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Loss-of-Control (LOC) is a major factor in fatal aircraft accidents. Although de�-

nitions of LOC remain vague in analytical terms, it is generally associated with �ight

outside of the normal �ight envelope, with nonlinear in�uences, and with a signi�cantly

diminished capability of the pilot to control the aircraft. Primary sources of nonlin-

earity are the intrinsic nonlinear dynamics of the aircraft and the state and control

constraints within which the aircraft must operate. This paper examines how these

nonlinearities a�ect the ability to control the aircraft and how they may contribute

to loss-of-control. Speci�cally, the ability to regulate an aircraft around stall points is

considered, as is the question of how damage to control e�ectors impacts the capability

to remain within an acceptable envelope and to maneuver within it. It is shown that

even when a su�cient set of steady motions exist, the ability to regulate around them

or transition between them can be di�cult and nonintuitive, particularly for impaired

aircraft. Examples are provided using NASA's Generic Transport Model.
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Nomenclature

x State vector

y Measurements

z Regulated variables

µ Bifurcation parameter

u Control inputs

α Angle of attack, rad

β Side slip angle, rad

V Airspeed, ft/s

X x inertial coordinate, ft

Y y inertial coordinate, ft

Z z inertial coordinate, ft

p x body-axis angular velocity component, rad/s

q y body-axis angular velocity component, rad/s

r z body-axis angular velocity component, rad/s

u x body-axis translational velocity component, ft/s

v y body-axis translational velocity component, ft/s

w z body-axis translational velocity component, ft/s

φ Euler roll angle, rad

θ Euler pitch angle, rad

ψ Euler yaw angle, rad

Ψ Heading, rad

γ Flight path angle, rad

p Quasi-velocity vector

q Generalized coordinate vector

V Kinematic matrix

M Inertia matrix

C Gyroscopic matrix
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F Generalized force vector

CX Aerodynamic coe�cient, force x body axis

CY Aerodynamic coe�cient, force y body axis

CZ Aerodynamic coe�cient, force z body axis

CL Aerodynamic coe�cient, moment about x body-axis

CM Aerodynamic coe�cient, moment about y body-axis

CN Aerodynamic coe�cient, moment about z body-axis

CD Aerodynamic drag coe�cient, force x wind-axis

CL Aerodynamic lift coe�cient, force z wind-axis

c̄ Mean aerodynamic cord, ft

S Reference wing area, ft2

xcg Center of mass location body x coordinate, ft

xcgrefCenter of mass reference location body x coordinate, ft

α̂ Quasi-static approximation for angle of attack

A System matrix of a linear system

B Control matrix of a linear system

C Output matrix of a linear system

J Jacobian matrix of a multivariable vector function

λ, ṽ Eigenvalue and eigenvector of the Jacobian matrix J

T Thrust, lb

lt Engine location, z-coordinate, ft

M Aerodynamic moment about y body axis, lbf-ft

m Mass, slugs

Ij Inertia parameters about j-axis, j=x,y,z

g Gravitational constant

ρ air density, lb/ft3

δe Elevator de�ection, rad

δa Aileron de�ection, rad
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δr Rudder de�ection, rad

σmin Minimum singular value

X State space

C Envelope

U Control constraint set

S Safe set

T Trim manifold

I. Introduction

R
ecent published data shows that during the ten year period 1997-2006, 59% of fatal aircraft

accidents were associated with Loss-of-Control (LOC) [1]. Yet the notion of loss-of-control is

not well-de�ned in terms suitable for rigorous control systems analysis. The importance of LOC

is emphasized in [2] where the inadequacy of current de�nitions is also noted. On the other hand,

�ight trajectories have been successfully analyzed in terms of a set of �ve two-parameter envelopes to

classify aircraft incidents as LOC [3]. As noted in that work, LOC is ordinarily associated with �ight

outside of the normal �ight envelope, with nonlinear behaviors, and with an inability of the pilot

to control the aircraft. The results in [3] provide a means for analyzing accident data to establish

whether or not the accident should be classi�ed as LOC. Moreover, they help identify when the

initial upset occurred, and when control was lost. The analysis also suggests which variables were

involved, thereby providing clues as to the underlying mechanism of upset. However, it does not

provide direct links to the �ight mechanics of the aircraft, so it cannot be used proactively to identify

weaknesses or limitations in the aircraft or its control systems. Moreover, it does not explain how

departures from controlled �ight occur. In particular, we would like to know how environmental

conditions (like icing) or faults (like a jammed surface or structural damage) impact the vulnerability

of the aircraft to LOC.

LOC is essentially connected to the nonlinearity of the �ight control problem. Nonlinearity

arises in two ways: 1) the intrinsic nonlinearity of the aircraft dynamics, and 2) through state and
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control constraints. This paper considers control issues that arise from both sources.

First, the implications of the nonlinear aircraft dynamics are considered. Bifurcation analysis

is used to study aircraft control properties and how they change with the �ight condition and

parameters of the aircraft. The paper extends results previously introduced in [4, 5]. There it

was shown that the ability to regulate a system is lost at points associated with bifurcation of

the trim equations; ordinarily indicating stall in an aircraft. Such a bifurcation point is always

associated with a degeneracy of the zero structure of the system linearization at the bifurcation

point. Such degeneracies include loss of (linear) controllability or observability, redundant controls

(rank degeneracy of the B matrix) and/or redundant outputs (rank degeneracy of the C matrix). As

such points are approached, the ability to regulate degrades so that the performance of the regulator

(or pilot) may deteriorate before the bifurcation point is actually reached. The equilibrium surface

or set of trim conditions is a submanifold of the state-control-parameter space that is divided into

open sets by the bifurcation points. Within each region a linear regulator can be designed. However,

a regulator designed in one region will fail if applied in a neighboring region [6]. The key implication

of this result is that at the boundary of these sets, i.e., near stall bifurcation points, the strategy

required for regulating the aircraft is super-sensitive to parameter variations. Accordingly, we say

that the property of regulation is structurally unstable at bifurcation points.

Second, the question of how state and control constraints relate to LOC is considered. The

Commercial Aviation Safety Team (CAST) de�nes in-�ight LOC as a signi�cant deviation of the

aircraft from the intended �ight path or operational envelope [7]. The �ight envelope represents a set

of state constraints, so the control issues associated with preventing departure from the constraint

set is considered. The notion of a safe set [8] or viable set [9] is central to this analysis. Suppose an

acceptable operating envelope is speci�ed as a domain C in the state space. The idea of a safe set

derives from a decades old control problem in which the plant controls are restricted to a bounded

set U and it is desired to keep the system state within a convex, not necessarily bounded, subset C

of the state space. Feuer and Heyman [10] studied the question: under what conditions does there

exist for each initial state in C an admissible control producing a trajectory that remains in C for

all t > 0? When C does not have this property we try to identify the safe set, S, that is, the largest
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subset of C that does. Clearly, if if it is desired that the aircraft remain in C, it must be insured

that it remains in S.

The safe set S is the largest positively controlled-invariant set contained in C. Safe set theory

could be used as a basis for design of envelope protection systems, but this idea has not been fully

developed. It is also important to know the extent to which the aircraft can maneuver within

S. Controlled �ight requires the existence of a suitable set of steady motions and the ability to

smoothly transition between them. This means that it is necessary to understand the equilibrium

point structure within S and to identify any impediments to regulating around them or steering

from one to another. These questions are examined in this paper.

