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Abstract—This paper presents a Matlab-based voltage stability
toolbox (VST) designed to analyze bifurcation and voltage stability
problems in electric power systems. VST combines proven com-
putational and analytical capabilities of bifurcation theory, and
symbolic implementation and graphical representation capabili-
ties of Matlab and its toolboxes. The motivation for developing the
package is to provide a flexible simutlation environment for an on-
going research conducted at the Center for Electric Power Engi-
neering (CEPE) of Drexel University, Philadelphia, PA, and to en-
hance undergraduate/graduate power engineering courses. VST is
a very flexible tool for load flow, small-signal and transient stability,
and bifurcation analysis. After a brief summary of power system
model and local bifurcations, the paper illustrates the capabilities
of VST using the IEEE 14-bus system as an example and describes
its successful integration into power engineering courses at Nigde
University, Nigde, Turkey.

Index Terms—Load flow, local bifurcations, Matlab, power en-
gineering education, symbolic computation, voltage stability.

1. INTRODUCTION

HE methods of bifurcation theory can be effectively used
Tto analyze various types of stability problems in power
systems, such as voltage stability and collapse and oscillatory
phenomena [1]—[8]. Therefore, bifurcation analysis has become
an important tool in practical analysis of power system stability
[91-[13].

Power system stability analysis using bifurcation theory is
usually taught in the graduate level courses. Teaching bifurca-
tion theory and its applications to stability analysis is a major
undertaking that involves a multidisciplinary approach in which
the fundamentals of power system modeling together with di-
verse mathematical formulations of bifurcation theory need to
be merged in a common framework. One convenient and yet
powerful way is to use simulation tools as the common frame-
work and to integrate them into power engineering courses
[14]-[16]. Such a simulation tool needs to be user friendly and
should make the powerful but complex bifurcation theory and
its recent applications readily accessible to the students.
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Simulation tools for power system stability analysis can be di-
vided into two classes—commercial programs and customized
toolboxes developed for education and research. Various com-
mercial programs, such as Power System Simulator for Engi-
neering (PSS/E), Power System Simulator (Simpow), and Pow-
erWorld, are available on the market. These programs provide
detailed component/system models and computationally effi-
cient algorithms for the analysis. However, they are not suitable
for educational and research purposes since they usually do not
allow modification or addition of new component models and
algorithms. For education and research purposes, flexibility and
ability of easy prototyping are often more crucial aspects than
computational efficiency.

In the area of power systems, a Matlab [17] software package
has become one of the most popular scientific programming
languages for research and teaching applications. The following
features make Matlab an attractive choice for power systems:
1) wide availability, portability, and cost; 2) high-quality nu-
merical processes, including sparse matrix capability; 3) the
ability to create dynamically linked C/C++ or FORTRAN sub-
routines; 4) the availability of symbolic computation capability
through the Extended Symbolic Toolbox; 5) the ability to build
a portable and powerful graphical user interface; 6) it is widely
used in engineering curricula and well known by students;
and 7) wide selection of toolboxes, such as Simulink, Sim-
PowerSystems, Control Toolbox, and Real-Time Workshop.
Several Matlab-based programs are available in power system
simulation, modeling, and analysis, such as Power System
Toolbox (PST) [18], Electromagnetic Transients Program in
Matlab (MatEMTP) [19], Power Analysis Toolbox (PAT) [20],
Educational Simulation Tool (EST) [21], SimPowerSystems
(SPS) [22], and Matlab Power System Simulation Package
(MatPower) [23]. Among these, only MatPower program is
open source and freely downloadable.

This paper describes a new Matlab-based voltage stability
toolbox (VST) that uses visualization capabilities of Matlab and
integrates the symbolic and numeric computations to investi-
gate voltage stability and bifurcation issues in power systems.
VST is an open source simulation tool and is freely available at
http://power.ece.drexel.edu, the website of the Center for Elec-
tric Power Engineering (CEPE) of Drexel University, Philadel-
phia, PA. VST was first designed to have a computational tool
that supports the ongoing research on the voltage stability anal-
ysis at CEPE [24]-[26] and was improved progressively within
the context of the Ph.D. dissertation [27], [28].

