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Abstract—Loss-of-Control (LOC) is a major factor in fatal
aircraft accidents. Although definitions of LOC remain vague
in analytical terms, it is generally associated with a diminished
capability of the pilot maneuver the aircraft - whether due to
impairment of the aircraft or its entry into an unfavorable flight
regime. Maneuver performance is usually assessed by evaluating
an aircraft’s ability to transition between desired steady state
conditions such as wings level climb, descent, or coordinated
turns. We show that even when a sufficient set of steady
motions exist, the ability to regulate around them or transition
between them can be difficult and non-intuitive, particularly for
impaired aircraft. We examine the impact of control constraints,
including those induced by actuator impairment, on the ability to
prevent envelope departure and to maneuver within it. Safe set
theory can be used as a basis for design of envelope protection
systems. Higher dimensional safe sets are difficult to compute
and visualize. For the full conventional longitudinal dynamics
we present an analytic solution to a Hamiltonian which specifies
the optimal safety critical control. We then use this expression
in a numerical level set framework to compute four dimensional
safe sets. Examples are provided using NASA’s Generic Transport
Model (GTM).

I. INTRODUCTION

Loss-of-Control (LOC) is a principle factor in commer-

cial aircraft accidents, (1). Although LOC has not yet been

precisely defined in analytical terms it is associated with a

pilot’s inability to regulate key aircraft variables, (2; 3). Recent

research connects LOC with in-flight bifurcation phenomenon

– ordinarily associated with stall in aircraft, (4; 5). When a

vehicle maneuvers near those critical points, it loses the ability

to be regulated due to the occurrence of structurally unstable

zero dynamics, (6). Furthermore, the ability to maneuver an

aircraft within a safe envelope can be difficult because of

variation of the trim point structure within it – particularly

when the aircraft is impaired, (5). The trim point structure

is organized by bifurcation points even though they may lie

outside of the safe envelope.

LOC is likely to occur when an aircraft operates in the

vicinity of a stall (bifurcation) point or when a maneuver

from one steady motion to another requires switching to a

different trim branch. In the latter case, stabilization around

the new trim point will require a change in piloting strategy

thus contributing to confusion, potentially resulting in LOC.

Recovery from LOC, requires restoration of the vehicle to

a suitable trim point around which it can be satisfactorily

regulated.

Ordinarily a flight envelope can be considered a convex

polyhedral set, not necessarily bounded, in the state space.

Ensuring that an aircraft remains within its flight envelope is

called envelope protection. Envelope protection is generally

the responsibility of the pilot although there is an increasing

interest in and use of automatic protection systems (7; 8; 9).

We consider the control issues associated with preventing

departure from the flight envelope. To do so, we use the notion

of a safe set (10) or viable set (11). The idea of a safe set

derives from a decades old control problem in which the plant

controls are restricted to a bounded set U and it is desired

to keep the system state within a convex, not necessarily

bounded, subset C of the state space. (12) studied the question:

under what conditions does there exist for each initial state in

C an admissible control producing a trajectory that remains in

C for all t > 0? When C does not have this property we try

to identify the safe set, S , that is, the largest subset of C that

does. Clearly, if we wish the aircraft to remain in C, we must

ensure that it remains in S .

We would also like to know how the aircraft can maneuver

within S . Controlled flight requires the existence of a suitable

set of steady motions and the ability to smoothly transition

between them. This means that we need to understand the

equilibrium point structure within S and identify any imped-

iments to regulating around them or steering from one to

another.

Ordinarily, if an aircraft is impaired we expect that the

safe set will shrink. We will show that the equilibrium point

structure within the reduced safe set changes as well and the

ability to maneuver is significantly diminished. Furthermore,

control strategies required to execute transition maneuvers and

to regulate around steady motions may be complex and non-

intuitive. We suggest this as another mechanism of LOC.

II. GTM MODEL

Examples in this paper are based on NASA’s Generic

Transport Model (GTM). In this paper we extend the phugoid

analysis presented in, (4; 5), to the full longitudinal dynamics

and add additional higher order aerodynamic terms. The result-

ing model has four dimensions and presents more challenges

for both the visualization and computation of trim states and

safe sets.



