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where

©)
Following the proof in Lemma 3, we have

_|exp(-2¢) exp(-3¢)
bl = { 0 exp(—3t)]'

Let t, = 0. In Theorem 3, | H|| = 1.08, | D|| < V3 exp(-21),
1D~ = V3 exp3t, |C|l = V2(t+ 5 %exp—t, |B]
< V3 exp0.5t, K, = 1, we get A = 0.449, G = 77.76. Let X =
[X,, X;17. So
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lx()) =
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for || X(0)] < & and for some positive real number 6 > 0. Hence,
the equilibrium at the origin for the system (7)-(9) is asymptotically
stable.

IV. CoNCLUSION

It is well-known that the stability of a linear system X(t) =
A(t)X(t) depends on the eigenvalues of the matrix 4. From
Theorem 2, we see that the bilinear part, B(¢) X(f)u(¢), is more
important than the term C(fH)u(¢) if |D™YHCW)| <M, t=0
for some constant M and the linear part A(f)X(¢). Suppose the
inverse matrix of D equals the transpose of D, i.e., D™! = D7 in
Theorem 2. Then the boundedness of the solution X(#) depends on
the negative definiteness of the matrix B(¢). On the other hand, in
Theorem 3, one can see that the terms, A(#) X(¢) and C(¢)u(?),
almost dominate the bilinear term if A is very small where A does
not depend on the bilinear part. It seems that the bilinear term can
be ignored if the terms A(?) X(¢), C(¢)u(t) satisfy the hypotheses
in Theorem 3. Therefore, the behavior of stability of a bilinear
system is determined by all factors, A(¢), B(¢), C(¢) and the input
function.
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New

Regulation of Relaxed Static Stability Aircraft
Harry G. Kwatny, William H. Bennett, and Jordan Berg

Abstract—We formulate and solve a regulator problem for nonlinear
par ter-dependent dy 1t is shown that the problem is solvable
except at parameter values associated with bifurcation of the equilib-
rium equations and that such bifurcations are inherently linked to the
system zero dynamics. These results are applied to the study of the
regulation of the longitudinal dynamics of aircraft.

I. INTRODUCTION

In order to achieve higher levels of maneuverability and effi-
ciency, future aircraft will operate close to or even beyond open-loop
stability boundaries. For example, reduction of horizontal tail size
in order to achieve reduced fuel consumption results in loss of
longitudinal static stability for sufficiently aft center of gravity
locations [2], [16]. Fighter aircraft may operate at a high angle of
attack or at a high roll rate where nonlinear effects cause loss of
stability [5]. Such aircraft require augmentation by automatic flight
control systems which induce the desired handling qualities over the
full range of flight conditions. When operating near stability bound-
aries the system dynamics can be nonlinear in an essential way.
Marginally stable dynamics can be dramatically sensitive to para-
metric changes because of nonlinear effects.

Some recent studies in flight mechanics characterize aircraft
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parametric loss of stability in terms of elementary local bifurcations,
c.f. [121, [81, [13]. Such phenomenon, of course, are fundamentally
nonlinear. These studies deal almost exclusively with open-loop
dynamics under parameter variation and very little general theory is
available concerning the design of feedback controls near bifurca-
tion points. Performance can sometimes be dramatically improved
by nonlinear feedback. In fact, substantial improvement is obtained
by Garrard and Jordan [7] in recovery from stall by using a
nonlinear feedback.

Abed and Fu [1] address the issue of stabilizability and the design
of stabilizing state feedback controllers at bifurcation points. In this
note, we consider the design of feedback regulators in which the
two-fold goal includes stabilization as well as the elimination of
errors in selected output variables. As do Abed and Fu, we focus on
local design in which it is intended to achieve these objectives for all
parameter values on a neighborhood of a nominal value. Our main
objective is to establish conditions for the existence of solutions to
the regulator problem and to examine their significance to the
control of aircraft longitudinal dynamics. In Section II, we define
the local regulator problem and develop necessary and (construc-
tive) sufficient conditions for its solution. The regulator problem
gives rise to a natural set of equilibrium equations which include the
zero output error relations. In Section III, we establish the connec-
tion between the solvability of the regulator problem and the static
bifurcation of these equations. Under reasonable assumptions on the
plant, solutions to the regulator problem fail to exist only at
bifurcation points. We give a characterization of local static bifurca-
tion in terms of the open-loop plant zeros. In Section IV we apply
these concepts to the analysis of the longitudinal dynamics of an
aircraft. It is clearly shown how bifurcation points arise in these
problems and why they affect solvability of the regulator problem.
The relationships between bifurcation, system zeros, and dynamic
and static stability are illustrated. Section V summarizes our main
conclusions.

II. REGULATOR DESIGN
A. Definition of the Local Regulator Problem

Consider the nonlinear dynamical system

x=f(x,u,p) (2.1a)
y=g(x,n) (2.1b)
z=h(x,p) (2.1¢)

where, x € R" is the system state, # € R™ is the control, y e R? is
the measurement, and zZ € R” is the regulated output, p eRFisa
parameter vector which may be composed of plant parameters,
exogenous constant disturbances, and /or set points. We assume that
the functions f, g, and h are smooth (sufficiently differentiable)
and our objective is to design a feedback regulator which stabilizes a
desired equilibrium point corresponding to z =0. A triple
(x*, u*, ) is an equilibrium point of the open-loop dynamics if

f(x*, u*,”*)] o

h(x*, ’A*)

22)

F(x*,u*,u*) _ [

We usually obtain equilibria by specifying u* and solving (2.2) for
x*, u*. Then y* = g(x*, u*). Typically, it is expected that (2.2)
will have solutions only if m = p. Since the number of controls can
always be reduced, we assume henceforth that m = p.