Ordinarily, if an aircraft is impaired it is to be expected that the safe set will shrink. It will

be shown that the equilibrium point structure within the reduced safe set changes as well and the

ability to maneuver is signi�cantly diminished. Furthermore, control strategies required to execute

transition maneuvers and to regulate around steady motions may be complex and non-intuitive.

This may be another mechanism of LOC.

This paper will discuss LOC in terms of controllability/observability, bifurcation analysis, and

safe sets analysis. The inter-relationships between these attributes and their relationship to aircraft

LOC will be examined. Investigating LOC requires the use of aircraft dynamical models that are

accurate outside of the normal �ight envelope. In particular it is necessary to characterize post stall

and spin behaviors that are often associated with LOC events. Until recently, such models were

not available for large transport aircraft. Recent and ongoing work at the NASA Langley Research

Center has focused on building aerodynamic models adequate for simulation and analysis in these

regimes [11, 12]. A central element in this e�ort is NASA's Generic Transport Model (GTM) [13] �

a 5.5 % dynamically scaled commercial transport model. The GTM will be used to provide analysis

examples.

The organization of the paper is as follows. Section II provides a short discussion and literature

review of the LOC problem. In Section III the six degrees of freedom GTM mathematical model

we use is described. As a simple illustrative example, the phugoid dynamics of the GTM is also

employed. This model is also described. Section IV addresses the bifurcation analysis of controlled
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dynamical systems. Control issues that arise near stall are speci�cally addressed. Uncontrolled

departures of the GTM near stall are illustrated as well as some �rst illustrations of recovery from

post departure states. In Section VI the safe set and some of its properties are discussed along

with examples for unimpaired and impaired aircraft. In Section VII maneuverability is considered

and the e�ects of actuator impairment are illustrated. Finally, Section VIII contains concluding

remarks.

II. The Loss-of-Control Problem

Although the majority of fatal aircraft crashes over the past decade or so have been attributed to

LOC, its meaning is ambiguous. Generally, a pilot will report LOC if the aircraft does not respond

as expected. Consequently, pilot experience can be a major variable in assessing LOC. What LOC

is to one pilot may not be to another. Recently, Wilborn and Foster [3] have proposed quantitative

measures of LOC. These Quantitative Loss-of-Control (QLC) metrics consist of envelopes de�ned

in two dimensional parameter spaces. Based on the analysis of 24 data sets compiled by the CAST

Joint Safety Analysis Team (JSAT) for LOC [7] �ve envelopes have been de�ned:

1. Adverse Aerodynamics Envelope: (normalized) angle of attack vs. sideslip angle

2. Unusual Attitude Envelope: bank angle vs. pitch angle

3. Structural Integrity Envelope: normal load factor vs. normalized air speed

4. Dynamic Pitch Control Envelope: dynamic pitch attitude (θ + θ̇∆t) vs. % pitch control

command

5. Dynamic Roll Control Envelope: dynamic roll attitude (φ+ φ̇∆t) vs. % lateral control com-

mand

The authors provide a compelling discussion of why these envelopes are appropriate and useful.

Flight trajectories from the 24 CAST data sets are plotted and the authors conclude maneuvers

that exceed three or more envelopes can be classi�ed as LOC, those that exceed two are borderline

LOC and normal maneuvers rarely exceed one. According to Ref. [3], the precipitating events of the
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CAST LOC incidents were: stalls (45.8%), sideslip-induced rolls (25.0%), rolls from other causes

(12.5%), pilot-induced oscillation (12.5%) , and yaw (4.2%).

These results are important. They provide a means for analyzing accident data to establish

whether or not the accident should be classi�ed as LOC. Moreover, they help identify when the

initial upset occurred, when control was lost and suggest which variables were involved. However,

because the approach does not directly connect to the �ight mechanics of the aircraft, it does not

identify weaknesses or limitations in the aircraft or its control systems. Moreover, it does not explain

how departures from controlled �ight occur. In particular, we would like to know how environmental

conditions or actuator failures or structural damage impact the vulnerability of the aircraft to LOC.

To do this we need a formal analytical de�nition of LOC.

Another important study [2] reviews 74 transport LOC accidents in the �fteen year period

1993-2007. Of these the major underlying causes of LOC are identi�ed as stalls, ice contaminated

airfoils, spatial disorientation, and faulty recovery technique.

A recent study [14] goes further, investigating 126 LOC accidents that span three decades from

1979-2009. Accident reports were used to identify fourteen causal and contributing events. These

fourteen events are grouped into three broad categories:

1. Adverse onboard conditions

2. External hazards and disturbances

3. Vehicle upsets

The analysis identi�es six events divided amongst these categories as the most signi�-

cant contributors to LOC incidents in terms of the number of fatalities: Category 1 � Sys-

tem Faults/Failures/Errors, Vehicle Impairment/Damage, Inappropriate Crew Response; Cate-

gory 2 � Atmospheric Disturbances related to Wind Shear/Gusts, and Snow/Icing; Category 3

� Stall/Departure from controlled �ight.

Most importantly, the authors note that almost all LOC incidents involve a sequence of events.

They observe that vehicle upsets are rarely the precipitating factor in the LOC sequence, but most

LOC sequences include vehicle upset somewhere in the chain of events. Vehicle upset category
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includes �ve events:

1. Abnormal attitude

2. Abnormal airspeed, abnormal angular rates, asymmetric forces

3. Abnormal �ight trajectory

4. Uncontrolled descent

5. Stall, departure from controlled �ight

Of these, Stall/departure is clearly the most prevalent. The prevalence of stalls in LOC incidents

suggests the importance of bifurcation behavior as a factor in LOC. We discuss this further in

Section IV.

An aircraft must operate in multiple modes that have signi�cantly di�erent dynamics and

control characteristics; for example, cruise and landing con�gurations. Within each mode there

may be some parametric variation, such as weight or center of mass location, that also a�ects

aircraft behavior. Each mode has associated with it a �ight envelope restricting speed, attitude and

other �ight variables. Under normal conditions keeping within the �ight envelope provides su�cient

maneuverability to perform the mode mission while insuring structural integrity of the vehicle for all

admissible parameter variations and all anticipated disturbances. Abnormal conditions, e.g., icing,

faults or damage, will alter aircraft dynamics and may require the de�nition of a new mode with its

own �ight envelope.

Ordinarily a �ight envelope can be considered a convex polyhedral set, not necessarily bounded,

in the state space. Thus, the aircraft needs to operate within the state constraints imposed by the

envelope. Insuring that an aircraft remains within its �ight envelope is called envelope protection.

Envelope protection is generally the responsibility of the pilot but there is an increasing interest in

the use of automatic protection systems [15�18], although these are not foolproof.

Because the controls themselves as well as the states are constrained, the question of whether

it is even possible to keep the aircraft within the envelope is not trivial. Questions like this have

been considered in the control literature [8, 9, 19�22]. In Section VI below we discuss the problem
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of identifying the largest set within a prescribed envelope that can be made positively invariant and

of characterizing the control strategy necessary to do so. This set will be called the safe set. It is

possible to be inside of the envelope and yet outside of the safe set. In which case it is impossible,

no matter how clever the pilot or the control system, to keep the aircraft within its �ight envelope.

In a strict sense departure from the safe set implies LOC. It may, of course, be possible to employ

a recovery strategy to restore the system to the safe set. So an aircraft may be out of control and

yet recoverable. Indeed, there it is generally believed that most unimpaired transport aircraft are

recoverable if timely remedial action is initiated.