Fig. 1. Free Body Diagram of 3-DOF Longitudinal Model

A. GTM Longitudinal Dynamics

The longitudinal dynamics of a rigid aircraft shown in

Figure 1 can be written in path coordinates:

V̇ = 1
m

(
T cosα− 1

2ρV
2SCD (α, δe, q)−mg sin γ

)
γ̇ = 1

mV

(
T sinα+ 1

2ρV
2SCL (α, δe, q)−mg cos γ

)
q̇ = M

Iy
,

α̇ = q − γ̇

(1)

where

M = 1
2ρV

2Sc̄CM (α, δe, q) +
1
2ρV

2Sc̄CZ (α, δe, q)
(xcgref − xcg)−mgxcg cos (θ) + ltT

and θ = α+γ. To illustrate safe set computations in this paper

we assume that we are given an operating envelope

C = {(V, γ, q, α)|90 ≤ V ≤ 240,−22 ≤ γ ≤ 22,

−10 ≤ q ≤ 10,−6 ≤ α ≤ 22} (2)

and a control restraint set specified by

U = {(T, δe) |0 ≤ T ≤ 30,−40 ≤ δe ≤ 20} (3)

III. MANEUVERABILITY AND THE TRIM SET

A. Trim Behavior of the Longitudinal Dynamics

For commercial aircraft one of the most basic and important

steady motion is straight, wings level, climbing and descending

flight. We will examine this steady motion for a specified speed

and flight path angle (V,γ). An equilibrium (or trim) condition

exists when all four of the state derivatives (V̇ , γ̇, q̇, α̇) in

(1) are zero. For straight, wings level flight both q = 0
and γ̇ = 0, so it follows that α̇ = 0 and the governing

equations for an equilibrium point reduce to three equations

and three unknowns, T , δe, and α. Let the solutions to these

trim equations be denoted by T ∗, δe
∗, and α∗.

The trim equations can be solved numerically by defining

a scalar cost function which is sum of the squares of the

derivatives (V̇ , γ̇, α̇). To then account for the limits on the

control variables a matlab algorithm by (13) was utilized.

Results of these computations for steady motion are shown

in Figure 2. Starting at the black dots as airspeed drops the

trim points follow the lower branch of the thrust and angle

of attack curves and the upper branch of the elevator curve

until the bifurcation (stall) point is reached (black triangles).

This solid line represent the ‘normal’ trim points, but there is

an additional branch (dashed lines) comprised of viable trim

points so long as the thrust and elevator are within bounds.

This observation can be important, as we will see below.

We might refer to these as high angle of attack trim points.

The high angle of attack trim points are characterized by

low speeds, high values of thrust, and large negative elevator

commands (nose up). They exist at lower speeds where there

is less dynamic pressure which means greater angles of attack

are necessary to generate sufficient lift, resulting in a sizeable

induced drag, which must be balanced by thrust. Another key

point of the results is that the trend of the equilibrium thrust

curves suggest that negative values will be required at some

airspeeds with flight path angles less than -3 deg, making those

trim states not viable.

An essential point is that the control behaviors around trim

points on the two branches are considerably different so that

a strategy to regulate around a point on one branch will

fail if applied to one on the other branch. The theoretical

basis for this is established in (6; 14; 15; 16). We will give

a simple example for these results. Consider the two trim

points at V=90 fps and γ = 0deg: the normal trim point
solution T ∗ = 7.628525 lbf, δe

∗ = −8.498114 deg, α∗ =
11.90566 deg, and the high angle of attack trim point solution

T ∗ = 20.957574 lbf, δe
∗ = −17.451446 deg, α∗ =

18.959770 deg. The eigenvalues of the linearized dynamics

at each of these trim points are, first for the normal trim:

eig(A) =

{ −0.425± 4.93i
−0.0783± 0.534i

}

and for the high angle of attack trim:

eig(A) =

{
0.553± 6.39i

−0.158± 0.448i

}

Inspection of the eigenvalues for the normal angle of attack

shows that for the phugoid mode, (ζ = .145, ωn = 0.539)

and for the short period mode (ζ = 0.086, ωn = 4.95).

For the high angle of attack trim the phugoid mode is

(ζ = 0.33, ωn = 0.475) the short period mode is unstable.

Clearly regulation around upper branch trim points will require

a different strategy due to the instability of the short period

mode.