In the following paragraphs we consider two types of regulators,
either state feedback

= k(x. 1) (2.3)
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with k(x*, u*) = u*, or dynamic feedback
=9(v,y), i=9(»,») (24)

where »€ R” with &(*, y*) = 0 and 5(v*, y*) = ©*. Correspond-
ingly, the closed-loop dynamics with state feedback are of the form

xp=fi(xp, w)=F(x0, k(xy, ), k), x.=XxeR" (2.5)

or in the case of dynamic feedback

f(x,n(v, g(x, 1)), )

$= Ll k)= g (ew)

,
(¥,

x, =[x, v]"eR™". (2.6)

The regulator problem is defined as follows.

The local regulator problem: Determine a feedback control law
of type (2.3) or (2.4) so that the following two conditions obtain:

1) Stability: For each pe U, a neighborhood of u¥, the closed-
loop has an exponentially stable equilibrium point characterized by
the function ¥;(p) with %, (u*) = x* and k(x*, ) = u* in the
case of state feedback, or ¥, (i*) = [x*, »*') and n(»*, y*) = u*
in the case of dynamic feedback.

2) Reguiation: z(t) — 0 as t — oo for all pe U, x,00eX;,a
neighborhood of ¥, ().

Remark 2.1: Consider the set of points in R™m+k that satisfy
F(x,u,p) =0[2.2)]

&= {(x,u,u)eR””’“‘lF(x,u,;L)=0}. (2.7)

We assume that rank [ D, FD,FD,F] = n + m on &.Then € isa
regular manifold of dimension X in R"+m+k and we refer to & as
the open-loop equilibrium manifold. & is the manifold of (output
regulated) equilibria of the system (2.1). The nominal parameter
value may be associated with several equilibria one of which is
chosen as the equilibrium at which the regulator is to be designed.
The actual parameter value will belong to a sufficiently small but
unspecified neighborhood of u*. Our objective is to design a
regulator which will identify and stabilize the corresponding equilib-
rium point.

The following proposition illustrates the intimate connection be-
tween stability and the existence of equilibria under parameter
perturbations.

Theorem 2.1: Suppose x} denotes an exponentially stable equi-
librium point of the closed-loop dynamics at p = #*. Then there
exists a function X, () on a neighborhood U of p* with X LW =
x7 and which satisfies the relation

Su(%L (1), ) = 0. (2.8)

Proof: By hypothesis we have an exponentially stable equilib-
rium point which satisfies f " (x¥, u*) = 0. Notice that exponential
stability implies that the Jacobian D, f (X%, 1¥) is nonsingular.
The result follows from application of the implicit function theorem.

¢

We employ the concepts of exponential stabilizability and de-
tectability of (2.1) as characterized in [4]:

Definition 2.1: The system X% = f(x, u), x€R", ueR™ with
f(x*, u*) = 0 is exponentially stabilizable at (x*, u*) if there
exists a function # = k(x), defined on a neighborhood of x*in R"
with &* = k(x*) so that the equilibrium point, x = x*, of X =
f(x, k(x)) is exponentially stable.

Definition 2.2: The system x = f(x,u), y = g(x), xeR",
ueR™, yeRY with f(x*, u*) = 0and y* := g(x*) is exponen-
tially detectable at (x*, u®) if there exists a system

= y(£,y), £eR” (2.9)
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where the function v is defined on a neighborhood of (x*, y*) in
R"™ x RY and the following conditions are satisfied:

v(x*, y*) =0, v(x, g(x))=sf(x,u*) (2.10)
and the point £ = x* is an exponentially stable equilibrium of the

system
£=qv(E,»). (2.11)
Remark 2.2: Exponential detectability implies that the system
i=v(v,») +f(v,u) - f(v,u¥) (2.12)

is a local observer in the sense that || x(#) — »(£)]| > 0 as t > o
provided x(¢) remains sufficiently close to x*.

Remark 2.3: If a system is exponentially stabilizable at (x*, u*),
the equilibrium point (x*, u*) can be stabilized by linear state
feedback. If it is exponentially stabilizable and detectable at (x*, u*),
the equilibrium point (x*, #*) can be stabilized with linear dynamic
feedback.

Let (x*, u*, u*) satisfy (2.2), We make the following standing
assumptions:

Al: the number of regulated outputs is the same as the number of
controls, m = p.

A2: The system X = f(x, u, u*) is exponentially stabilizable at
(x*, u™).

A3: The composite system X = f(x, u, u), n =0, y = g(x, )
is exponentially detectable at (x*, u*, u*).

B. Existence of Solutions and Construction of Regulators

We now provide the basic necessary and sufficient conditions for
the existence of solutions to the local regulator problem and in doing
so provide an explicit method for regulator design. Our develop-
ment parallels well-known constructions for linear systems as de-
scribed in [10] and its references, particularly [6]. Thus, we only
sketch the proofs.