Besides the control bounds, other restrictions may be placed on the admissible controls that

could further restrict the safe set. For instance, we could require that only smooth feedback controls

be employed. These and related issues will be discussed below.

III. Dynamics of the GTM

In the subsequent discussion we will provide examples based on NASA's Generic Transport

Model (GTM). Data obtained from NASA have been used to develop symbolic and simulation

models. Nonlinear symbolic models are used to perform bifurcation analysis and nonlinear control

analysis and design. Linear Parameter Varying (LPV) models are derived from the nonlinear sym-

bolic model and have been used to study the variation in the structure of the linear control system

properties around bifurcation points. Simulation models are also automatically assembled from the

symbolic model in the form of optimized C-code that compiles as a MEX �le for use as an S-function

in Simulink. The GTM model is described in Section IIIA.

In addition to the full six degrees of freedom model, we will also present examples using only the

phugoid dynamics of the GTM. Besides being a useful example in its own right, it has the distinct

advantage for us in that it has a two dimensional state space allowing us to provide simple graphical

illustrations of complex general principles. In Section III B we describe the model.

A. The Generic Transport Model

The six degrees of freedom aircraft model has 12 or 13 states depending on whether we use Euler

angles or quaternion for attitude characterization. In the Euler angle case the model is generated
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in the form of Poincaré's equations [23],

q̇ = V (q)p (1)

M (q) ṗ+C (q,p)p+ F (p,q,u) = 0 (2)

where q = (φ, θ, ψ,X, Y, Z)
T
is the generalized coordinate vector, p = (p, q, r, u, v, w)

T
is the quasi-

velocity vector. Alternatively, it is sometimes necessary to replace the Euler angles φ, θ, ψ with the

quaternion q0, q1, q2, q3. The key parameters in the formulation are: the kinematic matrix V (q), the

inertia matrixM (q), the gyroscopic matrixC (q,p). The force function F (p,q,u) includes all of the

aerodynamic, engine and gravitational forces and moments. Ultimately the engine and aerodynamic

forces depend on the control inputs u. We can combine the kinematics (1) and dynamics (2) to

obtain the state equations

ẋ = f(x, u, µ) (3)

where µ ∈ Rk is an explicitly identi�ed vector of distinguished aircraft parameters such as mass

or center of mass location (or even set points for regulated variables), x ∈ Rn is the state vector,

and u ∈ Rm is the control vector. In the Euler angle case, n = 12 and the state is given by

x = [φ, θ, ψ,X, Y, Z, p, q, r, u, v, w]T . There are 4 control inputs, given by u = [T, δe, δa, δr]
T . The

controls are limited as follows: thrust 0 ≤ T ≤ 40 lbf, elevator −40◦ ≤ δe ≤ 20◦, aileron −20◦ ≤

δa ≤ 20◦, and rudder −30◦ ≤ δr ≤ 30◦. Velocity is in ft/s.

Aerodynamic models were obtained from NASA. They are based on data obtained with a 5.5

% scale model in the NASA Langley 14 ft × 22 ft wind tunnel as described in [12]. Aerodynamic

force and moment coe�cients are generated using a multivariate orthogonal function method as

described in [24, 25]. In the original NASA model several regions of angle of attack were used to

capture severe nonlinearity. These models were blended using Gaussian weighting. For simplicity

we use only one of the models for the analysis herein.

B. The Phugoid Model

The longitudinal dynamics of a rigid aircraft can be easily derived from the six degrees of

freedom model by restricting motion to the longitudinal variables. When written in �ight path
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coordinates the longitudinal model takes the form:

θ̇ = q

ẋ = V cos γ

ż = V sin γ

V̇ = 1
m

(
T cosα− 1

2ρV
2SCD (α, δe, q)−mg sin γ

)
γ̇ = 1

mV

(
T sinα+ 1

2ρV
2SCL (α, δe, q)−mg cos γ

)
q̇ = M

Iy
, M =

(
1
2ρV

2S c̄CM (α, δe, q) + 1
2ρV

2S c̄CZ (α, δe, q) (xcgref − xcg)−mgxcg + ltT
)

α = θ − γ

(4)

A classic analysis problem of aeronautics was introduced by Lanchester [26] over one hundred years

ago � the long period phugoid motion of an aircraft in longitudinal �ight. The phugoid motion is a

roughly constant angle of attack behavior involving an oscillatory pitching motion with out of phase

variation of altitude and speed. The phugoid mode is the primary mode to be regulated during

landing and it is often unstable. The ability to stabilize the phugoid motion using the elevator

or thrust is important and ordinarily quite easy for unimpaired aircraft. The inability to do so,

however, has been linked to a number of fatal airline accidents including Japan Airlines Flight 123

in 1985 and United Airlines Flight 232 in 1989 [27].

We will illustrate several computations by examining the controlled phugoid dynamics of the

GTM. The problem is similar to one considered in [9, 28] to illustrate safe set computations. The key

assumption is that pitch rate rapidly approaches zero so that the the phugoid motion is characterized

by q ≡ 0. Thus, we must have

M =
(

1
2ρV

2S c̄CM (α, δe, q) + 1
2ρV

2S c̄CZ (α, δe, q) (xcgref − xcg)−mgxcg + ltT
)

= 0 (5)

From equation (5) we obtain a quasi-static approximation for the angle of attack

α = α̂ (V, T, δe) (6)

so that the V − γ equations in (4) decouple from the remaining equations. Thus, we have a closed

system of two di�erential equations that de�ne the phugoid dynamics:

V̇ = 1
m

(
T cos α̂− 1

2ρV
2SCD (α̂, δe, 0)−mg sin γ

)
γ̇ = 1

mV

(
T sin α̂+ 1

2ρV
2SCL (α̂, δe, 0)−mg cos γ

) (7)
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The angle of attack, α can be considered as an output as given by equation (5).

We specify an operating envelope

C = {(V, γ) |90 f/s ≤ V ≤ 240 f/s,−22◦ ≤ γ ≤ 22◦ }

and control restraint set

U = {(T, δe) |0 ≤ T ≤ 40 lbf,−40◦ ≤ δe ≤ 20◦ }

IV. Aircraft Trim and Bifurcation Analysis

Departures from controlled �ight like stall and spin have concerned aircraft engineers from the

earliest days of �ight. In recent years departure has been analyzed by using a combination of

simulation and �ight test (with manned aircraft or scale models - see, for example, the informative

report [29]). An example, that may be considered `state-of-the-art' for studies of this type, concerns

the falling leaf and related behaviors of the F-18 [30�32]. Only in the past two decades have formal

methods of bifurcation analysis been applied to aircraft [4, 33�42]. Bifurcation analysis has been

employed to identify the conditions for occurrence of undesirable behaviors, to investigate recovery

methods from dangerous post bifurcation modes and to formulate feedback control systems that

modify bifurcation behavior.

In this paper the regulation of aircraft to a desired trim condition is considered. In general the

equations of motion of a rigid aircraft involve six degrees of freedom involving the six coordinates

φ, θ, ψ,X, Y, Z and six quasi-velocities p, q, r, u, v, w. If the change in density with altitude variation

is ignored and the atmosphere is assumed still, then the dynamics are invariant with respect to

(X,Y, Z) and ψ. Consequently, in the study of steady motions it is usual to ignore the inertial

location and also yaw, and consider only the six velocities and pitch and roll of the vehicle. The

reduced dynamics comprise an eight dimensional system of state equations (n = 8) that are nonlinear

and may be parameter dependent. Of concern are steady motions that can be de�ned in terms of

these variables. In particular, these motions are trajectories in inertial space, that can be associated

with equilibria of the eight state system. It is important to know whether or not it is possible to

regulate to and steer along these motions. This naturally leads to the study of the existence and

stabilizability of equilibria of the reduced nine state system.
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It is important to emphasize that most applications of bifurcation analysis to aircraft view the

aircraft as a dynamical system in which the control inputs are treated as the bifurcation parameters.

