
Optimal Shipboard Power System Management via

Mixed Integer Dynamic Programming

Harry G. Kwatny & Edoe Mensah
MEM Department

Drexel University

Philadelphia, PA 19104, USA

hkwatny@coe.drexel.edu, edmensah@drexel.edu

Dagmar Niebur
ECE Department

Drexel University

Philadelphia, PA 19104, USA

niebur@drexel.edu

Carole Teolis
Techno-Sciences, Inc.

10001 Derekwood Lane

Lanham, MD 20706, USA

carole@technosci.com

Abstract— Power systems involve continuous and discrete com-
ponents and controls. The modeling of ‘hybrid’ power systems
using a logical specification to define the transition dynamics of
the discrete subsystem is described. A computational tool for
reduction of the logical specification to a set of inequalities is
discussed. The use of the transformed model in a dynamic pro-
gramming approach to the design of optimal feedback controls
is described. Examples are given.

I. INTRODUCTION

Maintaining power flow to vital loads following component

failure(s) is a central goal of power system management

including electric shipboard distribution systems. While the

dynamics of the final phase of power system failure is now

well understood, e.g. [1], [2], [3], [4], the picture is not

complete because the system collapse is usually preceded

by a period of discrete events associated with the action of

various protection systems intended to prevent, or at least

limit the scope, of any failure. It is an unfortunate fact that

these systems frequently fail to achieve that goal - and worse,

they sometimes amplify the effect of a small disturbance

into a major outage. In this paper we seek to design a

power management system that optimizes the discrete actions

in order to insure continuity of service to the vital loads.

We describe a modeling approach that captures both the

discrete and continuous aspects of the power system and show

how dynamic programming can be applied to derive optimal

control strategies. New computational tools are summarized

and examples are given.

The underlying issue is how to model, analyze and synthe-

size systems consisting of both complex nonlinear continuous

dynamics and discrete event dynamics. A power system’s

continuous dynamics might include a classical ordinary differ-

ential equation (ODE) or differential-algebraic equation (DAE)

model of the network with generators and loads and also

continuous controllers like governors and automatic voltage

regulators. Discrete event dynamics can be defined by a dis-

crete finite automaton (DFA) [5] that models various discrete

controllers like tap-changing transformers, capacitor banks,

load shedding devices and protection systems [6]. Thus, the

system can be modeled as a hybrid automaton [7]. While the

hybrid automaton model is a convenient theoretical tool, other

forms of models are far more convenient for control system

design and some other computational purposes. Such models

include the ’mixed logical dynamic system’ (MLD) [8], [6]

or a modified version that we call the ’mixed integer dynamic

program’ (MIDP).

The action of the DFA is most easily understood in terms of

a transition diagram that describes how specific events cause

transitions from one discrete state (or mode) to another. The

transition diagram is ordinarily translated into a formal set of

transition equations. In our approach, we model the transition

diagram by a logical statement (or specification).

In this paper, we discuss a tool, implemented in Mathemat-

ica , that converts any logical specification into a set of mixed-

integer formulas (IP formulas). Thus, the transition specifica-

tion for the automaton is converted into a set of inequalities

involving Boolean variables. Our work extends earlier work

in this area reported in [9]. Many decision problems are

most naturally formulated in terms of logical specifications,

but are more easily solve by mathematical programming.

Consequently, the idea of reducing logical specifications into

IP formulas has along history, see for example [10].

The IP formulas are used in computing the optimal control

strategy. Our approach derives a feedback policy based on

finite horizon dynamic programming. We implement the re-

sulting control policy either as a receding horizon or periodic

controller as appropriate. To do the computations efficiently,

we need to exploit the special structure of the power system

decision problem.

In the dynamic programming approach, working backward

in time, at each state it is necessary to carry out a minimization

process involving continuous and integer (binary) variables to

obtain the optimal control. A computational method has been

implemented in Mathematica, which provides several tools

for working with mixed variables. The problems of interest

have considerable special structure that can be exploited.

For example, we have many inequality constraints which

implies that we should employ a constraint driven procedure.

Moreover, most of the constraints are linear in binary variables.

Accordingly, a specialized and novel optimization procedure

was built around the Mathematica function Reduce.

The design of optimal controls for hybrid systems is cur-

rently a problem of great interest. At least three approaches

to optimal control design have been considered: Bellman’s

Principle of optimality and dynamic programming [11], the

Pontryagin maximum principle [12], and mixed integer math-

ematical programming [8]. Each of these have advantages and

disadvantages. The principle of optimality is quite general

and applies directly to hybrid systems. In addition, unlike the

other two approaches, dynamic programming leads directly

to a feedback (or closed loop) controller as opposed to an

open loop controller. These two considerations make dynamic

programming a very compelling tool even though it suffers the

‘curse of dimensionality’. This last fact represents a challenge

for large systems that can sometimes be addressed by exploit-

ing the special structure of specific problems. Applications of

dynamic programming to hybrid systems include [13], [14],

[11].

In Section II we provide a specific definition of the problems

considered herein. Section III describes the main concern of

this paper, namely the reduction of a logical specification for

the discrete subsystem to a set of inequalities. The goal of this

research is to use this formulation of the hybrid power system

model to design optimal controllers. How this is accomplished

is described in Section IV. Examples are given in Section V.

The examples include a power conditioning system, a DC-DC

boost converter, and a power management system. In each

one of these examples we describe the model emphasizing

the hybrid automaton and illustrating the conversion of the

logical specification to IP formulas. In the case of the power

conditioning system we also describe the setup and solution

of the optimal control problem.

