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This paper provides an overview of local bifurcation theory
and its application to power system voltage stability analysis.
The qualitative behavior of power system dynamics as modeled
by differential-algebraic equations is discussed, followed by a
summary of the concepts and tools for the analysis of local
bifurcation from equilibria. Computational methods for locating
and classifying bifurcation points as they have been applied in
power system analysis are reviewed. Several examples are given.

I. INTRODUCTION

During the past decade power system engineers have had
to seriously confront issues imposed by increased reliance
on power transfer over long distances. Difficulty in control-
ling bus voltages, noncovergence of load flow calculations
and small transient stability domains are just some of the
problems routinely encountered. The essential fact is that

. transmission systems now operate well outside of a linear
domain so that planning and operations must address power
system nonlinear behavior. There is a need for analytical
concepts and tools that work when nonlinearity is critical.

In this paper we address the simplest class of problems
in nonlinear dynamics—behaviors that can be completely
characterized locally. That is, in a neighborhood (not neces-
sarily small) of some operating point. Local bifurcations are
readily evident in power systems as important elements of
voltage instability. The two most elementary of these—the
saddle-node and the Hopf bifurcations—have received, by
far, most of the attention. We discuss these and other
local bifurcations in this paper. It is quite likely that time
will demonstrate the importance of global bifurcations in
formulating a complete understanding of power system
stability issues and of routes to voltage collapse [1], [2].

The main goal of this paper is to provide an overview
of local bifurcation theory as it applies to power systems—
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emphasizing the unique aspects of power systems and sum-
marizing the substantial literature that has developed during
the past decade. Because power systems are very large scale
systems, computational questions are always a foremost .
concern and we will address some of them. The influence
that bifurcation theory has already had in clarifying voltage
stability issues and motivating the development of new
computational tools is actually quite remarkable. There
is a definite opportunity and a need to consolidate what
has been learned about power system nonlinear behavior
in a form that will encourage and facilitate a broader
assimilation of these results within the power engineering
community.

Our formulation is fairly general. We view a power
system as a set of parameter dependent differential and
algebraic equations (DAE’s) and discuss the (local) static
and dynamic behavior of such systems as a function of
the parameters. The paper is organized in two main parts.
Section II summarizes the qualitative theory, and Section III
deals with computational methods and examples. In Section
II we discuss the qualitative behavior associated with DAE
models and give an example of a simple power system that
exhibits many of their distinctive features. Also, in Section
I, we summarize the main elements of local bifurcation
theory in the framework of DAE models. ’

In Section III, we consider the two central computational
issues: the location and classification of local bifurcation
points. Most of the emphasis is placed on variants of the
Newton—Raphson—Seydel method and continuation meth-
ods for the former and the Lyapunov—Schmidt method for
the latter. We explain how these techniques can be used
to analyze both static and dynamic (Hopf) bifurcations.
Examples given in Section III serve several purposes.
Of course, they illustrate application of the numerical
tools but more importantly, they demonstrate the power
of the concepts behind the computations. The complexity
of behavior exhibited by power systems requires some
organizational framework within which to comprehend it.
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The examples also, we hope, give physical meaning to some
of the more subtle theoretical concepts.

Since the recent literature pertaining to the subject of this
paper is quite extensive, our reference list necessarily omits
many interesting papers. Nevertheless, we hope that we
have provided sufficient connections to the literature to give
a motivated reader a good start. We are particularly indebted
to a few pioneers who asked crucial questions in the 1970’s
and earlier—before the significance of the issues they raised
was widely appreciated—and whose papers clearly shaped
current thinking, notably: Tavora and Smith [3], [4], Korsac
[5], and Venikov' et al. [6].