In this work, as in [4], the system is viewed as a control system, that is, a dynamical system with an

input-output structure as well as parameters. Consequently the bifurcation points are linked with

control system properties like controllability and observability rather than stability. This gives a

unique view of how operation near bifurcation points impacts the ability to control the aircraft.

A. Trim conditions

The idea of aircraft trim is so broadly entrenched that one would assume it requires no further

discussion. However, there are subtleties that need to be explored. A general formulation is as

follows. Assume the aircraft is described by the state equations in the form of (1) and (2), or (3).

De�nition 1. Steady Motion A steady motion is one for which all 6 velocities are constant, i.e.,

u̇ = 0, v̇ = 0, ẇ = 0, (equivalently, V̇ = 0, α̇ = 0, β̇ = 0) and ṗ = 0, q̇ = 0, ṙ = 0. From (2), with

ṗ = 0,

g (x, u, µ) :=C (q)p+ F (p,q,u) = 0 (8)

The steady motion requirement, (8), provides six equations to which we add a set of n + m − 6

trim equations:

h (x, u, µ) = 0 (9)

Equations (8) and (9) form a set of n+m equations in n+m+ k variables. Ordinarily we �x the

k parameters, µ, and solve for the remaining n+m variables � the state x and the control u.

De�nition 2. Trim Point Given the steady motion equation (8), the trim condition (9), an

envelope C and a control restraint set U , a viable trim point or simply a trim point, with respect to

the �xed parameter µ is a pair (x, u) that satis�es (8) and (9) and also x ∈ C, u ∈ U . The set of

viable trim points is called the trim set, T .

The important point is that for a prescribed trim condition (9) there are often multiple viable

trim points. The general study of the trim point structure as a function of the parameters is a
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problem of static bifurcation analysis [4, 43�46]. When k = 1 this can be carried out using a

continuation method. Let us consider two examples of the trim condition for the model described

in Section III. In this case there are eight states (n = 8) and four controls (m = 4). Thus, six trim

conditions are required. First consider straight wings-level �ight:

1. speed, V = V ∗

2. constant roll, pitch and heading, φ̇ = 0, θ̇ = 0, ψ̇ = 0

3. roll angle, φ = 0

4. �ight path angle, sin γ∗ + cos θ (cosβ cosφ sinα+ sinβ sinφ)− cosα cosβ sin θ = 0

Second, consider a coordinated turn. In this case the aircraft rotates at constant angular velocity,

ω∗ about the inertial z-axis. Thus the attitude of the aircraft varies periodically with time.

1. speed, V = V ∗

2. coordinated turn condition, pV cosβ sinα− rV cosβ cosα+ g cos θ sinφ = 0

3. angular velocity, p = −ω∗ sin θ, q = ω∗ cos θ sinφ, r = ω∗ cos θ cosφ

4. �ight path angle, sin γ∗ + cos θ (cosβ cosφ sinα+ sinβ sinφ)− cosα cosβ sin θ = 0

Here is a simple example of trim points for the phugoid model.

Example 1. Trim Points of the Phugoid Model This example examines the trim motions

associated with a speci�ed speed and �ight path angle. In accordance with (7), with V and γ

speci�ed, it is necessary to �nd T and δe such that

0 = T cos α̂− 1
2ρV

2SCD (α̂, δe, 0)−mg sin γ

0 = T sin α̂+ 1
2ρV

2SCL (α̂, δe, 0)−mg cos γ

(10)

As an example, consider steady �ight with γ = 0 and various speeds, V , � yielding a one-

parameter problem. Beginning with the trim condition: V = 150 fps, γ = 0 deg, T =

4.0991 lbf, δe = 1.725 deg perform a continuation analysis to obtain the results in Figure 1.

The corresponding initial value for angle of attack is α = 2.96644 deg.
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Fig. 1 The �gure shows the trim values for thrust, elevator and angle of attack for various

values of airspeed, V , and γ = 0. Note that the starting point for the continuation is identi�ed

by the black dot.

Starting at the black dot, as airspeed drops the trim points follow the lower branch of the thrust

and angle of attack curves and the upper branch of the elevator curve until the bifurcation (stall)

point is reached (V = 85.9150 fps, T = 14.3440 lbf, δe = −11.5059 deg). These are the `normal'

trim points, but the alternate branch is also comprises viable trim points so long as the thrust and

elevator are within bounds. This observation can be important, as we will see below. We might

refer to these as high angle of attack trim points.

It should be noted that the GTM has a thrust to weight ratio that is much higher than a typical

transport aircraft. Thus, the high speed, high angle of attack trims are not likely to be viable in a

typical transport.

B. Control issues at stall

Consider a parameter dependent, nonlinear control system given by

ẋ = f(x, u, µ)

z = h(x, µ) (11)

where x ∈ Rn are the states, u ∈ Rm are the control inputs, z ∈ Rr are the regulated variables and

µ ∈ R is any parameter. Assume that f , h are smooth (su�ciently di�erentiable). The parameter

could be a physical variable like the weight of the aircraft or the center of gravity location; or a

regulated variable like velocity, �ight path angle, altitude or roll angle; or the position of a stuck

control surface. The regulator problem is solvable only if p ≥ r. Since the number of controls can
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always be reduced, henceforth assume p = r.

A triple (x?, u?, µ?) is an equilibrium point (or trim point) of (11) if

F (x?, u?, µ?) :=

 f(x?, u?, µ?)

h(x?, µ?)

 = 0 (12)

The equilibrium surface is the set E =
{

(x, u, µ) ∈ Rn+m+k |F (x, u, µ) = 0
}
.

De�nition 3. (from [4]) An equilibrium point (x?, u?, µ?) is regular if there is a neighborhood of

µ? on which there exist unique, continuously di�erentiable functions x(µ), u(µ) satisfying

F (x(µ), u(µ), µ) = 0 (13)

If an equilibrium point is not a regular point it is a bifurcation point.

Stall is typically discussed in connection with a single airfoil where it is associated with a

reduction in lift when the angle of attack exceeds a critical value. In �xed wing aircraft stalls are

induced by reducing airspeed and compensating for the consequent reduced lift by increasing the

angle of attack. Ultimately, the force and moment balances cannot be maintained and the aircraft

stalls. The airspeed at which this collapse occurs is called the stall (or stalling) speed. Stall can

occur in various aircraft con�gurations, during steady climbs or descents, and while �ying straight

and level or in banked turns. More formally, stall speed is typically de�ned as the minimum steady

�ight speed obtainable in a speci�c con�guration or the minimum controllable steady �ight speed in a

speci�c con�guration. While these de�nitions do convey the meaning of stall, they can be ambiguous

because the terms `obtainable' and `controllable' are not precisely de�ned. For the purposes of this

discussion the following de�nition is employed.

De�nition 4. Consider a one dimensional trim set in which the single parameter µ is the airspeed,

V . A stall point is a viable trim point that is also a bifurcation point of the trim equations.

As will be seen, this de�nition does capture the de�nitions of stall speed as noted above and, it

is precise and applicable in more general situations.