Theorem 2.2: Let

Xp=fu(xL.p) (2.13a)
z2="h(x.,n) (2.13b)

denote a closed-loop system. Let (x}, #*) be an equilibrium point
satisfying

Si(x7.u*) =0 (2.14a)
h (x5, 4%) =0 (2.14b)

and suppose it is exponentially stable. Then the output 2 is regu-
lated only if

(2.15)

D,‘fl,(xz,#*) DfoL(xi’#*)
DuhL(xt’ f"*) Dx,_hL(xtv “*)

Proof: As in Theorem 2.1, exponential stability implies the
invertability of Dfof and the existence of a function X,;(p) which
satisfies f; (X (u), p) = 0 with ¥,(¢*) = x* on a neighborhood U
of u*. Regulation implies that X,(u) also satisfies h,(¥,(n), p) =
0. Differentiation of these conditions leads to

-1
-D, ki[D,, f}] 'D.f*+ DH; =0

which is equivalent to (2.15). ¢

We are now in a position to establish necessary conditions for
state feedback solution to the regulator problem. First, the perturba-
tion equations associated with (2.1a) and (2.1c) at an equilibrium
point (x*, u*, 4*) may be written

8% = A*ox + E*ou + B*5u (2.16a)

1317
8z = C*ox + F*op (2.16b)
where
F) a
* = é(x*,u*,u*), B* := % x*,u*, pt),
F]

F* = _f(x*,u*,,ﬁ) (2.17a)

op

ah ah
C = —(x* ), F* = —(x*u%). (217
ax(x #) 3/1( w)- )

Theorem 2.3: The local regulator problem at (x*, u*, u*) has a
state feedback solution only if

E* A* B*]
€lm
|2 ]em|&
Proof: Let u = k(x, p) with k(x*, p*) = u* be a solution,
so that the closed-loop equations are
x=f(x, k(x, ), 1) (2.192)

z=h(x,pu). (2.19b)

Now the application of Theorem 2.2 to (2.19) leads to (2.18). ¢
Theorem 2.4: The local regulator problem at (x*, u*, u*) has a
dynamic feedback solution only if it has a state feedback solution.
Proof: Application of Theorem 2.2 to the closed-loop equa-

(2.18)

tions (2.6) and (2.1c) tand direct computation leads to (2.18). *
Now we give constructive sufficient conditions for regulator
design.

Definition 2.3: An equilibrium point (x*, &*, u*) of (2.2) is
regular if there exists a neighborhood of p* on which there exist
unique continuously differentiable functions ¥(u), #(u) with x* =
X(u*), u* = u(u*) satisfying

F(x(p), u(p),n) =0. (2.20)

Notice that the implicit function theorem implies that an equilibrium
point is regular if
det[ D,FD,F]* #0. (2.21)

Theorem 2.5: If the equilibrium point (x*, u*, u*) is regular,
then

i) there exist functions ky: R"—= R", X: R¥—R", and &
R¥ = R™ 50 that the regulator problem has a state feedback solu-
tion in the form

u=k(x,p)=u(p) + ko(x - x(n)) (2.22)

i) there exist functions ky, X, # as in i) and functions functions

Y1t R" X R¥ X R7— R", y,: R" X R¥ x R9— R* so0 that the
regulator problem has a dynamic feedback solution in the form

u=10(vy) + ko(v) = X(v2)) = n(v1, 7))  (2.232)

= v1(v1, 72, ¥) + £ (01,001, v2),v2)
_f(yl’u*”'Z)7 ’;2:72("17”2’}')- (2‘23‘))

Proof:

i) We construct a state feedback compensator with the desired
properties. Since the equilibrium point is regular, there exist func-
tions ¥(p), #(p) which satisfy (2.20) and have the property x* =
X(p*), u* = u(p*). Now, let u = u* + ky(x — x™) be a feedback
controller with k4(0) = O which exponentially stabilizes the equilib-
rium point (x*, #*, u*) and which exists by assumption. In fact
ko(§) = —u* + k(£ + x™), where k() is the stabilizing feedback
of Definition 2.1. The closed-loop dynamics with controller (2.22)
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%= f(x,a(n) + ko(x = 2(n)), ) (2.24)

and for each fixed p (2.2) has a solution (X, #). The perturbation
equations are

ox = A(p) dx, A(p) = [D.f + D, fD.ko] oz (2:25)

Since A is a continuous function of p and exponentially stable at

u*, it is exponentially stable on a neighborhood of x*. Regulation

follows from the fact that (2.20) implies A(X(p), p) = O for 4 on a
neighborhood of p*, so that z = 0 at equilibrium.

ii) Exponential observability of the composite system implies the
existence of functions 7,(v,,?,,») and 7y,(v,, v,, ¥) with the
properties

vi(x,m 8(x,0)) = f(x, u*m), ma(x,p,g(x,0) =0

(2.26)

and so that the dynamical system
';) 271(1'1,!'2,}’*), 1.'2'_‘72(1’1”'2’})*) (2'27)

has an exponentially stable equilibrium point (v,, »,) = (x*, ).
Now, the closed-loop dynamics are

x=f(x, (). 1)

i = vi(vy, 72, 8(X, 1)) +f(l’|,'f](1'|,1/2),112) — (v, 0¥, vy)
(2.28b)

123 =72(V1’V2,g(X,M))- (2.28¢)

Let us define a state transformation (X, v,, ¥,) = (X, €;, €,) where
6§ =V, =X, €=V, i

(2.28a)

so that the loop equations become

x=f(x,n(x+e,p+e)n (2.29a)
G =7i(x+e,nte,a(xp)
+f(x+e,a(x+e,pte)pte)
~flx+eu pte) - flxa(x+e,p+e)n)
(2.29b)
€ = 72(X+ €, p+ ez,g(x,p.)). (2.29)

It is easy to verify that an equilibrium point of (2.29) is (x, €;, €;)
= (X(p), 0, 0) by making use of (2.26). Now some lengthy calcula-
tions show that the perturbation equations associated with (2.29) are
of the form

