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Abstract: Symbolic computing can facilitate the application of modem
nontinear system anatysis and design methods to engineering problems.
Reasonably complex models can be efficiently assembled and manipulated. In
this paper we illustrate the symbolic constnrction and manipulation of a model
of an undersea vehicle. While the system cmrsidered here is within the reafm of
hand assembly, doing so is tedious and error prone. On theotherhand,itis
trivialwiththesymboliccomputingtoolsdescribedhere.More complex,
multitmdy configurationsofunderseavehiclesand robotscan be dealtwith
usingthesetechniques.

1 Introduction
The dynamical behavior of undersea vehicles has been a subject of
considerable interest for many years. Modem methods of nonlinear
dynamics provide new analytical tools that could yield significant
new understanding of these complex dynamics and their control. In
a series of papers [1-3] Papoulias and his students have applied
local bifurcation analysis to study the stability of undersea
vehicles. In another line of inquiry, Leonard has applied Lie
algebraic methods to study the global dynamics and nonlinear
control of submerged rigid bodies [4-6]. Fossen and his colleagues
[7-9] have considered a variety of nonlinear control problems
associated with surface and undersea vehicles.

In order to realize the full benefits of these techniques for
full-scale operational vehicles, efficient tools are required to
assemble and manipulate detailed and accurate models. Symbolic
computing has matured to the point that it is suitable for such
applications. In recent studies we investigated dynamical
properties of undersea vehicles using existing computer algebra
tools for mukibody modeling and nonlinear control [10-13]. Our
results include:

●

●

●

9

●

Computer assembly of a symbolic model,
Computer generation of a simulation model,
Computer derivation of simple, computable
approximations to certain singular drag integrals,
A stability analysis of the open loop dynamics, and
A controllability analysis.

The strategy is to develop a ‘first principles’ mathematical
model using computer algebra methods from which a simulation
model is constructed. Thus, a consistent pair of (anrdyticaf and
computational) models is available for further analysis as
appropriate. In the present investigation, all of the symbolic
constructions are carried out using the symbolic computing
software package kfathematica supplemented with modeling and
control tools described in [10-13]. We call this set of tools ProPac.
The simulation model is a (computationally optimized) C source-
code implementation of the mathematical model that compiIes as a
Simulink S-function defining a vehicle module in the Simulink
block-diagramming environment. Models assembled in this way
are easily moditied to add complexity by including additional
components or adding neglected physical effects.

The symbolic model can be manipulated to derive various
reduced complexity models including linear models and/or it can
be used for diverse analysis and control design processes. The
computational model can be used to simulate event or disturbance
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validation, and to evaluate proposed control

In this investigation the specific vehicle of interest is the
Naval Postgraduate School Autonomous Underwater Vehicle H
(NPSAUVII) which has been scaled to be more representative of a
military submarine. The NPSAUVII is convenient because it has
been well documented and frequently used in dynamics and
control studies. Our main source of data has been the book [7]. All
of our notation is consistent with that book (specifically, Appendix
E.2.3). We emphasize that the significance of the approach
described here is its potential for application to more complex
multibody configurations of undersea vehicles and robots.

2 Model Assembly
The dynamical equations are derived in Poincar4’s form of
Lagrange’s equations:

Kinematics: 9 = V(q)p (1)

Dynamics: M(q)p+c(q, p)p+F(q, p,u)= o (2)

where q is a vector of configuration coordinates, p is a vector of
quasi–velocities and u is a vector of exogenous inputs. A
discussion of the methods we use can be found in [12]. General
information about Poincar6’s equations can be found in [14, 15].
Equations of this type are sometimes called Lagrange’s equations
in quasi-coordinates [16]. Such a formulation for ship dynamics is
used by Fossen [7]. In the following paragraphs we describe
development of the submarine model.

2.1 Kinematics
The kinematic model is very simple. It consists of a single 6 degree
of freedom joint between the inertial frame and a body fixed frame
with origin at the center of mass. The Mathernatica code that
defines the joint and computes all of the required kinematic
parameters is:
lm=ti. {618

=.~~;
@-{* J*t*rw Y,x)l@-{P, mr, U,v,m;

~.{(rl,rrl, cg,rlll1;

(.w,.zr,a.~[~); 1
Here, the output of the ProPac’ function Joints include JV, the
matrix V(q), required in equation (1), and JX, the submarine
configuration matrix X(q). Notice that the configuration
coordinatesql = [r#r f3 ty x y z]. Because of our joint
definition these are the body Euler angles (3-2-1 convention) and
the body center of mass coordinates in the inertial frame. The
quasi-velocities are p, = [p q r u v w]. Here p, q, r are the
angular velocity components along the body-fixed axes and u, v, w
are the translational velocity components in body coordinates.