The Implicit Function Theorem implies that an equilibrium point is a bifurcation point only if

det J = 0. The Jacobian J is given by

J = [DxF (x?, u?, µ?) DuF (x?, u?, µ?)] (14)
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Now, if A,B,C,D denotes the linearization at (x?, u?, µ?) of (11) with output z so that

J =

 A B

C 0


then we have the following theorem for a static bifurcation point.

Theorem 1 (from [4]) An equilibrium point (x?, u?, µ?) is a static bifurcation point only if

Im

A B

C 0

 6= Rn+r (15)

Recall that the system matrix is

P (λ) =

λI −A B

−C 0


From this observation, necessary conditions for a static bifurcation point can be obtained as follows

[5]:

Theorem 2 The equilibrium point (x?, u?, µ?) is a static bifurcation point of (11) only if one of the

following conditions is true for its linearization:

1. there is a transmission zero at the origin,

2. there is an uncontrollable mode with zero eigenvalue,

3. there is an unobservable mode with zero eigenvalue,

4. it has insu�cient independent controls,

5. it has redundant regulated variables.

The key implication of this theorem is that the ability to locally regulate the system diminishes

as the bifurcation point is approached [6, 47]. In fact a linear regulator (indeed a smooth feedback

regulator) does not exist at the bifurcation point [4]. At the bifurcation point an arbitrarily small

perturbation of parameters changes the zero structure of the system thereby requiring a fundamental

change in the controller [6]. The point we wish to emphasize is that losing the capacity to regulate

nonlinear �ight dynamics is intimately connected to the bifurcation structure of the trim equations
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of the aircraft. Thus, at least some forms of LOC can be rigorously connected to the �ight dynamics.

This argument is also made very strongly in [39].

Example 2. Regulating Trim Motions of the Phugoid Dynamics An essential point is

that the control behaviors around trim points on the two branches, see Figure 1, are considerably

di�erent so that a strategy to regulate around a point on one branch will fail if applied to one

on the other branch. The theoretical basis for this is established in [4, 6, 47, 48] as summarized

above. Here is a simple example. Consider the two trim points at 90 fps, the normal trim point,

V = 90 fps, γ = 0 deg, T = 7.58222 lbf, δe = −8.22916 deg and the high angle of attack trim

point, V = 90 fps, γ = 0 deg, T = 21.9189 lbf, δe = −13.8494 deg. The linear dynamics at each of

these trim points is, �rst for the normal trim:

d

dt

 ∆V

∆γ

 =

 −0.186044 −33.2125

0.008844275 0.0150152


 ∆V

∆γ

+

 0.449195 62.3033

0.00416546 −0.751226


 ∆T

∆δe


and for the high angle of attack trim:

d

dt

 ∆V

∆γ

 =

 −0.310011 −33.2514

0.00638713 −0.0338864


 ∆V

∆γ

+

 0.494357 31.5244

−0.00127241 1.22673


 ∆T

∆δe


Inspection of the control input matrix shows the reversal of the e�ect of the elevator, δe. At the

normal trim a positive (counterclockwise) rotation of the elevator causes a reduction of the �ight

path angle, i.e., pitch down. On the other hand, at the high angle attack trim a positive elevator

rotation causes an increase in �ight path angle. This behavior is, of course, well known [49], p. 612.

This behavior is organized by the singular zero dynamics at the bifurcation point that separates

the two branches. The state equations linearized at the bifurcation point are

d

dt

 ∆V

∆γ

 =

 −0.27235 −33.8550

0.00791414 −0.00286013


 ∆V

∆γ

+

 0.400642 62.5119

0.00170008 0.265262


 ∆T

∆δe


Inspection of the two columns of the control input matrix shows that they are dependent � the second

obtained from the �rst by multiplication by 156.029. Thus, the controls are redundant. There is only

one e�ective control direction. The important implication is that, from a linear perspective, both V

and γ cannot be simultaneously regulated [50]. Another indication of the degeneracy of the linearized
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system at the bifurcation point is the degeneracy of the transfer matrix, G (s), (T, δe)→ (V, γ):

G (s) =
1

s2 + 0.27521s+ 0.268712

 0.400642s− 0.0564101 62.5119s− 8.80163

0.001700086 + 0.00363376 0.265262s+ 0.566973


A simple computation shows that |G (s)| ≡ 0.

Finally, as a separate observation from Figure 1 (a), note that as stall is approached with

decreasing airspeed thrust must be increased. Thus there is a reversal from the normally anticipated

increase of thrust with increasing airspeed.

V. Control Behavior of the GTM Near Stall

In this section the goal is to illustrate the control behavior of the GTM around trim points near

stall. First, uncontrolled departures from controlled �ight near stall bifurcation points are examined.

Then controllability change as stall is approached is illustrated. Finally, some brief remarks about

recovery from departures near stall are given.

A. Uncontrolled departures near stall: GTM example

Simulated GTM departures from a coordinated turn at various speeds near the stall speed are

considered. In each case the aircraft is trimmed very near a coordinated turn equilibrium condition.

The controls are then �xed and the resultant trajectories are observed. Below results for three

speeds � 90 ft/sec, 87 ft/sec, and 85 ft/sec are shown. The last is very close to the stall speed.

See Figure 2. The equilibrium surface was generated as a function of airspeed using a continuation

method as described in [45]. Projections of this surface are shown in Figure 2 which shows angle of

attach α, elevator de�ection δe, aileron de�ection δa, and thrust T as functions of airspeed V . The

points selected for simulation are identi�ed in the �gure.

Figures 3 on page 22 and 4 on page 23 present a snapshot of the results. The former shows the

ground tracks and adverse aerodynamics plots. The latter displays the aircraft attitude in terms of

the Euler angles.

At 90 ft/sec the aircraft cleanly enters the coordinated turn. At 87 ft/sec, closer to stall speed,

it departs from trim and within 20 seconds enters a well-formed, slowly descending, periodic motion
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Fig. 2 Projections of the coordinated turn equilibrium surface shows angle of attack, elevator

de�ection, aileron de�ection and thrust as functions of the parameter airspeed.

with rather violent swings in attitude, particularly roll. Near stall speed, at 85 ft/sec, the vehicle

departs from trim and enters a steeply descending, apparently chaotic motion with increasingly

violent attitude swings. The simulation model utilizes a quaternion representation of attitude from

which the Euler angles are computed. These are displayed in Figure 4.

As described in [3], the angle of attack versus sideslip angle plot, i.e., the Adverse Aerodynamics

Envelope, is a useful indicator of LOC. The simulation results are shown in Figure 3 on the following

page. We see the well contained data set for 90 ft/sec, and even for 87 ft/sec. However, the stall

departure case, 85 ft/sec, suggests a serious control problem although this trajectory is obtained

with �xed controls. This is consistent with the observations in Section IVB.

With reference to Figure 4 (c) the large roll angles and roll rates suggest that other LOC

indicators identi�ed in [3] are also triggered � speci�cally, the Unusual Attitude envelope.
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Fig. 3 Coordinated turn ground tracks and adverse aerodynamics plots: at 90 ft/sec the the

aircraft stabilizes in a coordinated turn; at 87 ft/sec, closer to stall speed, the aircraft departs

from the coordinated turn and enters a periodic motion much like an extremely exaggerated

Dutch roll; at 85 ft/sec, approximately stall speed, the aircraft departs to an erratic motion,

possibly chaotic. 22
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Fig. 4 Coordinated turn attitude. (a) at 90 ft/sec the attitude stabilizes as expected. (b) at

87 ft/sec the aircraft enters a periodic trajectory. (c) at 85 ft/sec, approximately stall speed,

the aircraft departs to an erratic motion.
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(b) Other equilibria.