Table I gives a comparison of the currently available
Matlab-based tools for power system analysis and VST. The
features illustrated in the table are: load flow (LF), voltage
stability analysis (VSA), small-signal stability analysis (SSA),
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time-domain (TD) simulation, electromagnetic transients
(EMT), and graphical-user interface (GUI). As the table clearly
indicates, the VSA function included in VST is a novelty among
available Matlab-based packages for power system analysis.
The VSA function, as will be described later in the paper,
implements a continuation load flow algorithm that computes
a set of equilibria (operating points), a nose curve for a given
load, and/or a generation increase scenario and associated local
bifurcations by monitoring the system eigenvalues. Moreover,
convenient and powerful GUI of VST provides an easy-to-use
simulation environment within which even a user not well
versed in the mathematics of bifurcation theory or experienced
in voltage stability analysis can easily experiment with standard
systems or construct one of his or her own. An experienced
user can exploit open architecture of VST to implement and
experiment with alternative computational algorithms.

VST could be effectively used to enhance power engineering
undergraduate/graduate courses. For undergraduate courses, the
load flow module could be helpful to illustrate modeling (i.e.,
basic bus models and network admittance matrix) and algo-
rithmic issues (Newton—Raphson (NR) method, convergence,
multiple solutions, etc.) in load flow analysis. On the other hand,
the bifurcation analysis module of VST could enhance grad-
uate courses, especially courses that introduce students to sub-
jects on active research areas, such as bifurcation theory and
its application into voltage stability analysis. The enhancement
can be achieved by using VST for various educational activ-
ities, such as classroom demonstration, exercises, and assign-
ments. The classroom demonstration enables the instructor to
illustrate to students the fundamental concepts of voltage sta-
bility phenomena, such as multiple equilibria, loss of equilibria,
small-signal stability features of the equilibria, and local bifur-
cations. With exercises and assignments given, students will be
able to investigate the effects of different loading conditions on
the system stability and to learn how corrective control strate-
gies could be developed to prevent instabilities. With the help of
simulation results they obtain, students will increase their under-
standing of power system characteristics and behavior beyond
the understanding they gain from classroom lectures and text-
books.

The remainder of the paper is organized as follows. Section II
gives the differential-algebraic equation (DAE) model of power
systems and summarizes local bifurcations of the equilibria.
Section III describes the structure of VST and its applications
using the IEEE 14-bus system. Section IV explains how VST
was used in power engineering courses at Nigde University,
Nigde, Turkey, and summarizes student evaluations, while the
last section concludes the paper.

II. DIFFERENTIAL-ALGEBRAIC POWER SYSTEM MODEL AND
LOCAL BIFURCATIONS

The DAE model is widely used to describe the dynamics of
power systems for voltage stability analysis [5], [6]. For all anal-
ysis, VST implements the following DAE model of the classical
power system with constant PQ load buses:

& =f(z,y,0)
0=g(z,y,5) (1
where z is the vector of state variables (generator angles and
angular velocities), ¥ is the vector of algebraic variables (voltage
magnitude and phase angles at the load buses), and [ is the
vector of parameters (real/reactive power demand at the buses
and transmission line parameters). The differential equation is
the swing equation describing dynamics of each generator, and
algebraic equations are the power flow equations representing
real and reactive power balances at the load buses.

When parameters are subject to variations, the equilibria of
the DAE power system model may exhibit three local bifurca-
tions, namely saddle node (SN), Hopf and singularity induced
(SI) bifurcations [5], [6]. The SN bifurcation occurs when a
stable equilibrium point meets an unstable equilibrium point in-
dicating the loss of equilibria. The SN bifurcation has become
a widely accepted paradigm for one important form of voltage
instability and linked to voltage collapse [29]. Hopf bifurcation
occurs when the Jacobian matrix of the linearized model around
an operating point has a pair of imaginary eigenvalues. Hopf
bifurcation leads to oscillatory instabilities in power systems
[30], [31]. The SI bifurcation occurs when system equilibria en-
counter the singularity manifold. The SI bifurcation refers to a
stability change as the result of one eigenvalue of a reduced Ja-
cobian matrix associated with the equilibrium diverging to in-
finity [6], [8], [11]. The infinite (unbounded) eigenvalue at this
bifurcation implies that some of the slow dynamics of state vari-
able (z) of the DAE model become very fast near the SI bifur-
cation. The presence of the eigenvalue in the right-half plane
implies that the power system is small-signal unstable after the
SI bifurcation.

III. VOLTAGE STABILITY TOOLBOX

VST was designed to analyze bifurcation and voltage stability
problems in electric power systems. VST combines symbolic
and numeric computations with a graphical menu-driven inter-
face based on Matlab and its extended symbolic toolbox.
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Fig. 1. VST software configuration.

