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A Canonical Parameterization of the Kronecker
Form of a Matrix Pencil*

JORDAN M. BERG+ and HARRY G. KWATNY#

The Kronecker form of a matrix pencil displays the invariant zero structure

of a linear system. A minimal parameterization of the Kronecker form of a

given pencil is derived to capture the invariant zero structure of any nearby
pencil.
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Abstract—The Kronecker form is the classical canonical
form for matrix pencils under strict equivalence transforma-
tion. Consider a matrix pencil whose entries are smooth
functions of a parameter vector. The Kronecker form of the
parameterized pencil will, in general, be a discontinuous
function of the parameters. For a linear time-invariant
control system these discontinuities correspond to a change
in the finite and infinite invariant zero structure. Since many
control strategies require knowledge of, or place restrictions
on, the zero structure, these points of discontinuity are of
considerable interest. In this paper a general approach to the
study of such points is developed in the framework of
singularity theory. We derive a ‘miniversal’ parameterization
of a given pencil. That is, a parameterized family of pencils
that: (i) includes the given pencil, (ii) is locally equivalent to
any other family up to a change of parameters, and (iii) uses
the fewest number of parameters to achieve this property.
All ‘nearby’ zero structures can be obtained by varying
parameter values in the miniversal parameterization. From
all miniversal parameterizations, one having a particularly
uncluttered representation is selected as canonical. However,
some restrictions on the finite elementary divisors are then
required.

1. INTRODUCTION

Matrix pencils are matrix-valued functions of a
scalar variable of the form M, + M,s. They are
ubiquitous in the study of linear systems. The
dynamic system X = Ax has associated pencil
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sI— A. The implicit control system Ex = Ax +
Bu, y = Cx + Du has associated system pencil

[E 0] [A B]

*lo o) lc bf
When E =1 the pencil corresponds to a linear
state-space control system. Two pencils, M, +
M,s and N, + N,s, are said to be equivalent if
there exist constant, invertible, matrices P and
Q ! such that N;=PM,Q ' and N, =PM,Q .
This relation is known as strict equivalence (s.e.;
it is common to use Q in place of Q '), and it
can be used to establish a useful concept of
equivalence for linear systems.

Many definitions of equivalence for linear
systems have been proposed. Some of these
require that the input-output behavior, or
transfer matrix, be invariant (Rosenbrock, 1974;
Fuhrmann, 1977; Verghese et al., 1981; Pugh et
al., 1987; Kuijper and Schumacher, 1991).
Others allow operations that change the
input-output behavior (Kalman, 1972; Wonham
and Morse, 1972; Morse, 1973; Thorp, 1973;
Wolovich and Falb, 1976). This paper most
closely follows the view of Thorp that state
feedback, output-injection and coordinate trans-
formations of the input, state and output spaces
are allowable operations. As shown by Thorp,
these correspond exactly to s.e. transformations
on the corresponding pencil. The essential
invariant under s.e. transformation is precisely
the invariant zero structure (MacFarlane and
Karcanias, 1976), which is a fundamental
property of a control system. The invariance
properties of equivalent control systems are
clearly shown in the canonical Kronecker form
(Gantmacher, 1959). Aling and Schumacher
(1984) present a comprehensive discussion of

(1)
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zeros and their relation to the Kronecker
invariants.

The question of uncertain parameters always
arises when using mathematical representations
of physical systems. This issue is particularly
important when using the Jordan or Kronecker
form. The eigenstructure or zero structure may
depend discontinuously on system parameters,
even when the matrices representing the system
depend smoothly on those parameters. It is
therefore of great interest to investigate the
various structures that can arise from small
perturbations of a nominal dynamical or control
system.

Arnold (Arnold, 1981; Gilmore, 1981) ex-
amined this problem for square matrices. He
considered the problem of a square matrix with
entries that may depend holomorphically (that
is, complex-differentiably) on parameters. In
summary, any parameter-dependent family of
square matrices for which the zero parameter
value corresponds to a nominal matrix is called a
deformation of the nominal matrix. Two
deformations depending on the same parameters
are equivalent if they are related by a
near-identity similarity transformation, itself
dependent on the same parameters. A deforma-
tion can be reparameterized by an analytic
transformation of parameters. It is called versal
if any other deformation is equivalent to it,
possibly with reparameterization. A versal
deformation contains all possible Jordan struc-
tures that can arise from a small perturbation.
Note that at least one versal deformation is easy
to come by. Simply add an independent
parameter to every entry of the Jordan form of
the nominal matrix. The versal deformation
obtained by Arnold uses the smallest number of
parameters possible. Arnold refers to versal
deformations with this additional property as
miniversal.

The theory presented by Arnold can be
extended to other objects. Tannenbaum (1981)
obtains results for the manifold of (A, B) matrix
pairs under similarity, and an extension for
(C,A,B) triples. This paper applies Arnold’s
program to implicit and state-space control
systems, by considering matrix pencils under s.e.
transformation. The results are most interesting
when the parameterized object is in some sense
structurally unstable or nongeneric. In the case
of square matrices, this means repeated eigen-
values and nontrivial Jordan blocks. In the case
of (A, B) pairs this means unreachable. The set
of possible structural instabilities of a matrix
pencil is extremely rich.