Fig. 5 The equilibrium curve is shown for straight, wings level climb with speed as the pa-

rameter. The stall point is indicated in (a). A two parameter LPV model is derived around

the bifurcation point with parameters speed and �ight path angle. This involves deriving a

polynomial approximation to the equilibrium surface around the bifurcation point (see [51]).

In (b) several points computed from the approximating surface are compared to the actual

surface.

B. Control properties around the bifurcation point: GTM example

In accordance with Theorem 2 some degeneracy in the linear system zero dynamics at the

bifurcation point is anticipated. To illustrate this, again consider the GTM, this time in a straight,

wings level climb with �ight path angle of 0.1 rad (5.7 deg). The equilibrium points are plotted

as a function of speed in Figure 5. Now, a two-parameter family of linear systems (LPV model) is

constructed using the method described in [51]. In this case the parameters are airspeed, V , and

�ight path angle, γ. The equilibrium surface approximation (and hence the LPV model) is third

order in the parameters and generated at the bifurcation point shown in Figure 5 (a). The `other'

equilibria, shown in Figure 5 (b) are obtained from the cubic approximation and displayed in the

�gure with the true equilibrium curve.

Analysis shows that the LPV system is uncontrollable at the bifurcation point, but controllable

at points arbitrarily near the bifurcation point. Furthermore, controllability degrades as the bifur-

cation point is approached. To see this, the controllability matrix is evaluated and its minimum

singular value is computed at each of the points shown in Figure 5. The results are shown in Table

1, with the bifurcation point shown in bold typeface. As explained in [51], parameterization of
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Table 1 Degree of Controllability

s1 s2 V δe σmin

0.010000 0.00 83.7759 -16.4569 0.00186924

0.005000 0.00 83.3882 -18.3686 0.00098419

0.001000 0.00 83.2658 -20.1175 0.00022455

-0.000104 0.00 83.2599 -20.6466 0.00000000

-0.000500 0.00 83.2607 -20.8418 0.00008107

-0.006500 0.00 83.4491 -24.2201 0.00153969

-0.010000 0.00 83.7040 -26.6229 0.00276331

the equilibrium manifold around singular points requires replacement of the physical parameters by

suitable coordinates on the manifold. The variables s1, s2 in Table 1 denote the coordinates used

herein. Fixing s2 = 0 and varying s1 produces a slice through the surface corresponding to �xed γ

and varying V .

Even though the system fails to be linearly controllable at the bifurcation point it is locally

(nonlinearly) controllable in the sense that the controllability distribution has full generic rank

around the bifurcation point. The implication is that any stabilizing feedback controller would

certainly be nonlinear and probably nonsmooth.

C. Remarks on recovery from stall

The GTM appears to be remarkably stable. In the coordinated turn illustrated above, the stall

speed is about 85 ft/sec. With the controls �xed at their stall equilibrium values the aircraft enters

a deep spiral and dives. After several seconds into the departure the controls are reset to their

stable 90 ft/sec values. Figure 6 shows the recovery when the controls are reset after 10 seconds.

This was intended as an experiment to determine if the vehicle dynamics would permit recovery. No

assessment was made as to whether this is an acceptable strategy. In particular structural integrity

was not evaluated although it appears that peak acceleration is less than 2 g's. The vehicle drops

about 1400 feet.

It is worth noting that the simulations show that recovery can take place even further into the
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Fig. 6 Coordinated turn recovery from stall. The vehicle stalls at about 85 ft/sec during a

coordinated turn. After 10 seconds the controls are reset to the 90 ft/sec values. (a) The

speed peaks at about 215 ft/sec, 13 sec after stall, before stabilizing at 90 ft/sec. (b) The

simulation is carried out using a quaternion representation of attitude, but Euler angles are

displayed here. Notice extreme roll before the recovery takes place. (c) The ground track

follows the pattern of Figure 3 until the controls are reset. Then it stabilizes into the turn.

(d) The aircraft drops about 1400 ft. during the recovery.

departure. Of course, with signi�cantly greater loss of altitude.

VI. Constrained Dynamics

The safe operation of an aircraft requires that certain key variables remain within speci�ed

limits. Complicating this is the fact that aircraft are continuously subjected to disturbances and
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the control responses are also strictly constrained by actuator limits. The control of systems with

state and control constraints is a fundamental problem in control theory that has a substantial

literature going back decades, e.g. [10, 52]. In the following paragraphs how this work contributes

to our understanding of LOC is considered.

A. Control with state and control constraints

All commercial aircraft are required to respect speci�ed �ight envelope restrictions. For example

in normal (unimpaired) �ight a typical aircraft will have: load factor limitations and also attitude

(pitch and roll) and speed limitations. Indeed most aircraft employ some form of envelope protection.

The protective actions can range from simple stall warning devices to reshaping pilot commands

to actively limiting control actions that would aggravate the situation. These systems present

transition issues just like any other switching system. While there is no comprehensive theory of

envelope protection, it has been addressed in the literature, for example [16, 17, 53]. An important

factor in these controllers is that the control responses are limited. For example, control surfaces

have a restricted range of motion and are limited in the control forces that can be generated by

them.

Consider a controlled dynamical system

ẋ = f (x, u) , x ∈ Rn, u ∈ U ⊂ Rm (16)

where the set U is closed, bounded and convex. Also, suppose the desired envelope is a convex,

not necessarily bounded, subset C of the state space Rn. Feuer and Heyman [10] study the general

control problem of interest to us. Speci�cally, under what conditions does there exist for each

x0 ∈ C a control u (t) ⊂ U and a corresponding unique solution x (t;x0, u) that remains in C for all

t > 0? While some basic results are provided in [10], the general case is unresolved. Concrete results

have subsequently been obtained for special cases, especially for linear dynamics with polyhedral

constraint sets [8, 9, 19�22, 28, 52]. In the following paragraphs some of the more recent results are

applied.
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B. The safe set

There are two fundamental issues that need to be addressed: Is it possible to remain within a

speci�ed subset of the state space? If so, what control actions are required to insure the aircraft

remains within it? These questions have been raised in the literature, for example [8, 9, 28].

Furthermore, suppose that C is de�ned by

C = {x ∈ Rn |l (x) > 0} (17)

where l : Rn → R is continuous. The boundary of C is the zero level set of l, i.e., ∂C =

{x ∈ Rn |l (x) = 0}. The safe set is de�ned as the largest positively control-invariant set contained

in C. Several investigators have considered the computation of the safe set, the most compelling of

which involve solving the Hamilton-Jacobi equation. One of several variants, due to Lygeros [9], is

described below.

Consider the operation of the system (16) over a time interval [0, T ] for some �xed terminal

time 0 < T <∞. First, the idea of a controlled invariant set is introduced.

De�nition 5. Controlled-Invariant Set A set I ⊂ Rn is a controlled-invariant set over a time

interval [t, T ], if for each x (t) ∈ I there exists a control u (τ) ∈ U , τ ∈ [t, T ] such that the solution

of (16) emanating from x (t), ϕ (τ ;x (t) , u (·)), de�ned on τ ∈ [t, T ] is entirely contained in I.

This leads to a precise de�nition of the safe set.