II. PROBLEM DEFINITION

A. Modeling

The class of hybrid systems to be considered is defined

as follows. The system operates in one of m modes denoted

q1, . . . , qm. We refer to the set of modes Q = {q1, . . . , qm} as

the discrete state space. The discrete time dynamical equation

describing operation in mode qi is

xk+1 = fqi
(xk, uk) , i = 1, . . . , m (1)

where x ∈ X ⊆ Rn is the system continuous state and

u ∈ U ⊆ Rm is the continuous control. Transitions can occur

only between certain modes. The set of admissible transitions

is E ⊆ Q × Q. It is convenient to view the mode transition

system as a graph with elements of the set Q being the

nodes and the elements of E being the edges. We assume that

transitions are instantaneous and take place at the beginning

of a time interval. So, if a system transitions from mode q1

to q2 at time k we would write q(k) = q1, q(k+) = q2. We

do not consider ‘impulsive’ events [11]. In other words, the

continuous state trajectories are continuous through the event,

i.e., x(k) = x(k+).
Transitions are triggered by external events and guards. We

denote the finite set of events Σ. It is convenient to partition the

events into two types; those that are controllable (they can be

assigned a value by the controller), and those that are not. The

latter are exogenous and occur spontaneously. Such an event

might be specified by nature like a component failure, or a

higher level operator who decides to change an operational

mode. We will use the symbols s to represent controllable

events and p to represent uncontrollable events. Thus, Σ =
S×P where s ∈ S and p ∈ P . An example is given below in

Figure 1. A guard is a subset of the continuous state space X
that enables a transition. A transition enabled by a guard might

represent a protection device. Not all transitions have guards

and some transitions might require simultaneous satisfaction of

a guard and the occurrence of an event. The guard assignment

function is G : E → 2X .

We consider each discrete state label, q ∈ Q, and each

event, σ ∈ Σ, to be logical variables that take the values True

or False. Guards also are specified as logical conditions. In

this way the transition system can be defined by a logical

specification (formula) L.

In summary, a hybrid control system is composed of:

1) Q, discrete space,

2) X , continuous state space,

3) E, set of transitions,

4) Σ, event set,

5) G, guard assignment function,

6) L, logical specification,

7) F , family of controlled vector fields.

Example 2.1 (Three mode system.): Consider the simple

three mode hybrid system shown in Figure 1. Each mode,

q1, q2, q3, is characterized by continuous dynamics xk+1 =
fqi

(xk, uk) , i = 1, 2, 3.

Discrete transitions are associated with the events repre-

sented by logical variables p, s1, s2, s3, i.e, Σ = {p, s1, s2, s3}.

For example, if the system is in mode q1 and s1 evaluates to

True, then a mode transition occurs in which the mode changes

from q1 to q2. In this example, we use two different symbols

s and p to denote transition variables to underscore the fact

that some transitions are controllable and others not so.

1s

3q

2q1q

2s

3s
p

()1 1 ,k kx f x u+ = ()1 2 ,k kx f x u+ =

()1 3 ,k kx f x u+ =

Fig. 1. Three mode hybrid system with controllable and uncontrollable
events.

In our formulation the transition system behavior is defined

by the logical specification:

L = exactly (1, {q1 (t) , q2 (t) , q3 (t)})∧
exactly

�
1,
�
q1

�
t+
�
, q2

�
t+
�
, q3

�
t+
���∧�

q1 (t) ∧ s1 ⇒ q2

�
t+
�� ∧ �

q1 (t) ∧ p ⇒ q3

�
t+
��∧�

q1 (t) ∧ ¬ (s1 ∨ p) ⇒ q1

�
t+
��∧�

q2 (t) ∧ s2 ⇒ q1

�
t+
�� ∧ �

q2 (t) ∧ ¬s2 ⇒ q2

�
t+
��∧�

q3 (t) ∧ s3 ⇒ q2

�
t+
�� ∧ �

q3 (t) ∧ ¬s3 ⇒ q3

�
t+
��

(2)

Let us dissect this specification. The first and second lines

express the fact that the system can only be in one discrete

state before the transition (at time t) and after the transition (at

time t+). The next two lines describes all possible transitions

from state q1. Similarly, the last two lines characterize all

possible transitions from states q2 and q3, respectively.

For computational purposes it is useful to associate with

each logical variable, say α, a Boolean variable or indicator

function, δα, such that δα assumes the values 1 or 0 corre-

sponding respectively to α being True or False. It is convenient

to define the discrete state vector δq = [δq1 , . . . , δqm], the

control event vector δs =
[
δs1 , . . . , δsmS

]
, and the exogenous

event vector δp =
[
δp1 , . . . , δpmP

]
. Precisely one of the

elements of δq will be unity and all others will be zero.

Notice that with the introduction of the Boolean variables

we can replace the set of dynamical equations (1) with the

single relation

x (k + 1) = f (x (k) , δq (k) , u (k))
= δq1fq1 (x (k) , u (k)) + · · ·

· · · + δqm
fqm

(x (k) , u (k))
(3)

B. The Control problem

We assume that the system is observed in operation over

some finite time horizon T that is divided into N discrete

time intervals of equal length. A control policy is a sequence

of functions

π =
{
µ0 (x0, δq0) , µ1 (x1, δq1) , . . . , µN−1

(
xN−1, δq(N−1)

)}

such that

[uk, δsk] = µk (xk, δqk)

Thus, µk generates the continuous control uk and the discrete

control δk that are to be applied at time k, based on the state

(xk, δqk) observed at time k.

Consider the set of m-tuples {0, 1}m
. Let ∆m denote the

subset of elements δ ∈ {0, 1}m
that satisfy δ1 + · · ·+ δm = 1.