The sensitivity of the Kronecker form to
perturbation clearly must be considered when

developing stable numerical algorithms for
computation. Van Dooren (1979, 1981) discusses
such algorithms and their applications in detail.
Demmel and Edelman (1993) build on the work
of Van Dooren to calculate the codimension of
the orbit of a matrix pencil. This is exactly the
number of independent parameters in a mini-
versal deformation, independently confirming
our own calculations. Elmroth and Kégstrom
(1993) report an exhaustive study of 2 X 3 matrix
pencils, including an experimental (numerical)
study of how the generic and all 17 nongeneric
Kronecker structures behave under random
perturbations.

Section 2 summarizes the notation used in the
remainder of the paper. Section 3 gives matrix
pencils and s.e. transformation interpretations as
manifolds, and uses the versality theorem to find
an algorithm that will lead to a miniversal
deformation. Section 4 describes the Kronecker
form, and explains how using the Kronecker
form simplifies calculation. Section 5 illustrates
the computations on a simple pencil. Section 6
describes the miniversal deformation. The
detailed calculation for one partition is given in
the Appendix. Section 7 gives some nontrivial
examples and Section 8 contains concluding
remarks.

2. BACKGROUND AND NOTATION

It is convenient to represent both matrix
pencils and strict equivalence transformations as
matrix pairs, respectively M = (M;, M) €M, +
M.s, and G = (G, G;). The new pencil produced
by operating on M with G is
(G,.M,G;', GM,G; "). Let . be the set of all
matrix pairs of given order, which throughout
this paper are to be m Xp, ie. M=C""X
C™**. The space of all s.e. transformations 4 on
M is =Gl (m, C)x Gl(p, C).

Scalar variables are indicated with italics or
Greek letters, k, K or x. Vectors and matrices
are bold Roman characters, lower and upper
case respectively, x and A. A single element of a
matrix is indicated using single brackets [A]; =
a;. 0 denotes both the zero vector and the zero
matrix. 0 is used in matrices as a ‘space-filling’
zero. The complex conjugate transpose of A is
A*. Matrix pairs are written in bold italic, M. The
two members of a matrix pair are denoted by the
same letter as the pencil itself, with subscripts
indicating order, M déf(MI,MZ). By a space of
matrix pairs is meant the set, {(M;,M,):M,
C™; M, e C¥*%} for i, j, k, I specified constants.
Elements of the matrix pair are indexed by three
numbers, m; = [M] ='[M,];. The space is
always given the structure of a vector space by
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(M, M;) + (N;,N;) =(M, +N,,M; +N,) and
A(M;,M,) = (AM,, AM,), A e C. Finally, (AM,B,
AM;B) is abbreviated by AMB.

If a matrix is partitioned then double brackets
are used to index the partitions. For example, to
show that the ijth partition of A is zero, write
[A]; = 0. Clearly the partition of a matrix pencil
defines a partition of the matrix pair represent-
ing that pencil. If one term in a sum of pencils is
partitioned then the same partitioning is applied
to the other terms, and to the result. If a
partitioned rectangular matrix is premultiplied
by a square matrix then that square matrix is
partitioned, rows and columns, like the rows of
the rectangular matrix. Likewise, if a rectangular
matrix is postmultiplied by a square matrix then
the square matrix is partitioned, rows and
columns, like the columns of the rectangular
matrix. The extension to matrix pencils is clear.

I® denotes an n Xn identity matrix. H™
denotes an n X n matrix with ones on the first
superdiagonal and zeros elsewhere. Hy,,, denotes
an nXn matrix with ones on the first
subdiagonal and zeros elsewhere.

3. MANIFOLDS AND DEFORMATIONS

Many of the concepts and theorems required
in this paper apply to the general situation of a
smooth manifold acted upon by a Lie group.
Only the details of the calculation are unique to
matrix pencils under s.e. transformation.

3.1. Lie groups, actions and orbits

A Lie group is a group with a manifold
structure. If ./ is a manifold and ¥ is a Lie group
with identity element I, then a smooth map
a:GX M— M, also written an(G) or G - M, is
an action of ¥ on M if (i) I-M =M and (ii)
G, (G- M)= (G, G,)- M. Any action of a Lie
group on a manifold defines an equivalence
relation, as follows: N is equivalent to M if and
only if there is a G such that N=G - M. The
orbit of M € # under the action is every element
of J equivalent to M written Oy, G- M. The
orbit of M is a submanifold of .#. For a proof see
Varadarajan (1984).