II. QUALITATIVE PROPERTIES OF
POWER SYSTEM DYNAMICS

A. Power Systems as Differential-Algebraic
Dynamical Systems '

Mathematical models of power systems generally consist
of a set of parameter dependent differential and algebraic
equations (DAE’s) in the form

&= f(xayaﬂ')
0=g(z,y,n) 09)

where z € R", and y € R™ denote the system dependent
variables, ¢ € RP denotes a vector of system parameters,
and f: R*t™tP — R™ g: Rrt™TP . R™, are smooth
(C*, k > 1) functions. For example, the classical model
composed of n, generators, npy PV load buses and npg
PQ load buses is commonly expressed

b=w
M+ Do + £,(6,6,V,1) = 0 )
fl(5167v'7p‘) =0

with w,6 € R%, § € R*PetmPv_and V € R™P. Since
det(M) # 0, (2) is clearly of the type (1). However,
(1) admits various enhancements to the classical model
including excitation systems, tap changing transformers,
nonlinear and dynamic loads, and more elaborate generator
models [7]-[12]. While (2) is an important special case
of (1) to which we shall make frequent reference, our
development is based on (1).
Equilibria of (1) satisfy the algebraic equations

0= f(z,y,n)

3

0=g(z,y, 1) @
We will refer to the equilibrium equations (3) as the
‘load flow’ equations. The importance of consistent dy-
namic and static (equilibrium) models cannot be overstated.
Sometimes in practice, power system dynamic analysis
and load flow analysis utilize models developed by dif-
ferent modelers and based on different assumptions. As
an unfortunate consequence there may arise an artificial
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distinction between static and dynamic phenomenon. In
fact, while it is essential to study the solution structure
of (3), any interesting ‘static’ behavior exhibited by it, is
directly linked to corresponding ‘dynamic’ behavior of (1).

We wish to emphasize two essential features of the
model (1): 1) the explicit parameter dependence, and 2)
the differential-algebraic structure.! Consideration of the
change in system behavior that occurs as a consequence
of parameter variation is the main theme of this paper:
Indeed, this perspective is the key to formulating concepts
of stability that allow systematic examination of voltage
collapse phenomenon. In addition to the obvious computa-
tional issues, a differential-algebraic structure can produce
behaviors not present in purely differential equations [14],
[18]. For instance, if the classical system (2) contains
only constant admittance loads (no constant power loads)
then it is equivalent to a purely differential system. In
this case parametrically induced instabilities are present,
but these are ‘steady-state’ (or angle) instabilities. “Voltage
collapse’—in the customary sense—does not occur.”? We
will elaborate on these points below.

Systems described by DAE’s are frequently encountered
in engineering and are studied as dynamical systems that
evolve on manifolds. An insightful introduction to this point
of view is the discussion of nonlinear RLC circuits in [19,
Chap. 10]. Numerical methods for solving DAE’s and other
examples and references may be found in [20]. We will
outline the conceptual framework within which (1) is to be
considered and then provide a power system example that
illustrates the main issues.

Note that the algebraic part of (1), 0 = g(z, y, i), requires
that any motion be constrained to the set

M ={(z,y) € R*™™ | 0= g(z,y,pn), n = const}. (4)

Typically, we expect M to be composed of one or more
disconnected (differentiable) manifolds® [22] called com-
ponents. In general, when we refer to M we will mean
a particular one of these components called the principal
component. M is a regular manifold of dimension n if

rank[——y] =m on M. (5)

The structure of M depends, of course, on the parameter
w. Even for very simple power system models (5) may not
be satisfied for some values of .

1 Some investigators have cautioned that there are often underlying dy-
namics associated with alebraic constraints so that peculiarities associated
with DAE models should be interpreted with accordant care [13]-[16].
Often algebraic equations arise by neglecting underlying dynamics which
are fast and stable. This may be done formally via singular perturbations
[17] or at the level of formulation of the governing equations. Questions
of validity of any such approximations are beyond the scope of this paper.

2This does not imply that DAE models are necessary to exhibit voltage
instability. Differential equation models with appropriate dynamic loads
would do so.