‘ More information about ProPac artd a Muhtvnaica rrotebmk
computations described herein may be found at www.technosci.com.
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2.2 Dynamics
PmPac includes modeling tools for multibody mechanical systems
composed of both rigid and flexible bodies. The fluid loading on a
rigid submerged vehicle can alter the inertia matrix in a general
way, possibly coupling the translational and rotational parts of the
matrix. Even if this is not the case, the translational inertias in the
x-y-z directions will almost surely be different from each other.
That is not the case in a free rigid body. The dynamics tools in
ProPac can deal with these cases by using the flexible body data
structure for defining the body.

In the following, we build the model assuming that
generalized forces act on the system: K, &f,NN aremoments acting
about the body x, y, z axes, respectively, and X, Y, Z are forces
acting in the body x, y, z directions. These generalized forces arise
from propulsion and nonconservative fluid dynamics effects
including lift and drag forces acting on the body and its control
surfaces. They are described in more detail in subsequent

the m Cp, m-d Fp. These are,respectivelythe inertiamatrix,

M(q),the matrix, C(q, p), and the vector F(q,p,u).These are the
parameters that make up Equation (2). The output of these
calculations are given in Appendix 1.

2.3 External Forces

The model is completed by defining the generalized force
components, the moments: K, u NN, and the forces: X, Y, Z. The
gravitational and buoyancy effects have already been accounted
for. What remain are due to propulsion and fluid dissipation. The
key elements are propulsion, control surface lift and drag forces,
body skin friction and body form drag. For convenience we divide
Q into four parts

Q= QProPu/mn + f&nrro/suti..a + % ,ncrim + Qbddmf
These force components are established empirically. Except for the
last term we follow the formulation of Fossen [7] with minor
changes. However, we treat body drag somewhat differently
because we want an explicit analytical model, not just a simulation
model. Consequently, we give a brief discussion of the drag
computations but not the other components of the external force
model. A summary of the external forces as assembled is included
in the Appendix.

Various models for undersea vehicles including that of
NPSAUVH require the evahration of certain integrals to obtain
drag forces in the heave, sway, pitch and yaw equations. These
drag integrals can be integrated to provide explicit functions
characterizing each drag force in terms of the four variabies: heave

(3)

velocity, sway velocity, pitch rate and yaw rate. However, the
expressions are singular at the ongin which is the nominal
operating condition. Consequently, some form of approximation is
used for computational purposes.

Let v, w, p, r represent sway, heave, pitch and yaw
velocities, and Dh,o,4, D,,,a, , DPi,C*,and D,a,, represent the

respective drag forces. The drag integrals are defined by

D,.~.t =~K(x;v,w,q,r)(w-xq)&%.,

DJ,O= ~ K(-x;v,w,q, r)(v + xr)a!x

D,,,C,=~~’K(x;v,w,q,r)(w -xq)xdx
.,.,

D,@,,= ~’”””K(x; v,w,q, r)(v + xr)xdx
.,.,

where the kernel is

K(x. v, ~,,q, ~, = %h(v + ‘r)z + c~,b(w – xq)z (4)
~(v + xr)’ + (w - xq)’

These integrals can be evaluated to yield explicit, although
complex, formulas. See Appendix 2. However, the formulas are
singular at the origin (v= O,w = O,q = O,r = O). Of course, it would
be preferable to have computable and accurate formulas around the
origin, particularly because this is the usual operating region. The
singularity is not essential. In fact, the integrals evaluate to zero at
the origin, which is easily seen by substituting zero for the
velocities before integration. Moreover, the limiting values of the
integral formulas are zero which suggests that the integrals are
continuous. On the other hand, they are not continuously
differentiable which rules out a Taylor series representation.