3.2. Deformations and versality

This section very closely follows Arnold
(1981). Consider a matrix pair A € &, where &
can be either # or ¥, and a parameter vector
ce 4=C* A mapping A: € — &, written A(c),
is called a deformation of A if, (i) the entries of
A(c) are power series in the elements of ¢,
convergent in some neighborhood of ¢ =0, and
(ii) A(0)=A. The space % is called the base of
the deformation. Now consider .# and ¥, and

the action of ¥ on . Two deformations of the
same element of ./, M(¢) and N(c) say, with the
same base, are equivalent if there exists a
deformation of the identity element of %G(c),
with that base such that M(c)= G(c)  N(c).
Note that M(0)=N(0) =M and G(0) =L

Next consider a second parameter vector
dec 2 <=C/, and a mapping ¢:%— €. Require
that (i) the elements of ¢ be power series in the
elements of ¢ convergent in some neighborhood
of ¢=0, and (ii)) ¢(0)=0. Then define the
composition M($(d)), the mapping induced by
M(c) under ¢.

Definition. A deformation M(c)is called versal if
any arbitrary deformation of the same pencil is
equivalent to a deformation induced by M(c).
That is, N(d) can be written N(d)=

G(d) - M(o(d)) with M(0)=N(0)=M, G(0)=

I, and ¢(0)=0. A versal deformation M(c) is
called miniversal if, for every versal deformation
N(d), dim¥ = dim . d

A deformation M(c) defines a smooth
submanifold in a neighborhood of M, namely
M(%€). One can test for the versality of the
deformation using properties of this manifold,
through the following definition:

Definition. Let N'< A be a smooth submanifold.
Consider a smooth mapping M:€— 4 of a
manifold € into #, and let ce € satisfy
M(c) e #. Then the map M is said to be
transversal to A at ¢, or to intersect N
transversally at c, if

Here T,/ denotes the tangent space to manifold
s at the point A and dM :T.€ — Ty is the
differential of the mapping M€ — #. Recall that
T, is a vector space with dimension equal to
the dimension of & at A. The versality theorem
relates versal deformations to transversal
interactions:

Versality Theorem. A deformation M(c) of a
matrix pencil M is versal if and only if the
mapping M :€— 4 is transversal to the orbit of
M ate=0.

Proof. See Tannenbaum (1981). O

The versality theorem states that a smooth
mapping M:€— M satisfying M(0)=M with
TrOr + dAM(Ty€) = Ty M will be a versal defor-
mation of M. If in addition the dimension of € is
minimal, the mapping is a miniversal deforma-
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tion. The proof of the versality theorem uses the
inverse function theorem. Therefore, the ver-
sality of the deformation is guaranteed only in a
neighborhood of M.

Given a manifold ., a Lie group %, an action
a: 64X M— M denoted by ap(G)=G M, and
an inner product on , (M, N)— R, consider the
following procedure:

(1) Denote an element of . that is of special
interst by M. The orbit of M is 0y, €' - M. By
definition the mapping «,, is form % onto Oy,.
(2) Find the differential of a,, at ¥=1. Thisis a
mapping dass:T;%9— Ty #l. The rank of da,, is
equal to the rank of a,, (by definition). As a
consequence, since « is onto the mapping
das :T,%— Ty 0y, where Ty 0O 1s a linear
vector subspace of Ty, is also onto (Boothby,
1986). Therefore, the tangent space to the orbit
of M can be characterized as TG0y =
{d p(V¥):for all V¥e T,%}.

(3) Using the results of step 2, find all members
of TyM orthogonal to T,0, This set,
(TyOy)* ={V* (VX V=0 for al Ve
T Oy} Although the inner product was defined
for M, members of T can be considered as
clements of . Alternatively, the inner product
can be defined on Ty instead of 4. The set
(TyOh)" is a vector subspace of Tyl A
standard theorem on inner product spaces
(Hoffman and Kunze, 1971) gives Ty G, D
(TasOhg) " = Ty M.

(4) Form a basis of pencils, {U}, spanning
(T40h)*. Denote the dimension of (T Ty)" by
k.

(5) Simplify the structure of each U; by adding
pencils that lie in T,,0y,. The resulting set, {Vi},
is still linearly independent, but no longer spans
(TxOprs)*. The critical property that is preserved
is span{V} D Ty Oy =Ty M. The set {V} is
simple if each V, has only one nonzero entry.

(6) Construct a mapping from € to M as
follows:

M(c)=M + i Vo )

n=1

where (¢, ¢y, ...,c)=c¢ce €. Implicit in this
construction is an identification between T, #
and ., the use of the identity map as a
coordinate function on €, and the fact that / is
a vector space over C. The proof presented here
also assumes that . is given a manifold structure
by selecting its components, as in a matrix or
matrix pencil.

Claim. The mapping M(c) is a miniversal
deformation of M.

Proof. Clearly M(0)= M. Because M and the k
pencils V; are constant, M(e) is an analytic
function of c¢. So M(c) is a deformation of M.