The main features and application modules of VST can be
summarized as follows.
use of Matlab’s visualization capability to create graphical
user interface and visualize output data;
use of stand-alone MEX-files to generate classical power
system model equations;
use of symbolic toolbox to generate Jacobian and second-
order derivative matrices;
load flow calculations: standard NR and convergent
Newton—Raphson—Seydel (NRS) [32] methods;
Voltage stability analysis: identification of local static and
dynamic bifurcation points, such as SN, Hopf, and SI bi-
furcations;
small-signal stability analysis;
dynamic (time-domain) simulations.
Fig. 1 illustrates the configuration of the overall software
package, and Fig. 2(a) shows the main window indicating the
types of analysis. Sections III-A-E describe input data pro-
cessing, model building and code compiling, and application
modules of VST.

A. Input Data Processing

Before any computations can be performed, a data file that de-
scribes the power system must be read, processed, and loaded to
Matlab’s workspace. Currently, VST supports a modified VST
data format. The user provides the [IEEE Common Data Format,
and VST automatically converts the IEEE data format to its cus-
tomized format. The data structure of VST includes required bus
data, such as bus types (swing, PV, or PQ buses), real and reac-
tive power injections into buses, transmission line data (resis-
tance and reactance), and generator data (inertia and damping).
VST also allows the user to view and modify the selected system
data via an edit interface illustrated in Fig. 2(b). Bus data, branch
data, and generator data can be easily modified; and new bus, or
branch, or generator can be added into an existing system.

B. Model Building and Code Compiling

In VST, symbolic computation is used to build the classical
power system equations and associated Jacobian expressions
and to obtain computational modules for the bifurcation anal-
ysis. The model-building process implemented in VST could
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tl = data[2] *data[0] ;
t2 = cos(x[0]);
t4 = sin(x[0]);
t5 = td4*data[0];
t9 = data[2] *x[1];
t10 = data[0] *t2;
tll = t9*tl1l0;
tl2 = x[1] *data[6];
t13 = t5*tl2;
tl4 = pow(x[1],2.0);
t17 = t9*t5;
t18 = t10*tl2;
J[3] = tl*t2+t5*data[6]+2.0*data[4] *x[1];
f[1] = tll+tl3+data[4]*tl4-param[2];
J[1] = -t17+t18;
J[0] = t11-t13;
J[2] = tl*td4+tl0*data[6]+2.0*x[1]*data[8];
£[0] = tl17+tl8+tl4*data[8]-param[l];

a)

b)

Fig. 3. (a) Power system governing equations and Jacobian expressions and (b) optimized source code.

be summarized as follows. First, a power system data in IEEE
Common Data Format is imported, converted to the VST
data format, and edited, if necessary, in the Edit GUI shown
in Fig. 2(b). Second, a core (classical) network model and
associated Jacobian expressions, including the second order
derivatives, are built using symbolic constructions coded in a
C source file that has been compiled and is available to Matlab
as a function (“MEX function”). The input to this function is
the system data, and its output consists of the equations of the
classical power network model and Jacobian expressions in
either C-form or MAPLE-form. This routine is very efficient
for model assembly. The MAPLE-form equations and Jacobian
matrix for a three-bus power system are shown in Fig. 3(a).
The MAPLE-form equations are further processed using the

Matlab symbolic toolbox. This process can include modifi-
cation of the classical model (addition of exciters, governors,
tap changing transformers, etc.), and also optimization of the
computational sequence by identification and elimination of
repeated expression. Finally, MAPLE functions convert the
optimized equations to C source code that compiles as a MEX
function callable from Matlab for numerical computations. The
optimized C code for the three-bus power system is given in
Fig. 3(b).

C. Load-Flow Analysis

VST implements the NR algorithm to compute the load-flow
solutions at a given set of bus injections. The load-flow analysis
module has easy-to-use GUI as shown in Fig. 4(a). The GUI
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Fig. 4. (a) GUI for load flow analysis and (b) a three-stage process for the computation of equilibrium and bifurcation points.

for load-flow analysis allows the user to set control variables of
the NR algorithm, such as maximum number of iterations, error
tolerances, and to specify real/reactive power demand at the load
buses (Parameter Values), and the initial conditions of voltage
magnitudes and angles to be solved (State Values) through the
editable fields at the bottom of the interface. The MEX function
used for the NR method has the following calling syntax:

[f J] = function(data, X, param) (2)

where “data” is a data set consisting of the bus data, branch
data, and generator data needed to run standard load-flow calcu-
lations; X is the vector of voltage magnitudes and angles; and
“param” is the vector of real/reactive power demand at the buses
specified by the user; f is a vector of load-flow mismatches;
and J is the Jacobian matrix that includes first-order deriva-
tives only. The load flow results are displayed in the field named
States Values as shown in Fig. 4(a). The resulting voltage mag-
nitudes are in pu, and angles are in radians. The user is also
able to save the load-flow results in a table format to Matlab’s
workspace.