Denote by Π the set of sequences of functions µk : X×∆m →
U × {0, 1}mS that are piecewise continuous on X .

Now, given the initial state (x0, δq0) the problem is to find

a policy, π∗ ∈ Π, that minimizes the cost functional

Jπ (x0, δq0) = gN (xN , δqN)+
∑N−1

k=0
gk (xk, δqk, µk (xk, δqk))

(4)

Definition 2.2 (Optimal Feedback Control Problem): For

each x0 ∈ X, δq0 ∈ ∆m determine the control policy π∗ ∈ Π
that minimizes the cost (4) subject to the constraints (1) and

(2), i.e.,

Jπ∗ (x0, δq0) ≤ Jπ (x0, δq0) ∀π ∈ Π

Notice that if a receding horizon optimal control is desired,

once the optimal policy is determined, we need only imple-

ment the state feedback control

[uk, δsk] = µ0 (xk, δqk) (5)

III. LOGICAL SPECIFICATION TO IP FORMULAS

Before proceeding to the solution of the optimal control

problem we transform the logical specification L into a set

of inequalities involving integer (in fact, Boolean) variables

and possibly real variables, so-called IP-formulas. The idea of

formulating optimization problems using logical constraints

and then converting them to IP formulas has a long history

[10]. The formulation of complex decision problems often

involves specifications and constraints that are most easily

stated in terms of logical statements. McKinnon and Williams

in [15] proposed an approach that allowed the inclusion of

such constraints in conventional optimization methods. They

suggested a sequence of transformations that brings a logical

specification into a set of IP-formulas. This approach has been

refined and generalized in recent years. In [9], [16] the authors

present a systematic algorithm for transforming logic formulas

into IP formulas. Moreover, they implement their algorithm in

Mathematica. We have modified and extended these methods

in order to obtain simpler and more compact IP formulas.

This concept was more recently used as a means to incorpo-

rate qualitative information in process control and monitoring

[17], and was more generally introduced into the study of

hybrid systems in [8]. Both of these investigations incorporate

the method within a model predictive control framework.

For systems of even modest complexity the number of
inequalities required can be quite large, so that automation of
this process is essential. The basic function is GenIP which
takes as two arguments, the specification and a list of variables,
either propositional variables or bounded real or integer vari-
ables. The latter are specified in the form a ≤ x ≤ b. GenIP
performs a series of transformations and simplifications and
returns the IP formulas. A typical usage would look like:

GenIP[(q1⊕ q2) ∧ (qq1⊕ qq2)∧((q1 ∧ (x > 0)) ⇒ qq2)∧
((q2 ∧ s) ⇒ qq1),{q1,q2,qq1,qq2, s,−2 ≤ x ≤ 2}]

{1 − δq1 − δq2 ≥ 0,−1 + δq1 + δq2 ≥ 0, 1 − δqq1 − δqq2 ≥ 0,

d7 − δq1 + δqq2 ≥ 0,−1 + δqq1 + δqq2 ≥ 0,

1 − δq2 + δqq1 − δs ≥ 0,−2 + 2d7 + x ≤ 0,−2 ≤ x ≤ 2,

0 ≤ d7 ≤ 1, 0 ≤ δq1 ≤ 1, 0 ≤ δq2 ≤ 1, 0 ≤ δqq1 ≤ 1,

0 ≤ δqq2 ≤ 1, 0 ≤ δs ≤ 1}

Notice that propositional variables are replaced by Boolean

indicator functions, e.g., q1 is replaced by δq1 and new

auxiliary variables may be introduced, in this case d7.

Example 3.3 (Three Mode System, Revisited): Consider
the logical specification (2). It converts to the set of

IP-formulas:

1 − δq1 − δq2 − δq3 ≥ 0, 1 − δq1 − δq2 − δq3 ≤ 0
1 − δ

q+
1
− δ

q+
2
− δ

q+
3
≥ 0, 1 − δ

q+
1
− δ

q+
2
− δ

q+
3
≤ 0

1 − δp − δq1
+ δ

q+
3
≥ 0

1 − δq1 + δ
q+
2
− δs1 ≥ 0

δp − δq1 + δ
q+
1

+ δs1 ≥ 0

1 − δq2 + δ
q+
1

+ δs1 ≥ 0

−δq2 + δ
q+
2

+ δs2 ≥ 0

1 − δq3 + δ
q+
2

+ δs3 ≥ 0

−δq3 + δ
q+
3

+ δs3 ≥ 0

0 ≤ δp ≤ 1, 0 ≤ δq1 ≤ 1, 0 ≤ δq2 ≤ 1, 0 ≤ δq3 ≤ 1
0 ≤ δ

q+
1
≤ 1, 0 ≤ δ

q+
2
≤ 1, 0 ≤ δ

q+
3
≤ 1

0 ≤ δs1 ≤ 1, 0 ≤ δs2 ≤ 1, 0 ≤ δs3 ≤ 1
(6)

It is relatively easy to interpret this list. The two inequalities on

the first line express the fact the system is in a single discrete

state prior to the transition and the second row expresses

a similar condition after the transition. The last three rows

simply declare that the integer variables can only take the

values 0 or 1.
In the specification (2), the transition event p is treated as

an exogenous event. In other words, the trigger for transition
is completely external to the system. Suppose, however, that
the event is associated with a guard, so that the trigger is the
entry of the state into a specified region of the continuous state
space. To illustrate how this works, suppose that one of the
state variables is a bounded real variable −2 ≤ x1 ≤ 2. Let the
guard be the condition x1 > 1. The new system specification
simply requires that we replace the logical variable p by
(x1 > 1). Thus, (2) is replaced by