X x
& | =A(p) 61], with A(p)
é €2
[(Dxf) + (Duf)(kaO)]* ok ok
= 0 Ty Tp
0 Ty T
+0(p - u¥) (2.30)
where
I I W
Ty Ty D,y (x*, u*, ¥y*) D,y (x*, u*, »%)

Since k4(x) is an exponentially stabilizing state feedback controller,
it follows that [(D,.f) + (D, f Y(D, ko)I* has all of its eigenvalues
in the open left-half plane. Similarly, exponential observability
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implies that T' (the perturbation matrix associated with (2.27)) has
all of its eigenvalues in the open left-half plane and this property is
therefore inherited by A(y*). It follows from continuity of the
eigenvalues of A(p) that there is a neighborhood of u* on which
A(y) is exponentially stable. ¢
C. Linear Solution of the Local Regulator Problem

Remark 2.2 suggests solvability by linear feedback. It will be

assumed that
A* B*
1 Im
) &5
2) z is readable from y, i.e., there exists a matrix Q such that
z = Qy.

] = R"*P (2.31)

We refer to 1) as the strong regularity condition. Now, we design
a (constant) disturbance accommodating regulator for the surrogate
perturbation system

8% = A*8x + Gw + B*bu (2.32a)
6=0 (2.32b)
8z =C*6x+ Ho (2.32¢)

where w e R? (recall p = dim(z)) and G, H are chosen (as they
always may be) so that the composite state is detectable in 6z. Such
a compensator is constructed as follows.

i) Determine matrices X, U, respectively, n X p, m X p, which
satisfy the matrix equations

A*X +B*U+G=0 (2.33a)
c*x +H=0. (2.33b)

ii) Determine an m X n matrix K, such that (A* + B*K,) is
stable.

iii) Determine an (7 + p) X p matrix L = [L{L5] so that the
following matrix is stable:

I g)+[ipe )

The required compensator is then

A*
0

u=u*+ U, + Ko(v, — Xv,) (2.34a)

5, = (A* + L,C* + B*K,)v,
+(G + LiH + B*(U = Ko X))v, = LiQ(y - »*) (2:34b)
by = (LyC¥)yy + (L H)vy = LQ(y - y%). (2.34c)

Lemma 2.1: Suppose that the equilibrium point (x*, u*, u*)
satisfies the strong regularity condition (2.31). Then there exists
matrices G, H such that the composite state of (2.32), [8x', ']’ is
detectable in the output 6z and there exists matrices X, U satisfy-
ing (2.33). Moreover, for such G and H, In[U] = R™.

Proof: Exponential detectability implies that (C*, A*) is a
detectable pair. In an even more general context Francis [6] proves
that when this is the case, H = 0 and almost every G renders the
composite system detectable. The strong regularity condition insures
that (2.33) is solvable for X, U for every G, H. It remains to show
that Im[U] = R™. Assume that this is not the case. Then there
exists a vector v having the property that

A* G
uelm[c*] and veIm[H].

Now recall that that detectability of the composite system implies

(2.35)
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that

ker {[C* H]) ﬂker{[“gk g] - )\I,,+p} =0

for all X in the closed right-half plane. (2.36)
But in view of (2.35), the matrix
£ 5
c* H
is singular so that (2.36) fails with A\ = 0. Hence, we have a
contradiction. ¢

Now, we can establish the following result.

Theorem 2.6: If the equilibrium point (x*, u*, *) satisfies the
strong regularity condition and if z is readable from y with
z = Qy, then there exist matrices X, U, K, L as required for the
linear compensator (2.34) and this compensator is a solution of the
local regulator problem.

Proof: First, note that the assumptions of exponential stabiliz-
ability and detectability assure the existence of the compensator
parameters K, L. The existence of X, U is established by Lemma
2.1. Now we must show that the closed-loop has an equilibrium
point corresponding to z = 0 for each x on a neighborhood of u*,
and that this equilibrium point is exponentially stable. Let us write
the loop equations in the form

x=f(x,u,pn) (2.37a)
z=h(x,p) (2.37b)
u=u*+Ur, + Ko(v, — Xv,) (2.37¢)

b= (A*+ L,C*)v, + (G+ L H)»,
+ B*(u - u¥) - Liz (2.374)
iy = (L,C¥)vy + (LyH)v, — Lyz. (2.37¢)

First, we argue that there exist functions on X(u), #(g), ¥,(k), v,(1)
a neighborhood of u* with ¥(u*) = x*, T(u*) = u*, ¥, (u*) =0,
7,(1*) = 0 which satisfy the equilibrium equations

0 =f(%,4,n) (2.38a)
0= h(%. ) (2.38b)
= u* + Us, + Ko(7, — X7,) (2.38¢)

0= (A*+ L,C*)5, + (G + L H)v, + B*(@ — u*) (2.384)

0= (L,C¥)5, + (L H)7,. (2.38¢)
Existence of functions X(u), #(u) satisfying (2.38a) and (2.38b) is
guaranteed by the assumption that (x™*, u*, u*) is a regular equilib-
rium point. Since, by Lemma 2.1, Im [U] = R™, there exists v,(u)
such that #(p) — u* = Uv,(p). Thus, (2.38¢c)-(2.8¢) are satisfied
with 7,(p) = X7,(). It remains only to show that this equilibrium
point is exponentially stable. We omit these calculations which
proceed as in the proof of Theorem 2.5. ¢
Remark 2.4: An early application of this type of linear regulator
to a nonlinear plant was in the control of electric power plants [11].
The nonlinear and linear regulators achieve output regulation via
different mechanisms. In the former case, the closed-loop equilib-
rium point is defined by the functions X(pu), u(p), whereas, in the
linear case ‘‘integral action’’ provides regulation.