We derive simple, nonsmooth formulas for the drag
integrals. They provide approximations that are computable and
accurate around the origin. It has already been noted that a Taylor
series does not exist at the origin. However, if one of the four
velocities is assumed not to be zero, a Taylor series does exist in
the other three around zero. Consequently, we follow a simple
strategy: to each integral we associate its natural primary velocity:
heave- w, sway- v, pitch- q,yaw- r. Then we develop a Taylor
approximation in the other three variablesand simplify.Usirrg
computer algebracalculationswe obtain(withx,ti,,= –L.,XCO$,= L,):

[

2c@h(L2r2+ 3V2)
D,,a,, = –; L

1

sgn(w)
+bC~,(L2(2q’–r’)-3v2 +6w2)

[

-2bcdZ(L2q2+ 3w’ )
D,,,q = ; L

1

Sgn(v)
+cdh(L2(q’ –2r2)–6v2 +3w2)

DPi,C,= –~ L’(–2c@rv+ bc~,(rv+ 2qw))sgn(q)

D,d,V= –~ L3(–2bc~1qw+ cdh(2rv + qw))sgn(r)
.

These formulas are derived using 2ti order approximations for
heave and sway and 3“ order for pitch and yaw (in the secondary
variables). They are simple, computable and accurate around the
ongin, and they capture the basic physics reflected in the
formulation leading to the drag integrals.

3 Stability of Equilibria
In addition to simulation studies, we have performed (local)
stability analysis of all of these models. This has been done at the
symbolic level, where we have derived parameter dependent linear
models at specified equilibria. This has allowed us to corroborate
the simulation results and to identify specific parameters that affect



stability. It also underscores the value of being able to
efficiently withthesymbolic equations.

Suppose, that (MO,PO,qO) is an equilibrium point
which we compute the linearization:

&j= Voap

MO% + C06p+ KOSq= 0

work

about

(5)

We performed these calculations for the equilibrium case of
straight and level (no roll) horizontal motion at constant speed UO
corresponding to engine speed nO and with all control surface

deflections set to zero. This results in M;= MO>0, K: = K, 20
and both matricesareindependentof the speed UO.In addition, we

find CO= CWIUO[, where Cm is independent of UO but is not

symmetric. These calculations are included in the accompanying
notebook. We can make use of a generalization of Lagrange’s
classic theorem [17] that states that under the asserted conditions
and if qOcorresponds to an isolated minimum of the potential

energy function’, then the equilibrium point is stable if and only if
symmetric[CO] 20. That is, the symmetric part of CO (the

dissipation part as opposed to the gyroscopic part) must be
nonnegative. However, we find that symmetric[Cw] has a single

negative eigenvalue so that the test fails for any uO* O.
14V=m. (~ m-w.roll. (D->O,u->o.r->o,W->o,v->0))/. (u.>* [u]];

m= [m. ~[@a112;

==~(~

~_ J.(.Z-> 0r6S-, o. b-.0, &->O. h->0). {~c&%tb%T1 /.

(D-> O, Q->o, r-> O, V->o, W->”l]/. m[l]] )/.

Sbm6->tiw];

(m. m) ,,—

04K4’(T&—

( 3.$451XlC% 0 L7222 x lo~14 0 -1.lwxltilll o

0 23%+?7. 1r9Iq 0 0 0 4.40551x I@ [q

Z,zmx ,!37,4 o 51mlx1@l14 o 165415. 10% 0

0 u 0 3?.19)9,q 0 0

-11@X6xllPl14 o 16m5 x lo~llq o 41aw.lq 0

0 44C651X1i3,W 0 0 0 12$419x1@lq 11.

web ~1 (-. ml I At-[.] 1 1
o@+ 2.37698.10’, 5. 23212x Id, 3.79181x 108, 1.24602.106, -124331., 32190.9 11

4 Simulations
Simulation experiments were conducted with three variations of
the scaled NPSAUVII model: a full 6 degree of freedom model, a
3 degree of freedom modeUmotion restricted to the vertical plane,
a 3 degree of freedom model/motion restricted to the horizontal
plane. Building a simulation model as an S-function MEX file for
use in SIMULINK is very simple. Here is the Matherna?ica code

ikfwk=Inpas . @eltar, deitss, daftsb dattsbp, tfattabs, n];

-=l~~rjwv)ww,mts) P4X7Y, ZI;
M-lerwrm = “~.C”;

Psssedpsrsma = l“XO”);
PssaedPsrsrrwOirnenaiona = [ {Lengthfpl ] + k~h[ql], 1) I;

CreateModSIMEXIW qq trtmaa, OutpWs, Pssss*rams,

PsaaedParsrnsDimansions, JV, Q,

FP, MM, MEWensrnsI;

In the following paragraphs we will illustrate just of few of many
simulations conducted. All simulations were run open loop with
various settings for engine speed, rudder and stem planes.