L = exactly (1, {q1 (t) , q2 (t) , q3 (t)})∧
exactly

�
1,
�
q1

�
t+
�
, q2

�
t+
�
, q3

�
t+
���∧�

q1 (t) ∧ s1 ⇒ q2

�
t+
�� ∧ �

q1 (t) ∧ (x > 1) ⇒ q3

�
t+
��∧�

q1 (t) ∧ ¬ (s1 ∨ (x > 1)) ⇒ q1

�
t+
��∧�

q2 (t) ∧ s2 ⇒ q1

�
t+
�� ∧ �

q2 (t) ∧ ¬s2 ⇒ q2

�
t+
��∧�

q3 (t) ∧ s3 ⇒ q2

�
t+
�� ∧ �

q3 (t) ∧ ¬s3 ⇒ q3

�
t+
��

(7)
Conversion to IP-formulas leads to (6) without the three
inequalities involving δp plus the following additional inequal-
ities:

3 − 4d4 + x > 0
d3 − δq1 + δ

q+
3
≥ 0

d4 − δq1 + δ
q+
1

+ δs1 ≥ 0

−2 + d3 + x ≤ 0
−2 ≤ x ≤ 2, 0 ≤ d3 ≤ 1, 0 ≤ d4 ≤ 1

(8)

Notice that in this reduction two new auxiliary Boolean

variables d3, d4 are introduced and the real variable x1 also

appears in the formulas.

If all of the guards are linear (set boundaries are composed

of linear segments), then the IP formulas are system of linear

constraints involving the Boolean variables δq, δq+ , δs, δp, re-

spectively, the discrete state before transition, the discrete state

after transition, the controllable events, the exogenous events.

They also involve a set of auxiliary Boolean variables, d, intro-

duced during the transformation process, and the continuous

state variables, x. The general form is

E5δq+ + E6d ≤ E0 + E1x + E2δq + E3δs + E4δp (9)

where the matrices have appropriate dimensions. As we will

see in examples below, with x, δq, δs, δp given these inequali-

ties typically provide a unique solution for the unknowns δq+

and d. The system evolution is described by the closed system

of equations (9) and (3).

If the functions fqi
appearing in (3) are all linear, it may be

useful to follow the suggestion in [8] and replace (3) by the

following simple linear equation

xk+1 = zk (10)

Where zk is an auxiliary vector of real variables defined by

a conjunction of the logical statements of the form qi ⇒ z =
fqi

(x, u). If this is done, then (9) is replace by

E5δq+ +E6d+E7z ≤ E0 +E1x+E2δq +E3δs +E4δp (11)

In this case, the system is described by (10) and (11).

IV. CONSTRUCTING THE OPTIMAL SOLUTION

The optimal cost is

J∗ (x0, δq0) = min
π∈Π

Jπ (x0, δq0)

and the optimal policy π∗ is one that satisfies

Jπ∗ (x0, δq0) ≤ Jπ (x0, δq0) ∀π ∈ Π

Now we are in a position to apply Bellman’s principle of

optimality:

Principle of optimality: Suppose π∗ =
{
µ∗

1, . . . , µ
∗
N−1

}
is an optimal control policy. Then the sub-policy π∗

i ={
µ∗

i , . . . , µ
∗
N−1

}
, 1 ≤ i ≤ N − 1 is optimal with respect

to the cost function

Jπ (xi, δqi) = gN (xN , δqN)+
∑N−1

k=i
gk (xk, δqk, µk (xk, δqk))

Let us denote the optimal cost of the trajectory beginning

at xi, δqi as J∗
i (xi, δqi). It follows from the principle of

optimality that

J∗
i−1

(
xi−1, δq(i−1)

)
=

min
µi−1

{
gi−1

(
xi−1, δq(i−1), µi−1

)
+ J∗

i (xi, δqi)
}

(12)

Equation (12) provides a mechanism for backward recursive

solution of the optimization problem. To begin the backward

recursion, we need to solve the single stage problem with i =
N :

J∗
N−1

(
xN−1, δq(N−1)

)
=

min
µN−1

{
gN−1

(
xN−1, δq(N−1), µN−1

)
+ J∗

N (xN , δqN)
}

(13)

The end point xN , δqN is free, so we begin at a general

terminal point

J∗
N−1

(
xN−1, δq(N−1)

)
=

min
µN−1

{
gN−1

(
xN−1, δq(N−1), µN−1

)
+ gN (xN , δqN)

}
=

min
µN−1

{
gN−1

(
xN−1, δq(N−1), µN−1

)
+ gN

(
fN−1, δq+(N−1)

)}

(14)

Once the pair µ∗
N−1, J

∗
N−1 is obtained, we compute

µ∗
N−2, J

∗
N−2 from

J∗
N−2

�
xN−2, δq(N−2)

�
=

min
µN−2

�
gN−2 (xN−2, δN−2, µN−2) + J∗

N−1

�
fN−2, δq+(N−2)

��
(15)

Continuing in this way we obtain

J∗
N−i

�
xN−i, δq(N−i)

�
=

min
µN−i

�
gN−i

�
xN−i, δq(N−i), µN−i

�
+J∗

N−i+1

�
fN−i, δq+(N−i)

� �
(16)

for 2 ≤ i ≤ N .

The process now is straightforward. We need to solve

(16) recursively backward, for i = 2, . . . , N after initializing

with (13). We begin by constructing a discrete grid on the

continuous state space. The discrete space is denoted X̄ . At

each iteration, working backwards, the optimal control and

the optimal cost are evaluated discrete points in Q × X̄ . To

continue with the next stage we need to set up an interpolation

function to cover all points in Q × X .

