneuvers of Rigid Aircraft

For commercial aircraft the most basic and important steady motion are:

1. straight, level, climbing and descending flight,

2. coordinated turns, level, climbing and descending

In [7] we used a continuation method to examine these motions specifically for the GTM. We studied
the limits imposed on these motions by stall bifurcation points and examined the control system behavior
around these points. Using the results of [6] we argued that regulated flight near stall is difficult because of
the structurally unstable zero dynamics.
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Of course, not all points identified in a continuation computation are feasible trim conditions. Equilibria
with control values outside of the control restraint set need to be excluded. This obvious fact has significant
implications as we will see below.

The idea of aircraft trim is so broadly entrenched that one would assume it requires no further discussion.
However, there are subtleties that we need to explore. A general formulation is as follows. Assume the aircraft
is described by the state equations in the form of (1) and (2), or (3).

Definition 4.3 (Steady Motion) A steady motion is one for which all 6 velocities are constant, i.e.,
u̇ = 0, v̇ = 0, ẇ = 0, (equivalently, V̇ = 0, α̇ = 0, β̇ = 0) and ṗ = 0, q̇ = 0, ṙ = 0. From (2)

F (0,q, µ,u) = 0 (17)

The steady motion requirement, (17), provides six equations to which we add a set of n + m − 6 trim
equations:

0 = h (x, u, µ) (18)

Equations (17) and (18) form a set of n + m equations in n + m + k variables. Ordinarily we fix the k
parameters, µ and solve for the remaining n+m variables – the state x and the control u.

Definition 4.4 (Trim Point) Given the steady motion equation (17), the trim condition (18), an envelope
C and a control restraint set U , a viable trim point or simply a trim point, with respect to the fixed parameter
µ is a pair (x, u) that satisfies (17) and (18) and also x ∈ C, u ∈ U . The set of viable trim points is called
the trim set, T .

The important point is that for a prescribed trim condition (18) there are often multiple viable trim
points. The general study of the trim point structure as a function of the parameters is a problem of static
bifurcation analysis.6,7, 33,35,36 When k = 1 this can be carried out using a continuation method. Let us
consider two examples of the trim condition for the six degree of freedom model described in Section II. In
this case we have four controls. First consider straight wings-level flight:

1. speed, V = V ∗

2. constant roll, pitch and heading, φ̇ = 0, θ̇ = 0, ψ̇ = 0

3. roll angle, φ = 0

4. flight path angle, sin γ∗ + cos θ (cosβ cosφ sinα+ sinβ sinφ)− cosα cosβ sin θ = 0

Now, consider a coordinated turn. In this case the aircraft rotates at constant angular velocity, ω∗ about
the inertial z-axis. Thus the attitude of the aircraft varies periodically with time.

1. speed, V = V ∗

2. coordinate turn condition, pV cosβ sinα− rV cosβ cosα+ g cos θ sinφ = 0

3. angular velocity, p = −ω∗ sin θ, q = ω∗ cos θ sinφ, r = ω∗ cos θ cosφ

4. flight path angle, sin γ∗ + cos θ (cosβ cosφ sinα+ sinβ sinφ)− cosα cosβ sin θ = 0

We generally view the set of trim viable trim points, T , in the state-control-parameter space, X×U×M ⊂
Rn+m+k. Typically, the set of trim conditions is a smooth k-dimensional submanifold of this n + m + k-
dimensional manifold. It is common practice in bifurcation theory to project T onto the parameter space
M. The result is the bifurcation picture. The folds of T project onto M as k − 1-dimensional submanifolds
of M. So they partition M into k-dimensional disjoint regions. Each region contains a distinct number of
trim points.