D. Voltage Stability Analysis

The voltage stability analysis requires the identification of all
equilibrium points (nose curve) and their stability features and
associated local bifurcations (SN, Hopf, and SI bifurcations) for
a given load increase pattern [1]. VST implements load-flow
calculations that function up to the point of collapse (SN bifur-
cation point). Conventional numerical methods for computing
equilibria, such as the NR method, must be modified to obtain
reliable results near bifurcation points. In VST, a three-stage
load-flow method has been implemented to obtain entire nose
curve for a given load increase pattern. First, the standard NR
method is used until it fails to converge. Then, it automatically
switches to the NRS method to find load-flow solutions at and
around the SN point. The NRS method is a direct method that

uses the second-order derivatives to compute the SN bifurca-
tion point [33]. After passing through the bifurcation point, the
standard NR method is switched back to compute low voltage
solutions. Therefore, by using VST, the whole equilibria can
be easily traced, and the voltage stability characteristics can be
found. The three-stage tracing process is illustrated in Fig. 4(b).
In the NRS method, the load-flow equations and the Jacobian
matrix are evaluated numerically through the following callable
MEX function in the VST.

[f J] = function(data, X, param, v). 3)
Compared with the MEX function of load-flow analysis given
by (2), here an additional input v is included. This new input
vector is the null space spanning vector (right eigenvector)
of Jacobian matrix at the SN bifurcation point. The matrix
J =[.J1 J]is the Jacobian matrix containing first (/1) and
second-order derivatives (.J3).

Fig. 5(a) shows the GUI of dynamic bifurcation analysis that
implements the three-stage algorithm. This GUI enables users
to set absolute and relative tolerances, maximum number of it-
erations, and initial values for both power injections and state
variables. When it is run, it gives the set of equilibrium points
(nose curves) with respect to parameter changes. In VST, the
concerned parameters are the real/reactive loads at the buses that
can vary according to the following formula:

P = Py + alpha*directionP

Q = Qo + alpha*directionQ “)

where Py, Qo and P, @ are vectors of initial and actual real and
reactive power, respectively; “direction P and “direction()” are
vectors of searching directions, which can be set to be positive,
zero, or negative for each bus. Therefore, one may conveniently
increase load or increase generation at a bus and/or at a group
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Fig. 5. (a) GUI for dynamic bifurcation analysis and (b) bifurcations for the IEEE 14-bus system.

of buses, while the power factor is kept constant or varying. At
present, a fixed-step size is used at the NR stage, meaning that
“alpha” can be increased or decreased by a fixed-step size. How-
ever, at the NRS stage, the step size is changed automatically by
VST according to the second-order derivatives.

The dynamic bifurcation analysis not only computes equilib-
rium points but also identifies their small-signal stability char-
acteristics by computing and checking the eigenvalues of the re-
duced system Jacobian matrix at each equilibrium point along
the nose curve. Unlike other software packages, such as PST and
Simulink-based tools, eigenvalues are computed using the sym-
bolically computed Jacobian matrices, thus ensuring high-pre-
cision results. The reduced-system Jacobian matrix [Agys] is de-
fined as follows:

[Asys] = [Da f1 = [Dy f11Dy9] " [Dag) - ©)

The dynamic bifurcations (Hopf and SI) are determined by mon-
itoring the eigenvalues of the system matrix as the system moves
from one operating point to another along the nose curve with
changes in the parameter «. On the other hand, the static bifur-
cation analysis implements only a two-stage (NR—NRS) algo-
rithm to compute equilibrium points up to the tip of the nose
curve (the SN bifurcation point) and does not determine the
small-signal stability of the operating points. Therefore, it is
called static rather than dynamic bifurcation analysis.