In order to structure an efficient optimization process we

exploit the fact that the system is highly constrained and

almost all of the constraints are linear in Boolean variables.

The basic approach is as follows:

1) Identify the binary and real variables and separate the

inequalities into binary and real sets, binary equations

contain only binary variables, real equations can contain

both binary and real variables.

2) Use the Mathematica function Reduce to obtain all

feasible solutions of the binary inequalities; a list of

possible solutions of pairs
(
δq+ , d

)
. Reduce is a very

efficient solver, especially when the inequalities are

linear although it is not limited to linear inequalities.

In general, if there are N binary variables then there

are 2N combinations that need to be evaluated if one

were to attempt to optimize by enumeration. But the

feasible combinations are almost certainly much fewer.

In the simple example below, there are 8 variables or 256

combinations, but only 8 are feasible. Reduce identifies

these very rapidly.

3) Use Reduce to solve the real inequalities for the real

variables for every feasible combination of binary vari-

ables. Many of these combinations of binary variables

will not admit feasible real variables, so they can be

dropped. The remaining combinations typically produce

unique values for the real variables.

4) Enumerate the values of the cost for each feasible pair

of binary and real variables and select the minimum.

V. APPLICATIONS

Power electronic devices are ideal candidates for the appli-

cation of the new concepts and tools of hybrid control theory.

We will consider two different applications. First, a power

conditioning system of a type often used to isolate devices,

like motors that have large, short period power requirements,

from a primary power source that has limited power supply

capability. It is a simple, transparent and useful application.

Somewhat more complex is a DC-DC converter. This device

has attracted the interest of many investigators, including

the recent work [18], [19], [20], [21], and can provide a

comparative look at different control formulations. Finally, we

consider a simple power management system, emphasizing the

approach to problem formulation.

A. Power Conditioning Systems

A power conditioning system is shown in Figure 2. Its

purpose is to insure that the current demand on the DC source

is limited even though the load current may be quite large

for short periods of time. The problem is the design of the

switching strategy.

Li

C ov
+

-

E

R

Fig. 2. A simple power conditioning system.

1) Modeling: A hybrid automaton model of the system

without a specified control strategy is shown in Figure 3 where

q is the capacitor charge. In this open loop configuration,

the events are not enabled by a guard, but by an externally

generated event - the switch. The proposition s denotes ‘the

switch is closed’.

Switch closed

L

q E
q i

RC R
= − + −�

Switch open

s¬

Lq i= −�

s

1q 2q

Fig. 3. Hybrid automaton for the power conditioning system.

The specification for the hybrid automaton in Figure 3 is

L = (q1 ⊕ q2) ∧
�
q+
1 ⊕ q+

2

�∧�
q1 ∧ ¬s ⇒ q+

2

� ∧ �
q1 ∧ s ⇒ q+

1

�∧�
q2 ∧ s ⇒ q+

1

� ∧ �
q2 ∧ ¬s ⇒ q+

2

� (17)

The corresponding IP formulas are:

1 − δ
q+
1
− δ

q+
2
≥ 0

−1 + δ
q+
1

+ δ
q+
2
≥ 0

1 − δq1
− δq2

≥ 0
−1 + δq1

+ δq2
≥ 0

1 − δs − δq1
+ δ

q+
2
≥ 0

1 − δs − δq2 + δ
q+
2
≥ 0

δs − δq1
+ δ

q+
1
≥ 0

δs − δq2
+ δ

q+
1
≥ 0

0 ≤ δs ≤ 1, 0 ≤ δq1 ≤ 1, 0 ≤ δq2 ≤ 1
0 ≤ δq+

1
≤ 1, 0 ≤ δq+

2
≤ 1

(18)

In discrete time form, the dynamics of the system can be

written as

qk+1 = δq1

(
e−

∆t
RC qk +

[
1 − e−

∆t
RC

]
(CE − RCiL,k)

)

+δq2 (qk − iL,k∆t)
(19)

For specificity in later calculations take E = 1, C = 1, R = 1,

and ∆t = 0.05

qk+1 = δ1 (0.9512 qk + .0488 (1 − iL)) + δ2 (qk − 0.05 iL)
(20)

We can simplify this equation by introducing a new variable

z defined by the specification
(
q+
1 ⇒ z = 0.9512 qk + .0488 (1 − iL)

)
∧ (

q+
2 ⇒ z = qk − 0.05 iL

) (21)

This allows us to write

qk+1 = z (22)

The current i drawn from the source is defined by the

specification
(
q+
1 ⇒ i = −q + 1

) ∧ (
q+
2 ⇒ i = 0

)
(23)

By adjoining (22) and (23) to (17) with bounds on the real

variables i, q, z

−1 ≤ i ≤ 1, 0 ≤ q ≤ 2,−1 ≤ z ≤ 3

Then, in addition to (18), we obtain

d3 − δ
q+
1
≥ 0

d4 − δ
q+
1
≥ 0

−1 + d2 + δ
q+
1
≥ 0

1 − d1 + i ≥ 0
1 − 2d3 + i + q ≥ 0
3 − 3d2 − q + z ≥ 0

2.9024 − 2.9512d4 − 0.95512q + z ≥ 0
−1 + d1 + i ≤ 0

−3 + 2d3 + i + q ≤ 0
−3 + 3d2 − q − z ≤ 0

−3 + 2.9512d4 − 0.9512q + z ≤ 0
0 ≤ d1 ≤ 1, 0 ≤ d2 ≤ 1, 0 ≤ d3 ≤ 1, 0 ≤ d4 ≤ 1

−1 ≤ i ≤ 1,−1 ≤ z ≤ 3, 0 ≤ q ≤ 2

(24)

2) Optimal Control: The optimization problem is formu-

lated as follows. We consider the operation of the system

over a time period of 0.5 sec (10 time steps, ∆t = 0.05).