Now show versality. For the following let the
coordinate function on M, ¢:#M—C/, be an
indexing function. For example, in the case of
m X p matrix pencils, let ¢;(M) = [M],,(;,, where
p is an isomorphism between the set of triplets
{rst:1=r=m, 1ss<p, 1=t=2} and the first
2mp natural numbers. Let {E}} be the natural
basis for Ty, and let {E?} be the natural basis
for Te%¢. Set (y,ys...,y)eC' and

(cy, Cay - - ., cx) € CX The expression for M(c) in
local coordinates is
k
yj = ¢]<M+ E Cn‘/n)’ (3)
n=1
k
Y= [M]u+ 21 cal Valuiiy 4)
and so
ay;
a—cl_ =[Viluo (5)

Then (Boothby, 1986)

{ ay {
dM(ED) = 2, (a—;)ME?‘ =2 [Vl E* = V.
j=1 i j=
(6)

So, dM(Ty€)=span{V;}. By the construction
then

AM(To8) + TrsOpy = Tre M, (7)

so M(c) intersects O,, transversally at M.
Therefore, by the versality theorem, M(c) is a
versal deformation. Finally, by the construction,
the sum in the transversality equation is direct,
and so no parameter space of smaller dimension
can satisfy the transversality requirement.
Therefore, M(¢) is a miniversal deformation. W

The following sections carry out these steps.
The linear transformations in step 5 are used to
give the deformation a particular structure.
Specifically, it is desirable to distinguish between
perturbations of tlhe linear part of the pencil,
called noncausal perturbations, and perturba-
tions to the constant part of the pencil, called
causal perturbations. Ideally, the final para-
meterization is separated into purely causal and
purely noncausual parts. Clearly if the results is
simple then this separation is achieved.

3.3. Manifold representation of system pencils
and strict equivalence

M and 9 are given the structure of complex
analytic manifolds by associating each element
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with a distinct coordinate in C**? or C™'7,
respectively. ¥ inherits the structure of a group
from Gl, with multiplication defined in the
natural way, GH = (G,,G,)(H,,H,)* (G,H,,
G,H,), with identity I = (I, 1’). Then ¥ is a
(complex) Lie group of dimension m” + p?, and
the map G -ME (GM,G;',GM,G;") is an
action of % on . The equivalence relation
induced by this action is strict equivalence.

3.4. The tangent spaces

One can treat tangent vectors to # at M as
elements of C"*? X C"™*?, and consider a basis
for Tyl to be {EY, for iel,...,m; je
1,...,p; kel,2}, where Ejj, e C"7 X C™*7 is
defined by [EM), = 5,,8,8, that is, EY, is the
matrix pair with a one in the ijk element and
zeros everywhere else.

In exactly the same way, treat tangent vectors
to ¥ at G as elements of C™*” X C”*?. Use as a
basis for Tg¥9 the set {Ef for (ije
1,...,m;k=NDor(i,jel,...,p:k =2)}. Note
that Ef is not an element of Gl (m) X Gl (p).

Consider the differential of a, = G,MG;".
Only the point G =TI is of interest. Then, if
V= (V¥ Vi) e Tg%, the differential is

day (V¥ =ViMG,' — G,MG; 'ViG;'
=ViM — MV;. (8)

Use the fact that the restriction day,,:T,%—
Ty Oy is onto to characterize the tangent space
to the orbit of M:

TM@M = {daM(V(g) V:& S Tl%
={(VIM -MV$: V9 eT,4. (9

Recall that the tangent vectors to a manifold of
matrix pairs are themselves represented by
matrix pairs. Then Tyl = C"™? X C""7, T, %=
C™m X< CP*?, and TyO is a subspace of
Cm xXp X Cm Xp.

3.5. Pencils orthogonal to TyOp

Now describe all tangent vectors orthogonal to
the orbit of M, ie. all U e Ty# such that
V e T,,0,, > <U, V)=0. A suitable inner prod-
uct is defined by

(U, VY tr {U*V,} + tr {USV,}. (10)

Using properties of the trace, and substituting
VM — MV for V:

(U, V) = tr {M,Uf + M,U$)V{}
—tr {(UiM, + UfM,) V5. (11)
So (U, V) is zero if and only if this final

expression is zero. Recall that V* is completely
arbitrary. Therefore, the orthogonality condi-

tions on U are
M, Uf + M,U5 =0, (12a)
UM, + UM, = 0. (12b)

All the pieces are now in place to calculate a
miniversal deformation for matrix pencils under
s.e. transformation. The actual algebra is made
much easier by considering only matrix pencils in
the Kronecker canonical form. In particular, this
allows calculation on a partition by partition
basis, rather than on the entire pencil all at once.

4. THE KRONECKER FORM

The Kronecker form is uniquely determined
by the following set of invariants:

Kronecker column (or right) indices

g, == =8 =0<E 1SS SE
Kronecker row (or left) indices
Mm=m2= =N, =0< N == =1
degree of infinite divisors

Ll e e N R N R <1

a square matrix J in Jordan normal form
containing the finite zero structure.