This behavior is organized by a bifurcation point that sep-

arates the two branches. As shown in (5), a static bifurcation

point occurs when a degeneracy occurs in the zero dynamics

of

ẋ = f(x, u, μ)

z = h(x, μ) (4)

where x ∈ Rn are the states, u ∈ Rp are the control inputs,

z ∈ Rr are the regulated variables and μ ∈ R is any parameter.

The values for the bifurcation points in Figure 2 are shown

in Table I for regulation of speed and flight path angle (V,γ).

Examination of the linearized zero dynamics at each of these
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Fig. 2. Trim values for thrust, elevator and angle of attack as a function of airspeed, V , are shown for various flight path angles γ = 6, 3, 0,−3. High angle
of attack trim states are depicted by dashed lines and are characterized by low speeds, high values of thrust, and large negative elevator commands (nose up).
There are 1, 2, and in some cases 3 admissible control pairs to each viable trim point.
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Fig. 3. Closeup of angle of attack bifurcation curve of Figure 2 for γ = 0
shows that a portion of the normal angle of attack is also unstable up to the
speed where a Hopf bifurcation is encountered. The insets show the oscillatory
behavior of the α− q dynamics at various points on the bifurcation curve for
a small perturbation in pitch rate, q.

bifurcation points shows that a degeneracy occurs in the form

of two transmission zeros at the origin. Figure 3 shows a close

up of the bifurcation dynamics at the bifurcation point for

γ = 0. Note that the normal angle of attack branch is also

unstable in the vicinity of the bifurcation point, and as airspeed

increases, a Hopf bifurcation occurs as the complex conjugates

of the short period eigenvalues cross the imaginary axis and

become stable.

TABLE I
BIFURCATION POINTS

γ V T ∗ δe
∗ α∗

6 84.493095 18.982517 -11.706503 15.843524
3 85.494013 16.428146 -12.160762 15.759063
0 86.363679 13.828949 -12.599274 15.677520
-3 87.103862 11.192067 -13.025417 15.598298

Note that for each flight path angle the thrust required for

steady flight has a region to the left of the minimum value

along the lower trim branch where increasing levels of thrust

are required for equilibrium conditions at lower airspeeds.

This can be loosely referred to as the power curve though

it is not the same as the power-required curve, (17), since

engine characteristics are not included. The region the the left

of the minimum of the power-required curve is what pilots

refer to as flying on the backside of the power curve. We have

shown that an additional trim branch also exists in this regime

where increasing thrust increases airspeed, however regulation

around these points could be difficult and non-intuitive due to

the instability of the short period mode.

B. Trim Points

With bounded controls there are four possible outcomes for

each possible trim point; (1) it is not attainable; (2) it is only

attainable at a high angle of attack; (3) it is only attainable

at a normal angle of attack; and (4) it is attainable at both a

high and normal angle of attack. For all viable trim points we

have shown that there are 1, 2, and in some cases 3 admissible

control pairs.

Attainable (V,γ) trim points are summarized in Figure 4

on a discrete 2D grid spanning the flight envelope. Transition

from normal to high angle of attack trim (or vis-versa) could

be difficult because of the short period mode instability. The

pilot (or auto-pilot) needs to recognize the need to change

control strategy accordingly. Of course, this picture is altered

in significant ways if flaps, spoilers even landing gear are

deployed.

In the restricted elevator case shown in Figure 4 the elevator

range of motion is limited in the positive direction to 3 degrees.

This severely limits the set of normal flight trim points. For

a jammed elevator the set of viable trim points reduces to a

curve where only normal angle of attack trim points exist.

IV. SAFE SET FOR LONGITUDINAL DYNAMICS

There are two fundamental issues that need to be addressed:

Is it possible to remain within a specified subset of the state

space? If so, what control actions are required to insure

the aircraft remains within it? These questions have been

examined in the literature, e.g., (18; 11; 10). Suppose that

C is defined by

C = {x ∈ Rn |l (x) > 0} (5)

where l : Rn → R is continuous. The boundary of C is the zero

level set of l, i.e., ∂C = {x ∈ Rn |l (x) = 0}. The safe set is

defined as the largest positively control-invariant set contained

in C. Several investigators have considered the computation of

the safe set, the most compelling of which involve solving the



80 100 120 140 160 180 200 220 240

−20

−15

−10

−5

0

5

10

15

20

V

γ

(a) Unimpaired

80 100 120 140 160 180 200 220 240

−20

−15

−10

−5

0

5

10

15

20

V

γ

(b) Restricted Elevator

80 100 120 140 160 180 200 220 240

−20

−15

−10

−5

0

5

10

15

20

V

γ

(c) Jammed Elevator

Fig. 4. Trim set (V, γ) with various levels of elevator impairment. The figure on the left shows attainable trim set for the unimpaired aircraft in which case
the elevator position ranges from -40 deg to +20 deg. In the center figure, the elevator motion is restricted in the positive direction to + 3 deg. On the right is
the trim set for the aircraft with elevator jammed at 3 deg. An ”x” denotes existence of only a normal angle of attack trim, an ”o” denotes existence of only
a high angle of attack trim and a filled circle indicates the both trim states are attainable.

Hamilton-Jacobi equation. In (11) it is shown that if V (x, t) is

a viscosity (or, weak) solution of the terminal value problem

∂V

∂t
+min

{
0, sup

u∈U

∂V

∂x
f (x, u)

}
= 0, V (x, T ) = l (x)

(6)

then

S (t, C) = {x ∈ Rn |V (x, t) > 0} (7)

V (x, t) is the unique, bounded and uniformly continuous

solution of (6) and is in fact the ‘cost-to-go’ associated with an

optimal control problem in which the goal is to choose u (t)
so as to maximize the minimum value of l (x (t)). Define the

Hamiltonian of (6) to be

H(p, x) = max
u∈U

pT f(x, u) (8)

Notice that the control obtained in computing the Hamilto-

nian (8) ensures that when applied to each state along any

trajectory initially inside of S the resulting trajectory will

remain in S . It follows that this control should be applied

for states on its boundary to ensure that the trajectory does

not leave S .
Obtaining an analytic solutions to (6) is virtually impossible

for realistic models of dimension higher that two. To overcome

this limitation, numerical level set methods are typically em-

ployed. The four dimensional results obtained in this paper are

obtained using the numerical level set framework developed

by (19) which is based on algorithms in (20).
One of the great challenges of utilizing numerical level

set methods is obtaining a computationally efficient analytic

solution for the Hamiltonian of (8). Let the solution to (8) be

u∗ = {T ∗, δ∗e} for a specified location in the state space, x,

and gradient, ∂V
∂x . The remainder of this section will present

necessary background material for analytic expressions of the

optimal thrust and elevator.
Substituting the longitudinal dynamics (1) into (8) results

in

H (x, p) = max
u∈U

H (x, p, u)

H (x, p, u) =
(
p1V̇ + p2γ̇ + p3q̇ + p4α̇

)
Expressing the aerodynamic coefficients in Hamiltonian in

terms of state and control variables and noting there are

no terms involving cross products of the control variables

the Hamiltonian can be simplified to the sum of two single

variable optimization problems and a constant,

H(x, p, u) = HT (x, p, T ) +Hδe(x, p, δe) +H0(x, p) (9)

Thus,

H (x, p) = HT (x, p) +Hδe (x, p) +H0 (x, p)

where

HT (x, p) = max
T∈UT

HT , Hδe (x, p) = max
δe∈Uδe

Hδe

H0(x, p)) is a constant and needs to be evaluated only once.

HT (x, p, T ) is linear in T , the optimal thrust will exist be

one of the extreme points of UT . Hδe(x, p) is a non-linear

optimization problem since Hδe is cubic in δe. A necessary

condition for a maximum to exist on the interior of Uδe is that

∂Hδe (x, p, δe)

∂δe
= 0

at a point in the interior. This equation is quadratic in δe.

The second derivative of the Hamiltonian with respect to δe
is needed to tell if the stationary point is a local minimum,

maximum, or indeterminate.

A. Optimal Safe Set Control
In this section the solution for the optimal thrust, T ∗, and

elevator, δe
∗, is presented. We will show that the optimal thrust

is always at an extrema of the control limits which is typical

of solutions to this type of problem. However, for the elevator

the solution need not always be at a limit.
1) Optimal Thrust for Hamiltonian.: To keep the aircraft

within the flight envelope constraints, the optimal thrust, T ∗,

will typically assume one of two values {Tmin, Tmax}. The

only exception is if the constant term is exactly zero then

T ∗ is a set valued quantity and any value of thrust in the

interval [Tmin, Tmax] is a solution. This constant term need

only evaluated once, then the optimal thrust and therefore

H(x, p)T can be fully determined.