Generally, the resistance R is very small so it is expected that

for reasonable deviations of capacitor bank voltage from the

nominal value E, currents from the DC supply will be large

when switch is closed. The goal of the controller is to open and

close the switch to achieve capacitor resupply, while insuring

a reasonable average current (about 1 amp, in this case) over

the specified time period.

To accomplish this we specify a cost function

J = α [qN − q̄]2 +
1
N

N−1∑
k=0

(ik(k + 1))10 (25)

with N = 10. Notice that the cost trades a terminal cost that

penalizes any deviation of capacitor bank charge (equivalently,

voltage) from its nominal value against an accumulated charge

current cost. The current cost is subjected to a time dependent

weighting. The weighting function adds flexibility and is use-

ful in this example. Using the weighting function guarantees

the switch is closed for some time (however short), while

insuring a limited average current. Using the 10th power rather

than a more common quadratic implies, that currents less than

1/(k +1) are penalized very little, while currents greater than

1/(k + 1) are very costly.

The optimal control is obtained by minimizing the cost

J in (25) subject to the dynamical constraints (22) and

the inequality constraints (18), (24). The result is a discrete

controller in which the switch is open or closed depending on

the value of capacitor charge and time on the interval t ∈ [0, 1].
The control is to be applied periodically. Figure (4) shows a

0 25 50 75 100 125 150 175
100�q�0.1�

2.5

5

7.5

10

12.5

15

17.5

20

�
T
�
t
�
�
0
.
0
5

Fig. 4. Two cycles of a periodic switching controller. The switch is open in
the black regions, closed in the white.

typical result (corresponding to the case of zero load current,

iL = 0). The black region corresponds to an open switch,

and the white to a closed switch. Two cycles of the periodic

control is shown.

Note that the result is similar to a pulse width modulated

control in which the duty cycle varies with the capacitor

charge.

B. DC-DC Converter
The DC-DC boost converter to be considered is shown in

Figure 5. There are four possible switch-diode arrangements:
switch open and diode conducting, switch open and diode non-
conducting, switch closed and diode nonconducting, switch
closed and diode conducting. It is common to assume that q ≥
0. This is justified by the fact that the only way it is is possible
to have q < 0 would be to initialize the capacitor this way. If
this assumption is made, then the last operating condition can
be discarded. Another common assumption is that the inductor
current is always positive i > 0, which would eliminate the
third arrangement. However, it is certainly possible to have
i = 0 for a nontrivial time period. For example, suppose
the switch is opened after the capacitor voltage reaches a
value significantly above E. Then the inductor current will
begin decreasing and could reach i = 0 before the capacitor

+

-

E C R

L

Fig. 5. The hybrid automaton model of the DC-DC converter.

current drops below E, at which time the diode would become
nonconducting while the voltage continues to drop. Thus, we
consider the three mode model shown in Figure 6, as in [18].
The logical specification is

s

1mode 1, q

di E q

dt L LC
dq q

i
dt RC

= −

= −

0i ≤

0s i¬ ∧ >

0s i¬ ∧ ≤

q C E≤ s

2mode 2, q

di E

dt L
dq q

dt RC

=

= −

3mode 3,

0

q

di

dt
dq q

dt RC

=

= −

Switch: open

Diode: conducting

Switch: closed

Diode: nonconducting

Switch: open

Diode: nonconducting

Fig. 6.

L = exactly (1, {q1, q2, q3})∧
exactly

�
1,
�
q+
1 , q+

2 , q+
3

��∧�
q1 ∧ s ⇒ q+

2

� ∧ �
q1 ∧ (i ≤ 0) ⇒ q+

3

�∧�
q1 ∧ ¬ (s ∨ (i ≤ 0)) ⇒ q+

1

�∧�
q2 ∧ (¬s ∧ (i > 0)) ⇒ q+

1

�∧�
q2 ∧ (¬s ∧ (i ≤ 0)) ⇒ q+

3

�∧�
q2 ∧ ¬ ((¬s ∧ (i ≤ 0)) ∨ (¬s ∧ (i > 0))) ⇒ q+

2

�∧�
q3 ∧ s ⇒ q+

2

� ∧ �
q3 ∧ (q ≤ 1) ⇒ q+

1

�∧�
q3 ∧ ¬ (s ∨ (q ≤ 1)) ⇒ q+

3

�

From which we obtain the IP formulas

1 − δq1 − δq2 − δq3 ≥ 0, 1 − δq1 − δq2 − δq3 ≤ 0
1 − δ

q+
1
− δ

q+
2
− δ

q+
3
≥ 0, 1 − δ

q+
1
− δ

q+
2
− δ

q+
3
≤ 0

1 − δq1 − δ
q+
2
− δs ≥ 0, 1 − δq3 − δ

q+
2
− δs ≥ 0

d1 − δq1 + δ
q+
3
≥ 0, d5 − δq3 + δ

q+
1
≥ 0,

d3 + d4 − δq2 + δ
q+
2
≥ 0

d2 − δq1 + δ
q+
1

+ δs ≥ 0, d7 − δq2 + δ
q+
1

+ δs ≥ 0

d8 − δq2 + δ
q+
2

+ δs ≥ 0, d6 − δq3 + δ
q+
3

+ δs ≥ 0

0 ≤ d1, d2, d3, d4, d5, d6, d7, d7 ≤ 1
0 ≤ δq1 , δ

q+
1

, δq2 , δ
q+
2

, δq3 , δ
q+
3

, δs ≤ 1

2 − 2d1 + i > 0, 2 − 2d4 + i > 0
−1 + d2 + i ≤ 0, −1 + d3 + i ≤ 0,
−1 + d7 + i ≤ 0, −1 + d8 + i ≤ 0
1 − 2d5 + q > 0, −2 + d6 + q ≤ 0