A matrix pencil in Kronecker form has structure
M(s) = diag{0.L,, (s),....L.(s), Ly _(s),...,
L} (s), H™(s), ..., H"(s), ¥ + s1"} where 0 is
a gxh zero pencil, and L,(s)=[0 1]+
[1”7 0]s. The blocks are gathered into partitions,
themselves block diagonal, so, M(s)=
diag {M,(s), M(s), M, (s), M..(s), M(s)}. Here
M,(s) =0, M (s) =diag{L,, (s),...,L(s)}
M, (s) = diag {L,,_ (5),..., Ly (s)} M.(s)=
diag {H*(s)},..., H*’(s)} and Mgs)=J+
s,

Let N be a matrix pencil and let M =SNT™'
be in Kronecker form. Assume U satisfies the
orthogonality conditions for M. Form V =
S*UT ™ *. Then,

N, V¥ + N, Vi =0, (13a)
VIN, + VEN, = 0. (13b)

So in general one can put a pencil into a
canonical form, find a set of orthogonal pencils
and transform back to the original form, if
desired. Thus, it involves no loss of generality to
assume that M is a matrix pencil in Kronecker
form.

Because the Kronecker form is block diagonal,
the orthogonality equations can be solved
indepndently for each partition of U. The
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partition form of the orthogonality equations is
[[Mll]jj[[U;k Ilji + [[Mzﬂj;‘[[UE'< ]]ji =0, (14a)
(UM, ] + [USTIML]: = 0, (14b)

where U is partitioned following M.

Also, exploit the block diagonal structure of
the Kronecker form in step 5 of the procedure to
modify U partition by partition. Do this by
generating vectors in T,0, that are zero
everywhere except the partition in question, and
adding them to U. Generate such a vector, say
VY as follows.

Partition V¥, rows and columns, like the rows
of M. Partition V¥, rows and columns, like the
columns of M. (Recall that V{ and V5 are
square.) Then,

ﬂvﬂlij = val - Mlv;g]]ij
= vaj[[Ml]]jj - ,IMI]]ii[IV;gﬂij: (15a)

ﬂvzc]]ij = ﬂsz - MZV(Zg]]ij
= [[V;g]]ij - [[MZI]jj - [[MZI]HIIV?]]U- (15b)

Since V¥ is arbitrary, restrict all partitions except
IIV?]],-,- and [[Vf]],j to be zero, and seclect these
nonzero partitions in any convenient way. Note
that V, and V, are square but the (off-diagonal)
partitions will not be, in general.

5. A SIMPLE EXAMPLE

Consider the following pencil in Kronecker
form:

wor=y 11mm=(s 1o o))

Vectors in the tangent space to the orbit at M,
T Oy have the form

veefonsl? [0

where S and T are arbitrary 2 X 2 matrices. The
orthogonality conditions show that all tangent
vectors in T/ orthogonal to the tangent space
TasOps are of the following form:

o5 oo o

The deformation corresponding to ¢, is simple
and strictly noncausal, as desired, but the
deformation corresponding to ¢, is neither.

(12 oMo 1)

the pencil

is tangent to the orbit of M, so form

(I | R P )

and redefine ¢, = —c,/3. The result is the
canonical deformation for this pencil:

(e oble o))

which is both simple and composed only of
causual and purely noncausal elements. The
parameterized pencil is then

(I P | P

In this case, if the perturbed system must be
causal, ¢, is constrained to be O.

6. A CANONICAL DEFORMATION

This section describes a simple miniversal
deformation of the Kronecker form. There is,
however, a restriction in order to ensure that
each parameter appears only once. This is as
follows.

Restriction R. The finite zero generalized
eigenvalues of the pencil must be distinct.

The canonical parameterization was developed
with applications in mind (relative degree,
regulation of parameter-dependent systems) that
stress zeros at infinity, zeros at the origin and the
singular parts of the pencil. No restriction is
placed on these structures. Almost every aspect
of the parameterization has been carried out for
the completely general case, except the final
simplification of the structure. In particular, the
number of independent parameters given for
each partition is valid in general. For a general,
nonsimple, parameterization see Berg (1992).

The notation is uncluttered by dropping, for
the most part, the explicit references to the
partition indices. Thus, any reference to a pencil
or matrix in this section should be taken as
applying only to the partition under discussion.
The following illustrates the subscript notation
for referring to partitions of the deformation:

M,

M(s)= M, > A(s)
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(4, A, A, A A
A, A A, A A

= | Ape Qe Aqn Ay Ay,
Ao, due 4y Ae. A
| A, A A, A Ay

where the pencil A(s) is the perturbation portion
of the deformation, i.e.

k
A(s)= 2 eV,
n=1

and the deformation is M(s) + A(s). The details
of the calculations for each partition are omitted,
since they are extremely lengthy. The Appendix
gives an example of the procedure for one class
of partitions. For a full account, see Berg (1992).

6.1. The partition A,,
The perturbation 4,, is a g XA pencil, with
2gh free parameters:

X x; pencil with the following form:

if (n; +1)=mn,, then 4=0;

A=lo ... 0 0 0 0 o0 of
0 ... 0 ¢ ¢ ... ¢ O
A2:0)

where 8 =m; —(n;+1). The number of free
parameters is 6. In the common case n; = 1, then
the perturbation is identically zero.

6.3. The partitions A.
The canonical perturbation for a typical
partition of this type, say 4, is as follows:

_
Cin G121 Clhlj
Cann Co21 Cont
AI = . . .
| Co11 Cen1 Ceny
- b
Ciiz Ci2 Cinz
Cr12 €Cox Con2
Az = . . .
| Ce12 Cgn2 Conz |

The deformation has gh causal free parameters
and gh noncausal free parameters.