De�nition 6. Safe Set Given the envelope C, the safe set is de�ned as the largest controlled-

invariant set on [t, T ] contained in C, i.e.,

S (t, C) = {x ∈ Rn |∃u (τ) ⊂ U ,∀τ ∈ [t, T ] : ϕ (τ ;x (t) , u (·)) ⊂ C } (18)

The main result in [[9]] is the following. Suppose V (x, t) is a viscosity (or, weak) solution of

the terminal value problem

∂V

∂t
+ min

{
0, sup
u∈U

∂V

∂x
f (x, u)

}
= 0, V (x, T ) = l (x) (19)

then

S (t, C) = {x ∈ Rn |V (x, t) > 0} (20)
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The function V (x, t) is in fact the `cost-to-go' associated with an optimal control problem in which

the goal is to choose u (t) so as to maximize the minimum value of l (x (t)). The function V (x, t)

inherits some nice properties from this fact. For instance it is bounded and uniformly continuous.

De�ne the Hamiltonian

H (p, x) = min

{
0, sup
u∈U

pT f (x, u)

}
(21)

∂V

∂t
+H

(
∂V

∂x
, x

)
= 0, V (x, T ) = l (x) (22)

V (x, t) is the unique, bounded and uniformly continuous solution of (19) or (22). Notice that the

control obtained in computing the Hamiltonian (21) insures that when applied to each state along

any trajectory initially inside of S the resulting trajectory will remain in S. It follows that this

control should be applied for states on its boundary to insure that the trajectory does not leave S.

The envelope de�ned by (17) can be generalized to an envelope with piecewise continuous

boundary. For example, suppose the envelope is de�ned by

C = {x ∈ Rn |li (x) > 0, i = 1, . . . ,K } (23)

Where each of the li (x) are continuous functions. Then we need to solve K problems with

Cj = {x ∈ Rn |lj (x) > 0} , j = 1, . . . ,K

to obtain the largest controlled invariant set in each Cj and then take their intersection. There are

many physical problems in which the tracking of moving boundaries separating to regions of space

are important. So it is not surprising that the numerical computation of propagating surfaces is a

mature �eld. The most powerful methods exploit the connection with the Hamilton-Jacobi equation

and associated conservation laws; see the survey [54].

Example 3. GTM Phugoid Model Safe Set

The calculation of the safe set for the phugoid model of Section III B will be described. It will

be found that the safe set of the intact aircraft is, in fact, the entire envelope. This will not be

true for the impaired aircraft. Before proceeding with safe set calculations consider the equilibrium

point structure of Equations (4). In essence the aircraft is trimmed at speci�ed values of velocity
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(b) Thrust

Fig. 7 Phugoid bifurcation curves show the trim values of elevator and thrust for various of

velocities. Each curve corresponds to a di�erent value of �ight path angle.

and �ight path angle. The problem is to compute the required values of elevator position and

thrust. The calculations are performed by specifying a value of �ight path angle γ and performing

a continuation computation with velocity V as the parameter. Thus, the curves in Figure 7 are

obtained. There are two important observations. First the predicted bifurcation velocity is close to

that predicted with the 6 degree of freedom model (see Figure 5) - although the bifurcation value

for the elevator is signi�cantly di�erent. Examination of the trim values for thrust indicate that

there are points in the safe set that are not equilibrium points. In particular, for �ight path angles

below about -0.15 rad there are admissible velocities above which the aircraft cannot be trimmed

with nonnegative thrust.

Figure 8 shows the safe set, S for unimpaired and impaired aircraft. As expected, the safe set

shrinks when the aircraft is impaired. The points in C\S produce trajectories that exit the envelope.

With limited control authority the safe set is reduced in the lower left quadrant of Figure 8 because

at slower speeds, even with the application of both maximum thrust and elevator de�ection, it is not

possible to generate enough lift to prevent the aircraft from descending along an unacceptably low

�ight path angle and leaving the prescribed envelope C. In the case where the elevator is jammed,

the safe set is reduced in the upper right quadrant of Figure 8 (c) where the higher speeds cause

excessive lift to be generated forcing the aircraft to ascend along a �ight path angle which exceeds

the upper bound of C.
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Fig. 8 Safe set with various levels of elevator impairment. For the unimpaired aircraft, in

which case the elevator position ranges from -40 deg (-0.698 rad) to +20 deg (0.349 rad), the

safe set is the entire envelope (the shaded region). When the elevator is motion restricted in

the positive direction to + 3 deg, the safe set contracts somewhat in the bottom left corner

(low speed descent) as shown. With elevator jammed at 3 deg the safe set contracts on the

right (high speed) as well � marginally at the bottom (descent), but quite signi�cantly at the

top (ascent). The safe set for the jammed case is the subset of the �ight envelope bounded

by the black curve.

VII. Maneuverability

Diminished maneuverability is a central aspect of LOC - whether due to impairment of the

aircraft or its entry into an unfavorable �ight regime. Maneuverability performance is usually

assessed by evaluating an aircraft's capability to perform certain basic tasks under a variety of

conditions. Such tasks � including wings level climb and descent, coordinated turns, pull-ups and

push-downs � correspond to steady-state or equilibrium motions in an appropriate mathematical

setting. The vehicle must be able to transition between these steady motions.

In earlier work [4] an approach to investigating steady motions of aircraft by examining the

equilibrium point structure of a regulator problem associated with the desired motion was intro-

duced. Bifurcation surfaces in multi-parameter problems were identi�ed and bifurcation points were

linked to structural instability of the zero dynamics. The limits imposed on the ability of a vehicle

to perform a maneuver where thereby associated with both the absence of appropriate equilibria

for certain parameter values and also with the di�culty to regulate the vehicle when operating near

the bifurcation sets. These ideas were further developed and applied in several papers including
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[44, 46, 55]. A somewhat similar approach was recently given by Goman et al [56], referred to

therein as a constrained trim formulation. The stability of each equilibrium point is evaluated but

no connections are made to control system properties as advocated in [4].

A. Basic Steady Maneuvers of Rigid Aircraft

For commercial aircraft the most basic and important steady motions are:

1. straight, level, climbing and descending �ight,

2. coordinated turns, level, climbing and descending

In [46] a continuation method was used to examine these motions speci�cally for the GTM. The

limits imposed on these motions by stall bifurcation points were studied and the control system

behavior around these points was examined. Using the results of [4] it was argued that regulated

�ight near stall is di�cult because of the structurally unstable zero dynamics.

Of course, not all points identi�ed in a continuation computation are feasible trim conditions.

Equilibria with control values outside of the control restraint set need to be excluded. This obvious

fact has signi�cant implications as shown below.

Generally the set of viable trim points, T , is viewed in the state-control-parameter space,

X ×U ×M ⊂ Rn+m+k. Typically, the set of trim conditions is a smooth k-dimensional submanifold

of this n + m + k-dimensional manifold. It is common practice in bifurcation theory to project T

onto the parameter space M. The result is the bifurcation picture. The folds of T project onto M

as k − 1-dimensional submanifolds of M. So they partition M into k-dimensional disjoint regions.

Each region contains a distinct number of trim points.

If T is projected onto the n-dimensional state space X the result is a k-dimensional subset

(possibly quite complex) of X that is also partitioned into subsets by the folds of T . Again each

subset is associated with a distinct number of trim points. The signi�cance of this is that the process

identi�es the possible trim states and the number of trim points associated with each such state.

This is important for control analysts and designers concerned with state to state transitions.