−1 ≤ i ≤ 1, 0 ≤ q ≤ 1

1) Power Management System: We briefly describe a prob-
lem of current interest to us. Figure 7 constitutes a benchmark
derived from the notional DD(X) power system configuration.
Consider a scenario in which various faults can afflict the
system; in which case the power management system should

reconfigure the system to maintain a maximum level of
functionality. As a simple illustrative example, suppose a fault
occurs that results in the isolation of bus 5, so that the post
fault systems reduces to that shown in Figure 8. Now a second
fault occurs that removes half of the transmission capacity
between busses 2 and 3. All numbers are ‘per unit’ with the
following base values:

Vbase = 13.8√
3

kV = 7.97 kV

Pbase = 36
3

MV A = 12 MV A

Ibase = Pbase
Vbase

= 12
√

3
13.8

A = 1.51A

Zbase = (Vbase)2

Pbase
=
�

13.8√
3

�2
1
12

Ω = 5.29 Ω

1 0.8333Y j= 2 4 0.3147 16.3982Y Y j= = +

[]0,2E ∈

0 ~ 3.6 . .gP p u=

0 ~ 2.4 . .mP p u=

0 ~ 1.8 . .

0 ~ 0.72 . .
L

L

P p u

Q p u

=
=

1

2

3

4

5

6

3 0.8333Y j=

0 ~ 1.8 . .

0 ~ 0.72 . .
L

L

P p u

Q p u

=
=[]0,2E ∈

0 ~ 3.6 . .gP p u=

0 ~ 2.4 . .mP p u=

Fig. 7. The benchmark example derived from the notional DD(X) IPS.

1 0.8333Y j=

2 0.3147 16.3982Y j= +

[]0,2E ∈

0 ~ 3.6 . .gP p u=

0 ~ 2.4 . .mP p u=

0 ~ 3.6 . .

0 ~ 1.44 . .
L

L

P p u

Q p u

=
=

1

2

3

Fig. 8. The system following a fault that results in disconnection of bus 5.

The network model is a classical model generated automat-
ically in Mathematica. Let δi, i = 1, 2, 3 denote the angles at
bus 1,2,3, respectively. Choose bus 1 as a reference and define
θ2 = δ2 − δ1, θ3 = δ3 − δ1 . Then the network equations are

0 = P2 − b12V1V2 sin θ2 − g22V
2
2 − g23V2V3 cos (θ2 − θ3)

−b23V2V3 sin (θ2 − θ3)
0 = P3 − g33V

2
3 − g23V2V3 cos (θ2 − θ3) − b23V2V3 sin (θ2 − θ3)

0 = Q2 − b12V1V2 cos θ2 − b22V
2
2

−b23V2V3 cos (θ2 − θ3) − g23V2V3 sin (θ2 − θ3)
0 = Q3 − b33V

2
3 − b23V2V3 cos (θ2 − θ3) − g23V2V3 sin (θ2 − θ3)

In addition, we have

P2 = −Pm, Q2 = 0
P3 = −PL, Q3 = −QL

V1 = E

The load is actually an aggregate of many different types of

loads including motors, lighting and heating. The power con-

sumption depends on the applied voltage. When a disturbance

occurs various controllers take action that tends to restore the

power consumption. The following model is used for the load.

σ̇ = − σ
T − 2v

PL = (1 − ηL) P0

(
1 + σ

T + 2v
)

QL = (1 − ηL) Q0

(
1 + σ

T + 2v
)

where ηL is the load shedding fraction. The load shed frac-

tion changes in accordance with the evolution of the hybrid

automaton shown in Figure 9.

Load Shed Level 0

1q

Load Shed Level 1

1s¬

2q

1s

Load Shed Level 2

3q

2s¬

2s

Fig. 9. Diagram showing the load shedding transition logic. There are two
sets of circuit breakers. s1, s2 are logical statements that the first or second
sets, respectively, are closed. From load shed level 0, set 1 can be opened to
and the system transitions to load shed level 1 from which the second set of
breakers can be opened to drop additional load.