6.2. The partitions A, and A,

The canonical perturbation for a typical
partition of this type, say 4., is a & X (g+1)
pencil, with the following form:

If g,,=¢, thenA=0
If g +1<g, then

[0 ... 0 07
0
0 ¢ =
A1= 1 s AZ 0)
0 (&)
: 0 ¢
0 ... 00

where 6 =¢ — (g +1). The number of free
parameters is 8. A common case is € = 1. Then
the above results show that A, is a row vector of
Zeros.

The canonical perturbation 4, is a (9, +1)

For pizpj:
0 ... 0 O
o ;
A= N P Az=[ ]
Cp)
0 00
LCPH c 0
For p; <p;,
0 0 0
0 0 0
A] = C:l . s AZ - [ :l
: . cPl
c 0 ... 0

Pi-1
When p=1 the special cases follow: (i)
pi=p;=1, 4=(0,¢y); (i) pi=1, p>1, A=
0% [c, 0...0D; (i) p;>1, p=1 A=
0,10 ... 0 c,]").

6.4. The partition Ag

The perturbation derived for this partition is
causal, but not simple, in general. Under
Restriction R the following result is obtained.

For the partitions corresponding to the distinct
eigenvalues, A, is diagonal, with all parameters
independent. For the zero eigenvalue, if it is not
distinct, the matrix in Jordan form is partitioned
according to its Jordan blocks. Then the
perturbation of each of these partitions on and
above the diagonal has the form

60 0 ... 0
0o o0 ... 0
Cy Cp ... Cg

The perturbation of each partition below the
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diagonal has the form

¢ 0 0
Cr 0 0
Cy 0 ... 0

For all blocks, A, =0.

Note that this is the the Jordan—-Arnold form
for J (Arnold, 1981, 1983; Gilmore, 1981). The
total number of free parameters is

NZ
N+ 2, 2k —ny,
k=1

where N, is the number of distinct, nonzero,
eigenvalues of J, N, is the geometric multiplicity
of the zero eigenvalue and n, is the size of the
kth Jordan block associated with the zero
eigenvalue. The number of free parameters is
correct even if Restriction R does not apply.

6.5. The partitions A, A, A,, and A,,
The canonical perturbation 4, is a g X (¢ +1)
pencil with the following form:

Cy1 Cr2 Clie+1)
A= C.21 C.22 CZ(P.+1) ’
._Cgl ng PPN Cg(f+])
0 ... 0 Cle+2)
_O ... 0 Co(e+2)

Note that the matrix A, has (¢ + 1) columns. The
parameters in the last column have subscript
(e +2) to distinguish them from the parameters
in the last column of A,. There are a total of
g(e +2) free parameters, with g{e + 1) of these
in the causal part of the deformation.

The partitions of the canonical perturbation
A, are € X h pencils with the following form:

Cyy Ci2 Cin

A = : : : ’
Cle-1)1 Ce—1)2 Cle—1in
0 0 o 0

All (¢ — 1)h free parameters are associated with
causal deformations.

The partitions of the canonical perturbation
4,, are g X n pencils with the following form:

€1 -.. Ciy-n 0

Cry ... Cz(n,l) 0
. . . B Az = 0

Cot +++ Cgiy-1y O

All g(n — 1) free parameters are associated with
causal deformations. If n =1 then A, =0.

Finally, the partitions of the canonical
perturbation 4A,, are (1 + 1) X k pencils with the
following form:

i Ci2 cee Cin
N Con Cos - Cop
A= . . . ,
| C(n+1)1 Cin+1)2 C(n+1)hj
0 0 e c ]
A, = : : :
0 0 . 0

L C(n+2)1 C(g+2)2 C(n+2)hJ

Note that the matrix A; has (n + 1) rows. The
parameters in the last row have subscript (7 +2)
to distinguish them from the parameters in the
last row of A,. There are a total of h(n + 2) free
parameters, A(n + 1) of which are in the causal
part of the deformation.

6.6. The partitions A, and A,
The partitions of the canonical perturbation
4,. are g X p pencils with the following form:

_Cll Cl(pil) 0
€ --. Cap-1y O
A1: . (‘? ) . 5
chl ce Cop-ny O
¢, 0 ... O
A= o :
ey 00000
¢, 0 ... O

There are a total of gp free parameters, g(p — 1)
of which are associated with the causal
deformation. If p =1, than A; =0 and A, is a
column vector filled with independent
parameters.

The partitions of the canonical perturbation
A, are p X h pencils with the following form:

0 0O ... 0
Cry Cop ... Céh
A] = . . . '
chl Cp2 Cph
- 0 0 0
A= : : :
0 0 ... 0
L Co+1)1 Cp+1)2 Clp+h

There are a total of ph free parameters in the
deformation, (p — 1)A of which are associated
with the causal portion of the deformation. If
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p=1, than A, =0, and A, is a column vector of
independent parameters.