Example 4. GTM Phugoid Model Trim Points It is expected that since the unimpaired

aircraft has two independent controls and only two states that every point in the envelope could
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be made an equilibrium point by proper choice of control. The only issue is that the controls are

bounded. However, the situation is more complicated than that. In fact, in this case there may be

zero, one and sometimes two admissible control pairs for which each point in the state space can be

made an equilibrium point. To understand the maneuverability issues, �rst compute the values of

the controls (T, δe) required to force an arbitrary point (V, γ) to be an equilibrium point.

Notice in Figure 7 that most of the curves indicate that there are two trim conditions within

the allowed range of �ight path angle and airspeed � one normal and one high angle of attack �

associated with speci�c values of thrust, T , and elevator position, δe. However, not all are viable

because the control values are beyond the permissible range. There are several implications of the

control bounds. First, the major e�ect of the zero thrust lower bound is elimination of normal trims

for low speed, su�ciently steep descending �ight paths. On the other hand, the 40 lbf thrust upper

bound eliminates high angle of attack trims for most ascending �ights at su�ciently high airspeeds.

For the range of �ight path angle and airspeed considered, the normal elevator range does not

restrict trim. However, for an elevator range restricted to +3 degrees, notice that normal trims are

not achievable at higher airspeed. It is worth noting that the range of �ight path angles shown

for the GTM example is larger than the ±10 deg that is normal for a typical transport aircraft.

Also, the feasibility and value of high angle of attack trims in abnormal situations needs further

consideration.

The situation is summarized in Figure 9. Maneuvering from one point to another can be di�cult

if it requires a transition from normal to high angle of attack trim (or vice-versa). Such a situation

could occur, for example, if it is desired to increase the rate of descent at low speeds. Recall that

a change from normal to high angle of attack trim requires a signi�cant increase in throttle and is

associated with elevator reversal as described in Section IV. The pilot (or auto-pilot) has to recognize

the need to change control strategy accordingly. Of course, this picture is altered in signi�cant ways

if �aps, spoilers and even landing gear are deployed. In the restricted elevator case shown in Figure

9 the elevator range of motion is limited in the positive direction to 3 degrees. This severely limits

the region of normal �ight trim.
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Fig. 9 The viable trim points are identi�ed for the aircraft in unimpaired and impaired

con�gurations. Some states (V, γ) in the �ight envelope can be made an equilibrium point by

proper selection of admissible control pairs (T, δe). At some states, there are two admissible

trim conditions and at others only one or none at all.

VIII. Conclusions

In conclusion, the study of an aircraft's equilibrium point structure and the associated control

and regulation properties provide direct links between pilot loss of control experience and analytical
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�ight mechanics. The concepts, methods and tools for performing such studies are presented in

this paper. Their application is illustrated using NASA's Generic Transport Model. The trim

conditions employed in the examples are straight, wings level �ight with speci�ed airspeed and

�ight path angle or a coordinated turn with speci�ed airspeed, turn rate and �ight path angle. The

existence of normal and high angle of attack trim points are illustrated as are the di�erences in the

associated piloting requirements. The e�ect of actuator impairment on the safe set boundary and

the trim points within it are also illustrated.

When operating near critical points of the trim equations (i.e., near stall), control properties of

the aircraft can change fundamentally with small changes in the aircraft state or parameters. Thus,

a small disturbance can cause a dramatic change in how an aircraft responds to pilot inputs. Conse-

quently, regulating an aircraft near stall presents a signi�cant challenge even to experienced pilots.

Beyond the critical points themselves, they organize a complex trim point structure throughout the

entire �ight envelope and, most importantly, within the safe set. For each speci�ed trim condition

there may be zero, one or more corresponding pairs of admissible state and control values, called

viable trim points. A unique strategy is typically required to regulate around each distinct trim

point corresponding to a particular trim condition. Consequently, the pilot choice of trim point

(e.g., normal or high angle of attack trim) to meet a target trim speci�cation (e.g., level �ight at

a speci�ed airspeed and �ight path angle) will impose speci�c regulating requirements. The pilot

needs to be aware of this. In the event of a control impairment, e.g., engine loss or control surface

restriction, some of these trim points may may disappear. Thus, to maintain a particular trim

condition, the pilot may need to change to an alternate trim point which will typically require a

corresponding change in piloting strategy. If the pilot is unaware of the need to switch control

strategy a loss of control event might be precipitated.

Appendix I � The GTM 6 Degree-of-Freedom Model

The model used here for all of our examples is derived from an early model of the GTM

simulation model (V09.03). Since we made certain simpli�cations and the GTM model is regularly

revised and improved we summarize the details of the model used herein.
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CX = −0.0390905 + 0.35218α+ 5.36708α2 − 23.1537α3 − 26.2264α4 + 109.938α5

+
q(2.46995+24.4028α+58.4581α2)c̄

2V + 0.125409αδe + 0.0857469α3δe − 0.00961977α5δe

−0.0811392δ2
e + 0.0405696α2δ2

e − 0.0033808α4δ2
e − 0.389796αδ3

e + 0.064966α3δ3
e − 0.0032483α5δ3

e

CY = −1.0499β + 0.254159β3 +
r(0765433+010909α+0.553414α2)b̄

2V

+
p(1.22326α+1.26322α2−39.4599α3)b̄

2V + 0.175591δr

CZ = −0.0261857− 5.38662α+ 0.339087α2 + 28.0138α3 − 23.0418α4 − 12.8899α5

+
q(−28.2259−62.5918α−460.841α2)c̄

2V − 0.445354δe − 0.0972682α2δe + 0.0347678α4δe

−0.0811392αδ2
e + 0.0135232α3δ2

e − 0.00067616α5δ2
e + 0.389796δ3

e − 0.194898α2δ3
e + 0.0162415α4δ3

e

CL = −0.126318β − 0.22119αβ + 0.255338β3 − 0.191268β5 +
r(0.0608527+0.730792α+2.90179α2)b̄

2V

+
p(−0.414849−0.325859α+6.67529α2+125.613α4)b̄

2V − 0.0247139δa + 0.0193176δr

CM = 0.181738− 1.10553α− 15.1134α4 +
q(−47.6756+69.4945α+308.277α2)c̄

2V − 1.76253δe − 0.920542αδ2
e

+1.35544δ3
e +

(
−0.0261857− 5.38662α+ 0.339087α2 + 28.0138α3 − 23.0418α4

)
(−xcg + x̄cg)(

−12.8899α5 +
q(−28.2259−62.5918α−460.841α2)c̄

2V − 0.445354δe − 0.0972682α2δe

)
(−xcg + x̄cg)(

+0.0347678α4δe − 0.0811392αδ2
e + 0.0135232α3δ2

e − 0.00067616α5δ2
e

)
(−xcg + x̄cg)(

+0.389796δ3
e − 0.194898α2δ3

e + 0.0162415α4δ3
e

)
(−xcg + x̄cg)

CN = 0.202546β − 0.143331β3 +
r(−0.379639−0.205145α−0.937344α2)b̄

2V

+
p(−0.00731187−0.45033α+0.724553α2+16.4433α3)b̄

2V − 0.112626δr − 0.000470559βδr

− 1
b̄
c̄

(
−1.0499β + 0.254159β3 +

r(0.765433+0.10909α+0.553414α2)b̄
2V

)
(−xcg + x̄cg)

− 1
b̄
c̄

(
p(1.22326α+1.26322α2−39.4599α3)b̄

2V + 0.175591δr

)
(−xcg + x̄cg)
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