Computations appeartobe very efficientand fast.

The simulations clearly show a divergence instability in
yaw. Analysis of the model confirms that this is indeed the case
and the instability is not a computational anomaly.

We will describe some results using the six degree of
freedom model. In this case, all surfaces are set to zero except the
stem plane which has a deflection of 1 deg. Propeller speed is 1000

‘ There is no essenriat contmdction in the requirement of an isolated minonum of the
potentiat energy and an indefinite K,, even if thepotentialeneygyISquadratic,because
q can be of smatler dimension thmp in tfus setup.

rpm (note that we have not scaled the propulsion equations so that
this produces reasonable speeds given the increased forces of the
scaled model).

6DoF: rudder. o, stern.1 rJeg, n=1000
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Figure 1 This xyz plot of the position of the vehicle clearly
shows the yaw divergence instability. It is helpfulto
remember that the vehicle is about 100m in length,

6 00F: rudder=O, stern=l deg. n.1000
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Figure 2 The forward velocity increases to its steady state
value and the dramaticallydrops as the vehicle spin develops.

5 Conclusions
Akhough we are primarily interested in the complete, nonlinear six
degree of freedom (dof), system we found it convenient to
investigate the behavior of two three dof models as well. We have
buih the following models: a 6 degree of freedom model, a 3
degree of freedom model in the verticalplane, a 3 degree of

freedom model in the horizontal plane. It is common to use
linearized versions of the vertical plane model for pitch and depth
control system design and the horizontal plane model for heading
control system design.

We performed limited computational experiments with all
three models. These consisted of various initial conditions with
nonzero constant propeller speed, and several constant values for
rudder, stem plane and bow planes. Initial experiments with the 6
dof model indicated an instability in yaw dynamics. This prompted

o



us to reexamine the data and to experiment with the three degree of
freedom models. While we found some inconsistencies in the data,
appropriate changes did not alter the basic qualitative behavior.
The 3 dof models behaved similarly to the 6 dof model. Resorting
to the original unscaled data also did not alter the qualitative
behavior. We also found that we could generate a pitch instability
at slow speed by placing the center of buoyancy at the center of
mass.

In addition to simulation studies, we performed (local)
stability analysis of all of these models. This bas been done at the
symbolic level, where we have derived parameter dependent linear
models at specified equilibria. This has allowed us to corroborate
the simulation results and to identify specific parameters that affect
stability. It also underscores the value of being able to work
efficiently with the symbolic equations. The fact that instabilities
of this type may exist is not surprising. Underwater vehicle
stability has been studied in six degrees of freedom in recent years,
specifically in [3] and also [6, 18], and clearly show how such
instabilities can arise.
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Kinematics, V(q)
/ 1 sin(#) tsm(@ m6(#) tar(d) o

0 COS(#) –sin(#) o
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0 0 0 ms(fl) cm(y)
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,0 0 0 -sin((?)

o

0
0
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Inertia Matrix, M(q)
lx-;KpdOtL5P -b –: NpdOtPL5-hZ o –~ KubtpL4-mzg mw

-b lY– ;L5MqdutP -Iy2 m zg o –: MWdUtPL4-mXg

–+ NpdOtPL5 –k -Iyz k–:L5Nmbtp –m yg mxg– ~ L4Nubtp o

0 m zg -myg m–~L3Xu&tp o 0

–~ KwlutpL4-mzg o mxg-~L4Nuhttp o m–~L3Yubtp o

( m% -; i#uiutpL4-mxg o 0 0

Dynamics, C(q,p)p
f -mqw - mrzg

~NlwlutqpL4-~ WXIUMpL3+~ w2kk#pL3+mqxg

–~Kubtpp L4-~ NubtrpL4+~ VXU&ItpL3-~ vYwkkp L3+mrxg

o

mr–~L3rXutiP

A L3 Xudutp –mq\ 29

Dynamics, F(q,p,u)