Fig. 5(b) illustrates the output window of the dynamic bifur-
cation analysis. For the simulation, the real power demand at bus
8 of the IEEE 14-bus system is increased according to (4). The
voltage magnitude at bus 8 is selected to show how the system
equilibria and stability properties change with parameter varia-
tions. [Note: any of the voltage magnitudes or phase angles can
be plotted by using the slider in the right part of the window.]
Observe that along the nose curve, SN, Hopf, and SI bifurca-
tions are observed. The SN bifurcation is the tip of the nose

curve at which parameter &« = 3.487. Beyond this parameter
value, no solution is available to the load-flow equations. In the
lower part of the nose curve, the SI and Hopf bifurcations are
observed. The SI bifurcation happens at o« = 2.409, while two
Hopf bifurcations occur at « = 1.015 and o« = 0.904.

In VST, small-signal stability analysis of operating points
could be easily performed since the eigenvalues of the system
matrix, evaluated at any operating point along the nose curve,
are available from the dynamic bifurcation analysis and stored
in the Matlab’s workspace. Fig. 6 shows the loci of the eigen-
values of the system matrix for the same load increase scenario
indicating the occurrence of Hopf bifurcation.

E. Dynamic Simulations

The TD simulation program is designed to analyze the
system’s local dynamic behavior around an operating point. The
TD simulation module enables users to verify the small-signal
stability features of any operating point. For the DAE model
of power systems, the load-flow equations for PV and PQ
buses have to be solved in advance of solving the differential
equations of the generators. The TD simulation program imple-
ments an ordinary differential equation (ODE) solver combined
with an algebraic solver at each iteration step. A fourth-order
Runga—Kutta method is used as an ODE solver, while an NR
procedure is implemented as an algebraic solver to update the
load bus voltage magnitudes and angles at each integration step.

The GUI for TD simulation is shown in Fig. 7(a). From the
GUI, any operating point along the nose curve can be selected
by using the slider at the top of the window (CurrentPoint-
Number) as the initial operating point for simulation, and the
excitation (disturbance) can be set by using the editable fields
(StateValues). The simulation results for the desired variable can
be selected by using the slider (SelectedVariable) and plotted in
another window [Fig. 7(b)]. Fig. 7(b) shows simulation results
initiated at a stable operating point (o« = 2) for the generator 2
angle.
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IV. EDUCATIONAL USE OF VST

This section describes how VST was used in power engi-
neering courses in the Electrical and Electronics Engineering
Department of Nigde University. These courses are Power
System Analysis II and Power System Stability and Control.

In the undergraduate course Power System Analysis II, VST
was mainly used to enhance the teaching load flow analysis
and related computational issues. After the standard material on
load flow modeling (bus model, admittance matrix, and power
mismatches) and solution algorithms (Gauss—Seidel, NR, and
decoupled algorithms) are covered in the class, the instructor
uses VST for in-class demonstration for various sized prebuilt
and compiled power systems ranging from a two-bus system to
the IEEE 118-bus system. After the demonstration, students use
VST for the the IEEE 14-bus system to investigate the effects of
load and/or generation increase/decrease on the voltage profile
and to determine the most sensitive bus with respect to a load
increase. Students through this exercise should have a basic un-
derstanding of the network models, fundamental bus models,
and how the voltage profile of the system is affected by the vari-
ation in load/generation. At the same time, they should have
gained some understanding of the NR algorithm and the concept
of convergence. During the class, students are also asked to find
out how the solution and convergence might change with some
of the NR algorithmic parameters, such as maximum number
of iterations, error tolerances, and initialization. After having
enough experiences with VST, some of the following exercises
are assigned to students for the IEEE 14-bus system:

* increase the active and reactive load demand at any of PQ

buses while keeping the power factor constant, determine

bus voltage magnitudes and angles, and plot results using
bar-chart-plotting option of Matlab;

* write a Matlab code to determine the active and reactive

power flows at each line;

* investigate the effect of the line loss between buses 4 and

12 on the voltage profile of the system;

 find loading conditions to experience convergence prob-

lems in the NR algorithm.

Fig. 8 shows the voltage profile (magnitude and phase angle)
of the IEEE 14-bus system when the load demand at bus 9 was
increased to twice of the original demand. These plots are the
result of the first assignment given for which students need to
explore the LF program in VST to extract correct bus data (note
that PV bus magnitudes are constant and are not displayed in
the LF’s GUI shown in Fig. 4(a); this data must be extracted
from the bus data file) and to find the plotting options of Matlab.
These plots help students understand that load increase in a par-
ticular bus (bus 9 in this case) not only affects the voltage profile
of this bus, but also influences adjacent buses (buses 6, 8, 10, and
14) connected to the bus 9. Moreover, examining the load-flow
solutions for various loading conditions (i.e., increase in real
power only, or reactive power only, or both) students clearly see
that variation in reactive power load mostly affects the voltage
magnitudes, while variation in real power load influences the
phase angles ( P-6 and -V interactions).