II1. STABILITY, BIFURCATION, AND ZERO DYNAMICS

A. Bifurcation Points

It is to be anticipated that feedback regulation at operating
conditions with multiple equilibria which are in close proximity may
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prove troublesome. We have already seen, in Theorem 2.1, that a
necessary condition for exponential stability of an equilibrium point
of a closed-loop system at a parameter value p* is the existence of
an isolated equilibrium for each g in a neighborhood of *. We now
develop a deeper perspective of the significance of multiple equilib-
ria to regulator design.

Definition 3.1: An equilibrium point (x*, u*, u*) of (2.2) is a
(static) bifurcation point with respect to F(x, u, p) if in each
neighborhood of (x*, u*, p*) there exists (x,, #;, p) and
(x5, Uy, p) With (X, u)) # (X5, 4,) and F(x;, ug, p) = 0,
F(x,, uy, p) = 0.

An equilibrium point is a bifurcation point if and only if it is not
regular.

B. Bifurcation and Zero Dynamics

We can give a useful interpretation to static bifurcation for
systems defined by state equations (2.1a) and output equations
(2.1¢). Equation (2.27) is equivalent to

* * _ 4% *
det[A B ];eOHm[ 4 B ]=R"“’. (3.1)
c* 0 -C* 0
Thus, we have the following conclusion.
Theorem 3.1: An equilibrium point (x*, u*, u*) is a (static)
bifurcation point only if

* *
Im[‘A B ] # R"P,
-Cc* 0
It follows that conditions for static bifurcation reduce to the follow-
ing two possibilities.
1) If for typical A

N — A*  B* (3.2)
-C* 0
then a static bifurcation point corresponds to an invariant zero (of
the linearized dynamics) at the origin. This is the nondegenerate
case.
2) Otherwise, a static bifurcation point corresponds to the condi-
tion

rank[ ]=n+p

det {C*[M - A*] 'B*} =det {G(N)} =0  (3.3)

which implies insufficient independent controls or redundant regu-
lated outputs. This is the degenerate case.

Remark 3.1: When it is possible to associate with (2.1a) and
(2.1¢) nonlinear zero dynamics in the sense of [3], then the nonde-
generate case corresponds to a static bifurcation of the zero dynam-
ics. The degenerate case corresponds to ‘‘structural instability’’ of
the relative degree.

C. Simultaneous Regulation

It has been shown that the local regulator problem is solvable
with a linear compensator at open-loop equilibria which satisfy the
strong regularity condition. We give some insight into the limita-
tions of a single linear compensator. In Remark 2.1, we defined the
equilibrium manifold & associated with the output regulated open-
loop system (2.1). Now, consider the closed-loop system (2.37)
which is the system (2.1) plus a linear regulator designed at a point
(x*, u*, u*) € &. The closed-loop equilibrium manifold is the set of
points
éil = {(X, v, u, I") €R2"+2m+k‘

such that (x, », u, u) satisfies (2.38) }.

(3.4)

The structure of &, is quite simple. It to is a k-dimensional
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imanifold whose projection on any R"*™*# subspace of R2n+2mtk
defined by » = constant is precisely &. There is a one-to-one
correspondence between points in & and &.

The bifurcation points themselves form codimension-1 manifolds
in & or &, which divide them into open sets which we call sheets.
The boundaries of these sets consist of the bifurcation points. Two
different sheets are contiguous if they share common boundary
points.

Theorem 3.2: A single linear compensator will generically fail
to simultaneously solve the local regulator problem at two equilib-
ria, one on each of two contiguous sheets of &.

Proof: Let A and B denote two equilibria, one on each of two
contiguous sheets of &. There exist corresponding points A’, B in
&,. We assume A’ is a stable equilibrium of the closed-loop system
and show that B’ is generically unstable. Choose a path # connect-
ing A’and B’ which transversely crosses a codimension one (in &)
bifurcation surface at point C'. This is always possible because such
paths are generic. Moreover, & can be chosen so that C’ is the only
bifurcation point which it contains. C’ is a codimension one (static)
bifurcation point and generically corresponds to the coalescence of
two hyperbolic closed-loop equilibria with the number of right-half
plane eigenvalues differing by precisely one. C’ itself corresponds to
a closed-loop equilibrium point with precisely one zero eigenvalue.
As the path 2 is traversed from A’ to B’, the only real eigenvalue
crossing of the imaginary axis occurs at C’ and this corresponds to a
single eigenvalue. Hence, the number of right-half plane eigenval-
ves of A’ and B’ generically differ by an odd number. It follows
that if A’ is stable, B’ is generically unstable. ¢

IV. AIRCRAFT LONGITUDINAL DYNAMICS
In this section, we illustrate the meaning and significance of the
local regulator problem solvability conditions in the context of the
control of aircraft longitudinal dynamics.

A. Equations of Motion

We summarize the basic equations of motion which govern the
longitudinal dynamics of an aircraft. Further details may be found in
(5]. Denote the velocity ¥, the body attitude @, the flight path angle
v, the angle of attack a = 6 + 7. The principle forces acting on the
airframe are lift, drag, thrust, and weight. The body axis is aligned
so that a = O corresponds to zero lift. The basic equations of
motion are

m(it + w) = —mgsin6 + L, sina
+ L,sino, + T — Dcosa (4.12)
m(w — uf) = mgcosd — L, cos a

- L,cosa, — Dsina (4.1b)

6=M,+1,L,cosa— 1L ,cosac, — cf  (4.1¢)

where w, u are the velocity coordinates in the body frame

w= Vsina, u=Vcosca.