The specification for the hybrid automaton is

L = exactly(1, {q1(t), q2(t), q3(t)})∧
exactly(1,

�
q1

�
t+
�
, q2

�
t+
�
, q3

�
t+
��∧�

q1 (t) ∧ ¬ s1 ⇒ q2

�
t+
�� ∧ �

q2 (t) ∧ ¬s2 ⇒ q3

�
t+
��∧�

q3 (t) ∧ s2 ⇒ q2

�
t+
�� ∧ �

q2 (t) ∧ s1 ⇒ q1

�
t+
��∧�

q1 (t) ∧ s1 ⇒ q1

�
t+
�� ∧ �

q2 (t) ∧ s2 ⇒ q2

�
t+
��∧�

q2 (t) ∧ ¬s1 ⇒ q2

�
t+
�� ∧ �

q3 (t) ∧ ¬s2 ⇒ q3

�
t+
��

The IP formulas are

1 − δq1
− δq2

− δq3
≥ 0, −1 + δq1

+ δq2
+ δq3

≥ 0
1 − δ

q+
1
− δ

q+
2
− δ

q+
3
≥ 0, −1 + δ

q+
1

+ δ
q+
2

+ δ
q+
3
≥ 0

1 − δq1 + δ
q+
1
− δs1 ≥ 0, 1 − δq2 + δ

q+
1
− δs1 ≥ 0

1 − δq2 + δ
q+
2
− δs2 ≥ 0, 1 − δq3 + δ

q+
2
− δs2 ≥ 0

−δq1 + δ
q+
2

+ δs1 ≥ 0, −δq2
+ δ

q+
2

+ δs1 ≥ 0

−δq2
+ δ

q+
3

+ δs2 ≥ 0, −δq3
+ δ

q+
3

+ δs2 ≥ 0

0 ≤ δq1
≤ 1, 0 ≤ δq2 ≤ 1, 0 ≤ δq3 ≤ 1

0 ≤ δq+
1
≤ 1, 0 ≤ δq+

2
≤ 1, 0 ≤ δq+

3
≤ 1

0 ≤ δs
1
≤ 1, 0 ≤ δs

2
≤ 1

VI. CONCLUSIONS

We have described an approach to modeling power systems

as hybrid dynamical systems that include continuous (ODE or

DAE) and discrete (FSA) subsystems. The essential feature of

the model is a characterization of the discrete subsystem in

terms of a set of IP formulas. The application of this model to

the design of optimal feedback control systems using dynamic

programming has also been described. Computational tools

for performing the translation of the logical specification to

IP formulas and for solving a limited form of the dynamic

programming problem have been assembled in Mathematica.

Examples have been given.

ACKNOWLEDGMENT

This research was supported by the Office of Naval Re-

search Contract Number N00014-04-M-0285 and the National

Science Foundation Contract Number ECS-0400391.

REFERENCES

[1] H. G. Kwatny, A. K. Pasrija, and L. Y. Bahar, “Static bifurcations
in electric power networks: Loss of steady state stability and voltage
collapse,” IEEE Transactions on Circuits and Systems, vol. CAS33,
no. 10, p. 981991, 1986.

[2] I. Dobson and H.-D. Chiang, “Towards a theory of voltage collapse in
electric power systems,” Systems and Control Letters, vol. 13, p. 253262,
1989.

[3] C. A. Caizares and F. L. Alvarado, “Computational experience with
the point of collapse method on very large ac/dc systems,” in Bulk
Power Systems Voltage II PhenomenaVoltage Stability and Security,
Deep Creek Lake, MD, 1991, pp. 103–112.

[4] V. Venkatasubramanian, H. Schttler, and J. Zaborsky, “A taxonomy of
the dynamics of the large power system with emphasis on its voltage
stability,” in Bulk Power System Voltage Phenomena II: Voltage Stability
and Security, L. H. Fink, Ed., Deep Creek Lake, MD, 1991, p. 944.

[5] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages and Computation. Reading: AddisonWesley, 1979.

[6] T. Geyer, M. Larsson, and M. Morari, “Hybrid emergency voltage
control in power systems,” in European Control Conference, Cambridge,
2003.

[7] P. J. Antsaklis, Proceedings of the IEEE, Special issue on Hybrid
Systems: Theory and Application, vol. 88, no. 7, 2000.

[8] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[9] Q. Li, Y. Guo, and T. Ida, “Transformation of logical specification into
ip-formulas,” in 3rd International Mathematica Symposium (IMS ’99).
Hagenburg, Austria: Computational Mechanics Publications, WIT Press,
1999.

[10] H. P. Williams, Model Building in Mathematical Programming. John
Wiley and Sons, 1993.

[11] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework for
hybrid control: Model and optimal control theory,” IEEE Transactions
on Automatic Control, vol. 43, no. 1, pp. 31–45, 1998.

[12] H. J. Sussmann, “A maximum principle for hybrid optimal control
problems,” in Conference on Decision and Control, Phoenix, AZ, 1999,
pp. 425–430.

[13] J. Lu, L.-Z. Liao, and J. H. Taylor, “Optimal control of systems with
continuous and discrete states,” in Conference on Decision and Control,
San Antonio, TX, 1993, pp. 2292–2297.

[14] S. Hedlund and A. Rantzner, “Optimal control of hybrid systems,” in
Conference on Decision and Control, Pheonix, AZ, 1999, pp. 3972–
3977.

[15] K. McKinnon and H. Williams, “Constructing integer programming
models by the predicate calculus,” Annals of Operations Research,
vol. 21, pp. 227–246, 1989.

[16] Q. Li, Y. Guo, and T. Ida, “Modelling integer programming with logic:
Language and implementation,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E83-A,
no. 8, pp. 1673–1680, 2000.

[17] M. L. Tyler and M. Morari, “Propositional logic in control and moni-
toring problems,” Automatica, vol. 35, no. 4, pp. 565–582, 1999.

[18] P. Gupta and A. Patra, “Hybrid sliding mode control of dc-dc power
converters,” in IEEE Tencon 2003. Bangalore: Allied Publishers, 2003.

[19] M. Senesky, G. Eirea, and T. J. Koo, “Hybrid modeling and control of
power electronics,” in Hybrid Systems: Computation and Control, ser.
Lecture Notes in Computer Science. New York: Springer-Verlag, 2003,
vol. 2623, pp. 450–465.

[20] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” 2003.
[21] T. Geyer, G. Papafotiou, and M. Morari, “On the optimal control

of switch-mode dc-dc converters.” in HSCC, ser. Lecture Notes in
Computer Science, vol. 2993. Springer, 2004, pp. 342–356.