T ∗ =

⎧⎨
⎩ Tmin if

(
p3lt
Iy

+ p1 cosα
m

+ p2 sinα
mV

− p4 sinα
mV

< 0

)

Tmax otherwise

⎫⎬
⎭



2) Optimal Elevator for Hamiltonian.: The pseudo code
(algorithm) for computing the optimal elevator for the Hamil-
tonian (8) is given below. The algorithm for computing δe

∗,
has four branches: (1) where the elevator is jammed; (2) where
both zeros are outside the interval [δmin, δmax]; (3) one and
only one zero is in the interval [δmin, δmax]; and (4) both
zeros are in the interval [δmin, δmax]. It is important to note
that unlike the optimal thrust, the optimal elevator, δe

∗, is
not always at the control limits. The optimal elevator may be
counterintuitive in some instances. It is shown that pT ·f(x, δe)
need only be evaluated for at most four different values of δe
to obtain δe

∗.

if (δmin = δmax) then
δe

∗ = δmin

elseif (δez1 /∈ [δmin, δmax] ∧ δez2 /∈ [δmin, δmax])
δe

∗ = argmax
{δmin,δmax}

(pT · f(x, δe))

elseif ((δez1 ∈ [δmin, δmax]⊕ δez2 ∈ [δmin, δmax]))

if

(
∂2H(x,p)

∂δe2

∣∣∣
δ
interior

> 0

)

δe
∗ = argmax

{δmin,δmax}
(pT · f(x, δe))

elseif

(
∂2H(x,p)

∂δe2

∣∣∣
δ
interior

< 0

)

δe
∗ = δinterior

else
δe

∗ = argmax
{δinterior,δmin,δmax}

(pT · f(x, δe))

elseif (δez1 ∈ [δmin, δmax] ∧ δez2 ∈ [δmin, δmax])

if

(
∂2H(x,p)

∂δe2

∣∣∣
δ
ez1

< 0

)

δe
∗ = argmax

{δez1,δmin∨δmax}
(pT · f(x, δe))

elseif

(
∂2H(x,p)

∂δe2

∣∣∣
δ
ez2

< 0

)

δe
∗ = argmax

{δez2,δmin,δmax}
(pT · f(x, δe))

else
δe

∗ = argmax
{δez1,δez2,δmin,δmax}

(pT · f(x, δe))
endif

endif

B. Safe Set Results

The safe set boundary is specified by the zero level set of

the scalar valued function S(v, γ , q , α). One way to visualize

this four dimensional flight safe set is as a linear array of three

dimensional surfaces formed by taking slices along constant

values of an independent dimension. Figure 5 illustrates a four

dimensional safe set as a sequence of three dimensional sur-

faces for constant angles of attack values, S(v, γ , q )(αconst)
for an unimpaired and impaired aircraft. Figure 6 shows

S(v, γ , α )(q = 0) corresponding to trim states for straight,

wings level flight with the set of viable trim points on the

interior. Note both the safe set and the equilibrium point

structure is significantly altered in the presence of failures and

will severely limit the manner in which the aircraft can be

safely maneuvered to remain within the prescribed envelope

limits.

V. CONCLUSIONS

Ordinarily, for unimpaired aircraft, stall occurs outside of

the prescribed flight envelope, therefore envelope protection

is an important technology in the prevention of LOC. In this

paper we showed the impact of control constraints, including

those induced by actuator impairment, on the ability to maneu-

ver within and prevent departure from the flight envelope for

the longitudinal dynamics of NASA’s GTM. We examined ma-

neuverability by identifying attainable steady motions within

the flight envelope and illustrated how the set of viable trim

points can change when an actuator impairment occurs. We

derive a Hamiltonian for the longitudinal dynamics of GTM

which yields an expression for the optimal safety based thrust

and elevator control. We then utilize this expression in a level

set method framework to solve a partial differential equation

to compute safe sets for an unimpaired and impaired elevator.
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