(4.2)

Also, «, is the tail angle of attack and is related to the angle of
attack «, pitch rate 9, tail angle i,, downwash angle €, and the
elevator deflection angle & via the relation

a=ati—e+d+ (1,/V)8 (4.3)
We also have
1, +1,=1%

(4.5)

The lift and drag forces depend on the velocity V', air density p, and

1T
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surface area S via the relations

1 1 1
L= CL(O‘)EAOVZS, D= CD(a)E pV3iS, M= CM(O‘)E oV2S.
@4)

Let us introduce a normalized velocity by identifying a nominal
velocity (for example, the maximum cruise velocity) V,, and define
the nondimensional quantities

vo= (V/Vo), = (L1, A, =(L,/me),
A, =(L,/mg), A= (D/mg),
I = (T/mg), T, =(M,/I*mg),
T =(g/Vo)t, q = (Vo/g)é

in order to obtain the nondimensional equations

cosa —vusina vsina 0 v
sin o v Cos o —veosa O i o
0 0 1 0|dr|f
0 0 0 1 q
—sinf + A, sina + A, sine, + 11— Acos
cosf — Acosa — A,cos o, — Asina
- q
VEI* Vv,
po {Z, + «A,cos o — (1 - k)A,cos &} — p— q
(4.6)

A complete set of acrodynamic properties must be defined for the
purposes of numerical illustrative purposes. Although the model
defined below does not correspond to any specific aircraft it does
exhibit the general qualitative characteristics typically described in
the literature. Level flight corresponds to y = 0. We assume that
the longitudinal body reference axis corresponds to the wing zero
lift line and that level flight at nominal conditions (V, po) corre-
sponds to a, § = co. In this case, the normalized lift forces take the
form

Aw=fw(a),5v2, At:fr(at)ﬁvzv
with £,(0) =0, £,(0) =0. 7= (a/pa). (4)

The normalized drag force and moment are assumed to be of the
form

2\ — —
(a+ bl fu(a)]) BV, =, = o,(c)pv?.  (4.8)
In the following discussion, numerical computations and examples
will be based on the following model aircraft characteristics.

;- (a -2.08(a - a0)3)’

@g

A=

f{fel((oca0+5)—3(a—a0+6)3)’

o
0,(a)=0 (4.92)
p=1, e=0, a=0.05, b=005 oa;=0.05 ¢ =0.1,
VEr 9%
©_-300, —5 =8 (49b)
ar mgr
We note that k = 0, & = 0.0005, [I = 0.1, v = 1, a = 0.0495,
g = —0.0495, g = 0 is an equilibrium point, corresponding to
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level flight at nominal velocity. The perturbation equations are

Sv ]
d|sa
dr | 80
g |
[—0.3960 -2.949 —1.0 0 sv
_| —1980 -2180 0 1.0 || 6
0 0 0 1.0 || 66
L 0 ~5992 0 -8.0]| 6q
0.9987  0.0010
4| —0:0495 =20 [an
0 0 s |
0 -599.3

B. Velocity Regulation

We give a simple example which illustrates the importance of
center of gravity location on aircraft longitudinal static stability.
With the elevator deflection angle & fixed and the velocity v
specified, we wish to determine values of a, 6 (or, equivalently, v)
and II which satisfy the equilibrium equations. Notice that ¢ = 0 in
equilibrium and that the first equation can always be satisfied by
choosing

M=sin(a-7)—A,sina— A,sin(a+§) + Acos a.
(4.10)

Thus, we need only be concerned with the determination of o and 0
from the remaining two equilibrium equations

cos(8) — A, cosa — A cos(a+8) — Asina =0 (4.11a)

s, + kA, cosa— (1 —«)A cos(a+8)=0. (4.115)

Let us consider « to be the only adjustable parameter. Since « and
6 are the dependent variables we have

DF = [D,FD,FD,F] = [A B 0]

c o D (4.12)

a3
A= ™ —~A,cosa— A,cos(a+8) — Asina],
23

B= —sinf (4.13a)
a4
C= a—[Ew +«A,cosa— (1 —«)A,cos(a+8)],
o

D=A,cosa+ A cos(a+d). (4.13b)

Notice that det { D, f} = — BC = 0 only if either 6 = nx for some
integer n or C = 0. Thus, a static bifurcation occurs only if one of
these conditions is satisfied simultaneously with (4.11). We can
easily illustrate the significance of the case C =0 as « varies.
Equation (4.11b) provides a relation between the center of gravity
location () and the angle of attack. There is a critical cg location
k. (and an associated ., 8.) which coincides with C(e,, 6., x ) =
0. Note that C may be interpreted as the pitch stiffness. The
equilibrium point is statically stable if C > 0, statically unstable if
C < 0 and has neutral static stability if C = 0. In the preceding
example, neutral static stability corresponds to a parameter value at
which the equilibrium point is not regular—indeed, it corresponds
to a bifurcation point. For k > « there are no equilibrium solutions
and for k < «, there are two. In the latter case, the equilibrium
corresponding to C < 0 (the one on the left) is statically stable (but
it may be dynamically unstable) whereas the other equilibrium
corresponds to C > 0 and is certainly unstable.