1 -~ -gom(S)((myg - Vybp)cus(#) +(Vzbp –iuzg)sin(#))

~ (g(mx.g- Vxbp)cos(U-#) +g(mxg-Vxbp)ms(@ +#)-2(M-gmzgsin(S) +gVzbpsin(0)))

~ (–2NN– 2g(m yg– V ybp)sin(fl)+g(mxg– Vxbp)sin(8-#) –gmxgsin(() +#) +gVxbpsin(8+ #))

g(m– Vp)sin(S)-X

–1’ –g(m– Vp)cus(0)sin(#)

( -Z –g(m – VP)CUS(Oms(~)

External Forces, QP~P,,,,,Ofl+ ~On,,O,,,,rdCc,= Q, +Q2e, e = (sgn(n)@/sgn(u)~)-l

Q,:

+ IQmL4PP 1.1

~~qplulL4+~ NhWIWPlUlL3+~ Mdmu6splulL3

o

~ quX@snkp L3 + ~ uwXwdm&pL2+ $ uX&dm6s2plul L2

o

~ qmpldL3 + ~ Wih3PkIlL2+~ uZkn6splu[L2

Qw ,ncmm

‘-+ KPPPIUIL4-: K1’rPlUlL4 -; KVJ’PlUlL3’

;L4(–Muq- Mwdut)qpkl- ~L3Mvwphl

–~ NpppplL4–~ NrrplulL4-~ NVVp IUIL3

o

-~p YppplL3- ~rYrp@lL3- ~ PYVp IUIL2

‘+ @wW3 -: W~PblL2 1

(
2 3 ~c&(rv+2qw) -2 Whr~)sW(q)-EL(

–~ L3(Cdyh(2rv+qw) -2b C&qw)sgn(r)

o

: L(Cdyh((/-2#)L2 -6#+3#) –2b C&(L2/+3d))sgn(v)

,–~L(2Cdyh (L2/+3#)+b C&((2#-#)L2 -3#+6w2))s~(w:
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Appendix2: Drag IntegralComputations
Below is theexplicit integralfor sway dragof Eq. (3) and (4):

Wf. {(v+x*r)~+ (w-x*02;
- ~= (~h(v+x*q2 +~b(w-x*q)2)

t15A2
;

~= ~
ntqpate[~. *(v+x*r)*3J&, (24 XK9% 2tdl}ll;

~=
. .~~1.(xt#si-,-Lxmm-,L)] // ‘“””

[[
+ * 3q(bC&( &4/)+ Cdyh(3?-2~))

W

L(#+P)+rw.. gw

‘m ~11 1

+ (I/r+ .)2 +( W- L.q)2 (qv + 7W)3 -

[

* 3q(bCi12(/ -4/)+ Cdyh(3# - 24))

4[

–L(q2+ r2)+rv -gw
2

m 1) 1

+ (v- Lr)2+ (Lq+w? (qv+rw)3 +

&(&+,,2+,w-LI02 (b&(-L,2Lr+3v)~ +,Lr+3v)wf+

r(–4L2# - Lvr+ 13v2+ #)q4 +/(7 Lr+27v)w~ -

2#(L2?-Lvr+ #-5@~+6r4(Lr- v)wq-6##)-

Cdyhr(18v2q4 +27rvw$+

5?~$+ll?~& 3?vwq+2L2?(~+ <)2+

2r4v2-4r4# +Lr(~+ #)(9v~+ 5rwq+4/v))))-

--&@-L r)2+(Lq+w)2 (bCiiz(L(3v-2Lmf ’+(3v-Lr)w/+

r(–4L2# +Lvr+13v2+ ~)q4+#(27v-7Lr)w&

2?(L2#+L. r+#-5@q--6r4 (Lr+v)wq-6>#)-

Cdyhr(18v2q4+ 27rvw(f+5?v2~+

ll?d#–3?vwg +2 L2/(c$+?)2+ 2r4v2–

4r4~-Lr(~+ #)(9v/+5rwq+ 4#v)))) I

v

Notice the singularity at the ongin. Here is the computation for the
approximate formula:

rlqq//rrdi&aFm

;L(Ciiyh(( &2r2)L2- 6v2+3w2) -2bC&(L2(/ +3w1))s~r)
II
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