If we project T onto the n-dimensional state space X the result is a k-dimensional subset (possibly quite
complex) of X that is also partitioned into subsets by the folds of T . Again each subset is associated with
a distinct number of trim points. The significance of this is that the process identifies the possible trim
states and identifies the number of trim points associated with each such state. This is important for control
analysts and designers concerned with state to state transitions.
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B. Example: GTM Phugoid Model

We would expect that since the unimpaired aircraft has two independent controls and only two states that
every point in the envelope could be made an equilibrium point by proper choice of control. The only issue
is that the controls are bounded. However, the situation is more complicated than that. In fact, in this
case there is one and sometimes two admissible control pairs for which each point in the state space can be
made an equilibrium point. Even so, maneuverability can be problematic. To understand the problem, first
compute the values of the controls (T, δe) required to force an arbitrary point (V, γ) to be an equilibrium
point.
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Figure .3. The figure on the left shows thrust as a function of V for various values of γ. The curve on the
right shows the corresponding values of elevator position. The lower branch of the thrust curves correspond
to the upper branch of the elevator curves.

The results of these computations are shown in Figure .3. Each curve shows thrust or elevator position as
a function of speed, V , for fixed flight path angle, γ. Each curve has two branches that meet at the bifurcation
point corresponding to the stall point. As before in Figure .1, the lower thrust branch corresponds to the
upper elevator branch and these trim points correspond to normal flight.
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(b) Restricted Elevator
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(c) Jammed Elevator

Figure .4. Each state (V, γ) in the flight envelope can be made an equilibrium point by proper selection of
control pairs (T, δe). However, at some states, there are two admissible trim conditions and at others only one
or none at all.

Notice in Figure .3 that most of the curves indicate that there are two trim conditions – one normal and
one high angle of attack – for which thrust, T , and elevator position, δe are within their bounds. However,
some descending flight path angles require require negative thrust at lower velocities in order to achieve the
normal trim. So these are not valid equilibria. The situation is summarized in Figure .4 – the unimpaired
case. The difficulty is that in the region admitting two trim conditions normal flight is achievable but in the
region admitting one, only the high angle of attack trim is possible. Transition from normal to high angle
of attack trim (or vis-versa) is difficult because of the elevator reversal. The pilot (or auto-pilot) needs to
recognize the need to change control strategy accordingly. Of course, this picture is altered in significant
ways if flaps, spoilers even landing gear are deployed.

In the restricted elevator case shown in Figure .4 the elevator range of motion is limited in the positive
direction to 3 degrees. This severely limits the region of normal flight trim which is possible only in the
area identified as having two trim conditions. Once again transition to flight out of this region requires a
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change to high angle of attack trim, which involves a significant increase in throttle, a decrease in elevator
and results in a reversal in the effect of elevator.

V. Conclusions

In this paper we continue an examination of mechanisms of LOC. The main focus here is on the impact
of control constraints, including those induced by actuator impairment, on the maneuverability within the
admissible flight envelope. We used the phugoid dynamics of the GTM to provide a simple illustration of
safe set computation and the effect of failures on the safe set. We examined maneuverability by identifying
steady motions within the safe set and illustrated how the set of trim points can change structure when
actuator impairment occurs.

An aircraft is trimmed to achieve a desired steady motion such as straight and level flight or a coordinated
turn. The specification expressed as a set of algebraic equations is called the trim condition. The specification
is generally made in terms of a set of k parameters. For example, in the case of straight and level flight we
might consider speed and flight path angle to be parameters (k = 2). In the case of a coordinated turn we
might consider, speed, flight path angle and angular velocity (equivalently, turn radius), so k = 3. To achieve
the specified trim we need to identify the required controls and the associated state. These are obtained as
solutions to the trim equations. For each trim condition and fixed parameters there may be zero, one, or
more corresponding pairs of control and state values. We call these the trim points corresponding to the
trim condition. For a trim point to be viable, the control must be within the allowable control set and the
state must be within the safe set. The trim condition is viable only if it is associated with at least one viable
trim point.

The trim equations depend on the values specified for the k trim parameters. This is a classic static
bifurcation problem. Typically, the solution set is a smooth k-dimensional submanifold of an n + m + k-
dimensional space of states, controls and parameters. The solution manifold is divided into components by
co-dimension one bifurcation sets. In general, we can associate each trim point with a specific component of
the solution manifold. In the phugoid example, the two dimensional solution set has two components. We
identified these as normal and high angle of attack. Not all of these are viable.

We considered transitions between trim points and showed that transition from one trim condition could
require moving from one trim point to another which belongs to a different component. In this case, the
control properties at the two trim conditions would be quite different, thereby requiring a change in strategy
for regulating around the new trim condition.
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