It is interesting to note that the bifurcation associated with C = 0
is clearly apparent in the angle of attack curve. It is a simple matter

* |
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to compute the null space spanning vector of DF = [D,F D, F] for
this case and observe that both the o and 8 components are
nonzero. On the other hand, the null space spanning vector associ-
ated with the other bifurcation condition (§ = n7) is identically
zero in the o component. This suggests that the pitch angle consti-
tutes a better characterization of equilibrium behavior because both
bifurcations should be evident in the pitch angle equilibrium curve.
Indeed, this is evident in Fig. 1 where the complete equilibrium
curves are illustrated with normalized velocity v = 0.42 and a
elevator deflection angle & = 0.03. This curve should be compared
with Fig. 2 which corresponds to v = 1.

Fig. 1 illustrates the qualitative characteristics of the linear per-
turbation model associated with different points on the equilibrium
surface for the case of reduced speed. Beginning at the lower left
and increasing the cg location parameter, note that stability is lost at
« = 0.0770 with a pair of complex conjugate poles moving into the
right-half plane. Further increase causes these poles to become
positive real, with one moving right and the other left. At the value
« = 0.0773 the leftmost of these poles reaches the origin simultane-
ously with a real zero. This pole continues moving left as the zero
continues to move right as we follow the equilibrium curve which
now corresponds to decreasing «. Eventually, the zero reverses its
direction and returns to the origin at x = 0.0728, continuing to
move left in the complex plane as the curve is followed with ¥ now
increasing. Again the zero reverses its direction and returns to the
origin at xk = 0.0773. A real left-half plane pole moves to the right
reaching the origin simultaneously with the zero at « = 0.0773.
Neutral static stability at two of the bifurcation points is coincidental
with the essential requirement of a zero at the origin.

With reference to Fig. 2, the bifurcation value of the parameter is
x = 0.054 which corresponds to # = 0. At all points on the equilib-
rium surface the linear perturbation model with control input IT and
regulated output v has three zeros—a complex conjugate pair and
one real. The conjugate pair changes very little from point to point.
Their locations are — 15.149 + j13.661 at bifurcation. As the equi-
librium curve is traversed counterclockwise the real zero moves
from the left-half plane to the right, passing through zero at the
bifurcation point. Following the same path, we note that the pertur-
bation system is stable at all point until the point x = 0.051,
§ = 0.4 is reached. At this point a pair of complex conjugate roots
(the phugoid pair) cross the imaginary axis into the right-half plane.

Since the angle of attack is quite small and positive, the lower
half of the curve corresponds to descent and essentially all of the
upper corresponds to climb. Recall that the thrust II varies along
the equilibrium curve. For example, with « = 0, Fig. 2 indicates
two equilibria—an unstable climb with positive pitch attitude and a
stable descent with a negative pitch attitude. The descent corre-
sponds to a lower thrust than the climb.

C. Flight Path Regulation

A somewhat more pertinent example with respect to control
system design is the following. Once again consider the longitudinal
dynamics defined by (4.5). It is desired to regulate the velocity and
flight path angle v*,y™ by adjusting the elevator deflection angle
and thrust 8, II. Thus, we define the output equations

[Zl] _|v- v* | _ v — ¥
% y-r* a-0-v*]
Given the desired flight path parameters v,y we wish to determine

values of «, 8, I which satisfy the equilibrium equations (2.2).
Once again I1 is directly determined and we need only be concerned

(4.14)
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Fig. 1. Pitch attitude § versus cg location x with v = 0.42, and elevator
deflection angle & = 0.03.
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Fig. 2. Pitch attitude 6 versus cg location kx with v = 1.0 and elevator
deflection angle & = 0.03.
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Fig. 3. Elevator deflection 5 as a function of cg location . Curve (a)
corresponds to level flight at reduced speed, v = 0.42, vy =0 and (b) to
cruise conditions v = 1, v = 0. The dot denotes the stability boundary with
the lower segment of the curves denoting open-loop stable equilibria.

with the solution properties of the pair of equations
cos (e — v*) — A, cos o — A,cos (¢ +8) —Asina=0
(4.152)

S, + kA, cosa — (1 - k)A, cos (a +8) =0. (4.15b)

Fig. 3 illustrates the equilibrium values of elevator deflection at
cruise conditions and also at level flight with reduced velocity. We
make the following comments. At cruise conditions stability is lost
as the cg location moves aft with a single real root moving into the
right-half plane. This occurs at approximately ¥ = 0.089 and corre-
sponds to a loss of static stability. However, this does not corre-
spond to a bifurcation point. Bifurcation occurs at « = 0.415. The
stability situation at low speed is more complicated. As « increases
from zero, a pair of complex conjugate (phugoid) roots move
towards the imaginary axis and cross into the right-half plane at
about x = 0.0710. These roots meet on the positive real axis at
approximately x = 0.0726. One root then moves left the other
right. The former reaches the origin at about k = 0.0727, indicat-
ing neutral static stability. Of course the system is actually unstable.
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Bifurcation occurs at x = 0.0838. In both cases, the system has a
pair of real zeros at all points of the equilibrium surface except the
bifurcation point. These zeros move only slightly as the cg parame-
ter changes. Just before and just after bifurcation these zeros have
the locations: —81.67,73.67 for cruise velocity and —36.61, 28.67
for reduced speed. The system has no (invariant) zeros at the
bifurcation point. In fact, the perturbation system is degenerate at
the bifurcation point which is readily observed from the state
equations. Note that in both cases the two columns of the B matrix
are linearly dependent.
Bifurcation Point, v = 1:

S 0274 —1.266 -10 0 v
d|éa|_|-2001 -2009 O 1.0 || 8
dr| o6 0 0 0 1.0 || o0
5q 0 2481 0 -8.01| 8q
0.9996  0.4749
4| —0.0291 —~0.0138 [an]
0 0 8
0 0
Bifurcation Point, v = 0.42:
v —1.866 -1.566 —-10 0 v
dlsa|_|-4286 -3070 0 10 ||oa
dr| 60 0 0 0 1.0 || o0
8q 0 59.43 0 -8.01| 8¢
0.9690  0.08121
+| 02471 -0.0207 [an]
0 0 8
0 0

Remark 4.3: Fig. 3 yields an interpretation of the power off stall
[15]. The objective is to maintain level flight (y = 0) while reduc-
ing speed to critical. Consider a family of constant speed, level
flight path, equilibrium curves, two of which are illustrated in Fig.
3. Fix the cg location, for example at « = 08. At nominal speed
» = 1, curve (b) indicates an open-loop stable equilibrium. As speed
is reduced, the equilibrium curve approaches curve (a). Eventually,
the equilibrium point loses stability with a pair of complex eigenval-
ues migrating into the right-half plane suggesting a Hopf bifurca-
tion. The pilot would experience the typical prestall buffeting.
Further reduction of speed results in the vanishing of the equilib-
rium point, i.e., stall. Curve (a) illustrates the poststall situation.
The perturbation system remains controllable (in the formal sense)
even at the bifurcation point. Nevertheless, the actual aircraft
becomes difficult to regulate as the bifurcation point (stall condition)
is approached which is consistent with our necessary conditions that
show that the aircraft cannot be regulated at such an equilibrium

point.

V. CONCLUSIONS

In this note, we have investigated the design of feedback regula-
tors for nonlinear parameter dependent dynamics. A concise formu-
lation of the local regulator problem has been stated and solved.
Under the assumptions of exponential stabilizability and detectabil-
ity for the plant, the problem fails to be solvable only at static
bifurcation points of the open-loop equilibrium equations. We have
shown that static bifurcation is associated either with the presence of
an invariant zero of the linearized (error) dynamics at the origin or
with a degenerate transfer matrix. Our results have been developed
in the spirit of the theory of linear disturbance accommodating
regulators restricted to the constant disturbance case. Byrnes and
Isidori [4] and also Jie and Rugh [9] consider nonlinear regulation
with more general time-dependent but bounded disturbances. How-
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ever, our focus on constant disturbances allows us to readily estab-
lish the connection with bifurcation theory. Local bifurcation behav-
ior does help organize the global picture just as it does in dynamical
systems theory, underscoring the significance of this association.

These results have been applied to the study of the regulation of
longitudinal aircraft dynamics. It has been shown how center of
gravity location affects the ability to regulate either velocity alone or
velocity and flight path angle. In the former case, it was shown that
the migration of a real zero through the origin is associated with a
static bifurcation and we saw quite clearly why the regulator prob-
lem is not solvable—the equilibrium point vanishes under perturba-
tion of the cg location. The latter case represents an example of a
bifurcation associated with the degeneracy of the transfer matrix. In
fact, in this case it is evident that at the bifurcation point the two
controls are redundant thereby making it impossible to regulate two
independent output variables. This is not an extraordinary situation.
A simple computation shows that this is a generic possibility in one
parameter families of models of the type employed in our analysis.
Using linear models of the longitudinal dynamics of a fighter
aircraft, Stengel [14] describes other control formulations in which
the equivalent of our strong regularity condition fails. It is clear that
the design engineer sets up the bifurcation behavior when the
regulated outputs are selected. It is essential to consider the para-
metric dependence of the zero dynamics at an early stage of the
control design process.
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An Alternative Derivation of the Modified Gain
Function of Song and Speyer

Peggy J. Galkowski and Mohammed A. Islam

Abstract—We show a much simpler derivation of the modified gain
function for the bearings only measurement problem as defined by Song
and Speyer [1]. The new form of the gain is more numerically stable
than the original form. We also show the relationship between the
modified gain and the standard gain of an extended Kalman filter.
Finally, we confirm that the modified gain extended Kalman filter does
indeed perform better than the standard extended Kalman filter.

INTRODUCTION

In [1], Song and Speyer define a modified gain extended Kalman
filter (MGEKF) to handle a special class of nonlinear estimation
problems. In particular, the nonlinearities must be ‘‘modifiable.”’
The MGEKF was then applied to a tracker with bearings only
measurements and shown to have improved performance over the
standard extended Kalman filter (EKF). Here, we rederive the
modified gains for the bearings only problem in a simpler manner.
The form which results shows clearly the relationship between the
modified gain and the standard gain. In the last section, we present
some simulation results comparing the MGEKF to the EKF. We
confirmed that the MGEKF does eliminate the erratic behavior
exhibited by the EKF. Also, we found that the MGEKEF filter state
covariance estimate was a good predictor of filter performance.

DERIVATION

Song and Speyer define a modified gain extended Kalman filter
(MGEKEF) by the following set of equations:

Xfﬂ =&,X;
X = Xipr + kia( 20 = B (X30))
= PR + Q;
Kivy = Piyhloi (R PR, + R)_l
= (1= ki18(20000 Xi01))

_ 6 T
“Po(I - kiv18(zihys Xiy)) + ki (RET,

where:
®; = Transition matrix at time i.
X, i = State estimate at time / before update.
b'es = State estimate at time / after update.
k; = Filter gain at time i.
Z; = Measurement at time .
h(X7) = Predicted measurement based on state at time i

before update.

P = State covariance matrix at time i before update.

P = State covariance matrix at time / after update.
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