6.7. The partitions A, and A,

Typically, the g Xn perturbation 4, is not
simple. However, under Restriction R it is. In
that case each entry of A, is an independent
parameter, and A, = (. Thus, there is a total of
ng free parameters in this partition, all causal.
This total is valid whether or not Restriction R
holds.

The perturbation 4¢ is not simple either.
Again, under Restriction R, the perturbation is
an nXh pencil with each entry of A, an
independent parameter, and A,=0. The total
number of free parameters is nh, all causal.
Again, the total does not depend on Restriction
R holding.

6.8. The partitions A, and A,

The £ X n perturbation A, is zero, A =0. The
(n +1) X (g + 1) canonical perturbation 4, has
the form:

€1 € ... €y Cym
0 0 ... 0 cyus
A= 0 0 Cn+3 |
(U 0 corern
0
AZ: |: :l
Cin+e+2)

There are a total of n + ¢ + 2 free parameters,
7 + € + 1 of which are associated with the causal
portion.

6.9. The partitions ., Acw, Awy and A,
The partition 4. is a p X (¢ + 1) pencil with
the following form:

0 ... 0 0
0o ...

AI: . 9 C:l s AZZ[O J
: : : Cp
0 ... 0 ¢,y

There are a total of p free parameters, p — 1 of
which are associated with the causal part. If
p=1and A, =0 and A, is a row vector of zeros,
except the last element, which is a free
parameter.

The perturbation A.. is a &Xp pencil,
identically equal to zero, A,. = 0. The perturba-
tion 4., is a p X, identically zero, pencil,
4.,=0.

The partition 4,. is a (g + 1) X p pencil with

the following form:

0 0 ... 0 0 O
A=l o o 00 ol
| o1 Cpp ... € cp O
[ 0
Azz :l
LC

P

There are a total of p free parameters, p — 1 of
which are associated with the causal part. If
p=1 then A, =0 and A, is a column vector of
zeros, except for the last entry, which is a free
parameter.

6.10. The partitions Ag, Aep, Ary and Aye
The n X (g+1) pencil A is simple under
Restriction R. In that case

¢ 0 . 0
0 . 0

Al = @ . ] A2=0
¢, 0 0

There are n free parameters, all causal. This
total is independent of Restriction R.

The perturbation 4., is an & Xn pencil,
identically zero, 4, = 0. The perturbation 4, is
an n X 7 pencil, identically zero, 4y, = 0.

The (n+1)Xn pencil 4, is simple under
Restriction R. In that case

CL € ... C,
0o 0 ... 0

A=l o ] A=0
0o 0 ... 0

There is a total of n free parameters, all causal,
regardless of Restriction R.

6.11. The partitions A, and A¢.
A.:=0and 4, =0.

7. EXAMPLES

7.1. Example 1
The pencil has Kronecker indices &, =0,
82:2, 7]120, 172=2,p=2,and

A, 0 00
J= 0 A, 0 0
0 0 01
0 0 0O

The resulting pencil, and corresponding defor-
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0 [[X]x xXxXx0X0 X X X X
s10 X[s 10j0000 0 0 0 0
0s1 0 005 110000 0 0 0 0.

s 0 XXX X[s000 X X X X
1s Xi00X[1s/lo0 0 0 0 0
01 X0 0X[01/X0 0 0 0 0
Is Z 0o 00t s] 0 000
01 Xio oxjpolo1) o 0 0 0
st 0 00 XiX 0 0{00:0 0fs+A; 0 0 0
0 s+, 00 XiX 0 0i0000| 0 s+a, 0 0
0 0 0 s1 XiX 0 0i00i00] 0 0 s 1
i 0 0 os|| | xixoo0i00i00 0 0 Xs+x]]
where each X represents an independent 7.2. Example 2

parameter, and the primes indicate a perturbed
value.

The pencil has Kronecker indices & =0,
827:1, 53:3, 7]]:2, 7]2:4, P =1 and p2:3:

[+ 1] ] [O[sijo 00 0io0loo00i000 0]
5100 Xi00[s 10 0]000000i0000
0510 0 xi0x{0o s 1 0000000000 0
00s1 0000 0 s 1{000000i000 0

50 XIXXX XX X|s 0[000 0000 0
ls Xi0Xi0 00 X|15[0000{000 0
01 Xi0Xi0 0 0 X[0 100X 00XX 0
5000 XIXXX XX X:00[5000/000 0
1500 X0 Xi0 00 Xi00[1s00/000 0]
0 0150 2| xioxi0 0 0xio0l01s0/000 0
0015 X0 X0 00 Xi{00[001s{000 0
0001 X0 X{0 0 0 Xi00[0001{0XX 0
1 030010 00 0i0 0000 0[1Jo0 0
1s0]f 0700000 0i0000000[ts0
01s Xi0Xi0 00 Xi00{00000[01 s
i 001f| | xioxio 00 X0o0i00000XxX1]

where again each X represents an independent
parameter.