Power System Stability and Control, a graduate course,
mainly focuses on bifurcations and voltage stability,
small-signal stability, transient stability, and control of ac-
tive and reactive power. For this course, the bifurcation analysis
and TD simulation applications of VST are used for class
demonstration to illustrate to students the concept of multiple
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equilibria, loss of equilibria, small-signal stability features
of the equilibria, and local bifurcations. The PV curves for a
load increase pattern as illustrated in Fig. 5(b) combines the
above concepts into a single graph, helping students easily
grasp the idea. During the class, students are asked to choose a
load increase scenario for the IEEE 118-bus system to observe
the change of equilibria and stability with respect to the load
increase to determine local bifurcations. They are also asked
to run the TD simulation around stable and unstable operating
points along the PV curve to investigate the dynamic response
of the system. The graduate students are given several assign-
ments for which the capabilities of VST could be used. The
typical assignments are as follows:
* find a load/generation increase pattern so that the entire
lower voltage part of the PV curve is unstable (i.e., only
the SN bifurcation is observed);

* using the right and left eigenvectors information at the SN
bifurcation point, determine the buses that are most sensi-
tive to loading and find remedial action information useful
for corrective control [29];

* analyze the participation factors to determine which com-
ponents (state variables) are most involved in the various
system modes (eigenvalues) [34];

* initialize TD simulations around the Hopf bifurcation point
shown in Fig. 5(b) and determine the frequency of the os-
cillations.

Examples of simulations obtained by students for given assign-
ments are presented in Figs. 9 and 10. Fig. 9(a) shows a PV
curve (nose curve) whose lower part is unstable, while Fig. 9(b)
depicts TD simulation for generator 5 rotor angle indicating
undamped oscillations because of a Hopf bifurcation. By
obtaining such simulation results students can gain hands-on
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experience on power system dynamic behavior. Fig. 10 depicts
absolute values of the component of the right eigenvector
(null-space vector) and left eigenvector (remedial action vector)
corresponding to the zero eigenvalue of load-flow Jacobian
matrix at the SN bifurcation point. With the help of the right
eigenvector information, students can easily determine which
load-flow variables are most sensitive to voltage stability at
the concerned bifurcation point according to the magnitudes
of the null-space vector. Some of the most sensitive variables
are labeled in Fig. 10. From Fig. 10(b), students can easily
find remedial action information, which is useful for corrective
control.

The use of VST was assessed both formally with student
evaluations and informally from discussions with students.
Since VST were introduced to all students within a course, no
good control group is available to make a meaningful statistical
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assessment. The student response to the use of VST has been
very positive. Students increase their understanding of load
flow, voltage stability, and complicated nonlinear dynamic
behavior of power systems beyond the understanding they
gain from classroom lectures and textbooks. The majority of
the undergraduate students indicate that having a tool that is
easy to use allows them to comprehend load-flow analysis and
related computational issues. Graduate students indicated that
through the in-class demonstrations and assignments they had
a better understanding of voltage stability and power system
operation. They feel that simulated examples help them un-
derstand complex bifurcation theory and its applications into
power system stability analysis. Moreover, they appreciate the
open architecture of VST which allows them to modify source
code for their research. The student interest is partly a result
of their becoming familiar with the widely used numerical
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simulation environment of Matlab, which they will be able to
use subsequently for their senior design projects or research.

V. CONCLUSION AND FUTURE WORK

A voltage stability simulation tool in Matlab is presented in
this paper. The developed VST is the outcome of the ongoing
research conducted at Drexel University on bifurcation theory
and its implementation into voltage stability analysis. VST
integrates numeric and symbolic computations with powerful
graphical interfaces for load flow, small-signal and transient
stability, and bifurcation analysis. Simulation results show that
it is a powerful and promising tool for voltage stability studies,
and very helpful to understand voltage stability phenomena.
VST is used for illustration purposes during the lectures and by
students preparing personal assignments. The student response
indicates that it can be effectively used to support power engi-
neering education, graduate courses in particular.

Based on its modular programming structure, other element
models, such as nonlinear dynamic load models and more
sophisticated generator models, can be easily included in the
toolbox, which will definitely improve its usage. Future work
will concentrate on such issues.
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