8. CONCLUSIONS

As the values of the parameters in a
parameterized pencil are varied, the structural
invariants of the pencil may change. Points at

which this occurs are called structurally unstable
and can be examined using the framework of
singularity theory. The usual procedure is to
derive a miniversal parameterization of the
unstable structure (singularity), and then to
describe all possible neighboring structures using
the miniversal parameterization as a guide.
Together, these steps are an ‘unfolding’ of the
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singularity (Golubitsky and Schaeffer, 1984).
Some control strategies require a particular zero
structure, such as adaptive controllers, where the
relative degree must be known, and robust
regulators, where the system zeros are restricted.
When these requirements break down, unfolding
the singular point may help understand causes
and solutions. Some preliminary applications
along these lines are presented by Berg and
Kwatny (1993).

This paper derives a miniversal parameteriza-
tion of the Kronecker form for matrix pencils.
The parameterized canonical form presented
here comes with three caveats. The first is that it
is valid only in some neighborhood of the
nominal pencil. At this time there are no
guidelines for determining the size of that
neighborhood. The second is that the parameters
take complex values, and some pencils so
obtained may not correspond to physically
realizable systems. This means some care is
required in application. The third is that the
nonzero finite elementary divisors must be
distinct. This restriction can be relaxed, but the
parameterization becomes cluttered. Berg
(1992) provides details.

The number of parameters in the canonical
deformation is of interst by itself. It provides
some indication of the ‘likelihood’ of a particular
singular case occuring in practice. The more
parameters required to make a singularity
generic in a family of pencils, the less likely that
singularity is in a physical system with uncertain
parameters. That number can be found from the
preceding results by summing the values
supplied for each partition. This calculation has
also been made, independently, by Demmeland
Edelman (1993).
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APPENDIX: SAMPLE CALCULATION USING A
PARTITION OF 4,

Denote the partition by A, .. The relevant partitions of the
nominal pencil are ML =[0 1], [M]; = [1= 0],
M,]; = [0 1], [M,]; = [I” 0]. Write P and Q for [U}];
and [U#],. P and Q have dimension (g +1)Xe. The
orthogonality conditions (14a,b) give the two matrix

equations [0 I?JP +[I%) 0]Q=0 and P[0 )]+
Q[ 0]=0.

The first equation gives [P) .1y = —[Q fork =1,..., ¢,
I=1,...,¢&. The second equation gives [Ply = —[Qliu+1

for k=1,...,+1, I=1,...,&—1, with [P, =0 for
k=1,...,+1 and [Q]=0 for k=1,...,§+1
Combine these results to get
[Pl =[Plxsnyg+y fork=1,...,¢I=1...,&~ 1,
[Plyy=0 fork=2,...,&+1
So (i) the elements of P are constant along the diagonals, i.e.

P is Topelitz, (ii) the entire last column of P is zero, and (iit)
the first column of P is zero except, possibly, for the first
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element. Its easy to see that if ¢, +1=¢, ie. if P is square,
or ‘thin’, then P=0. The L, blocks themselves have one
more column than they do rows, so the corresponding blocks
on the diagonal of P, which have one more row than
columns, are zero. If P = ( then the orthogonality conditions
require Q =0. Then [U]; = 0. This is the case on and above
the partition diagonal.

If P is ‘fat’ then define 8%'¢, — (g, + 1). There will be &
free parameters in the parameterization of this partition. This
is the case below the partition diagonal. Construct P by
setting the first 8 elements of the first row to be arbitrary,
independent parameters. Set the remainder of the elements
in the first row and column to be zero. Then the Toeplitz
structure determines the rest of P. The negative of Q is
formed by shifting the columns of P one to the right, and
setting the first column to zero. Take the conjugate transpose

to get [U];. Write [U]; as U:

o 0 0 K ]
N ¢, 0 0
cs - 0 C,
U=l 0 cs |, Uy=-| ¢ 01,
: 0 . 0 c¢5 ¢
: E . €5 .
L 0 0 | | 0 0 ¢s |

where 8 = ¢ — (g; + 1). These expressions implicitly define a
basis {U;}, spanning the 8-dimensional subspace of (T Oy)*
corresponding to this partition.

To simplify this structure, first separate the causal and
noncausal terms of the perturbation. The mapping that
generates vectors tangent to the orbit for this partition is
V§=8[0 1] + [0 1T, V§=S[I¢) 0]+ [K% 0]T, where
S has dimension ¢ X g, T has dimension (& +1) X (g + 1),
and are otherwise arbitrary.

Now consider a typical element of the basis U~ e {U;}

0 ... 0] T0 ... 0
) : 7 : .
k+1 '
0 0
l
1
ur= |o o] us= -1 o0 0
1
0 : 0
[0 ... 0 [ 0 ... 0]

Set $=0, T=[(U%5)" 0]". The resulting vector tangent to
the orbit is, V{=Uf and V§ = —Uj, so that 3(VO+ U~) =
(Uf%, 0). This accomplishes the goal of creating a causal
perturbation.

Next set [T)4mn=n; for n=1,...,¢ and all other
elements of T to zero. Then define S by [S], = [T]« for
k=1,...,¢g and I=1,..., ¢ Adding the resulting vector
tangent to the orbit to the perturbation eliminates every
entry in the perturbation except the one in the last column.
The deformation is now simple. This is the desired form.