3 An m-dimensional manifold M C R™ is a set for which each z € M
has a neighborhood U for which there is a smooth, invertible mapping
¢: R™ — U(m < n) [21]. A manifold is usually defined by an
‘embedding’ relation, g(z) = 0, g: R® — R"™™, or ‘parametrically’
by a map from a parameter space m: R™ — R™.
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Fig. 1. This simple network nicely illustrates some essential
properties of power systems described by DAE’s.

The manifold M is the state space for the dynamical
system defined by (1) which induces a vector field on M.
The vector field may not be well defined at all points of
M. At any point (z,y) € M we have £ = f(z,y,p). If
det[dg/0y] # 0, then ¢ is uniquely defined by

. [89] "oy,
i=[5] ©

If this is the case, it is easy to show that the velocity vector
defined by £ and ¥ is tangent to M at (z,y). If dg/0y
is singular at a point (z,y) € M then the vector field
is not well defined at that point. Typically, such singular
points lie on codimension* 1 submanifolds of M. In power
systems such points were encountered by DeMarco and
Bergen [13] in connection with transient stability studies
(‘impasse’ points),” by Kwatny et al. [14] in connection
with bifurcation analysis (‘noncausal’ points) and others
(‘impasse surfaces’ in [24]; ‘singularity’ in [25]).

Definition 1: Suppose M is a regular manifold for all
w near p*, and that det[0g/0y] # 0 at a point g = p*,
(z,y) = (z*,y*) € M. Then (z*,y*, *) is said to be
causal. Otherwise it is noncausal.

If (z*,y*, *) is causal, then the Implicit Function The-
orem ensures that there exists a function ¢(z, u) defined
on a neighborhood of (z*, u*), with y* = ¥(z*, u*) and
that satisfies g(z, ¥ (z, 1), u) = 0. It follows that near the
causal point (z*,y*, u*), the trajectories of the DAE (1)
are locally defined by the ordinary differential equation

&= ¢lx, 1) = fla, Pz, u), ©). )

Example 1: (A Simple Three-Bus Network): The network
shown in Fig. 1 was used in [14] to illustrate some of the
properties of power systems described by DAE’s. Although
extremely simple, configurations like this involving one or
two generators feeding a remote load have often been used
in discussions of voltage stability and control [26]-{30].

Suppose that Py, Pp, Ps, denote the bus real power
injections. Equilibrium solutions exist only if P; + P +
P3 = 0. We assume that this is the case. For convenience,
fix some of the parameters: Vy = 1, X = 1, M; = 1,

“The codimension of a k-dimensional submanifold of an n-dimensional
manifold is n» — k [21].

5Impasse points can arise from a mechanism quite different from the
situation here [23], so we will not use this terminology.
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My =1, where M7, M> are the generator inertia constants,
and let 8 = 69 — 81, ¢ = 63 — 61, and AP = P, — P;. The
equations of motion are then

f=—Vsin(@ —¢) — Vsing + AP
0=V(sing +sin(¢p — 0)) — Ps
0=—V(cos¢ + cos(¢p — 8)) + (2 — B)V? - Qs.

Any motion is constrained by the two algebraic equations.
Within the three dimensional (3-D) space of independent
varables (6, ¢, V') these equations define a one-dimensional
(1-D) manifold called a configuration manifold. Each point
on this configuration manifold has a 1-D tangent space.
When these are collected together, they form a two. di-
mensional (2-D) state space (called the rangent bundle).
Clearly, the configuration manifold, and hence the state
space, can change its shape as the system parameters
vary.

In [14] it is shown that for almost all values of the
parameters the configuration space is a closed curve so
that the state space is topologically equivalent to a cylinder.
Moreover, the noncausal points form two 1-D submanifolds
that divide the cylinder into two sheets. The parameter
dependence of the system equilibria is investigated for
various values of AP while the remaining parameters are
fixed: P3 = -1, Q3 = 0, B = 1. As AP is decreased
from O to —1, the system has two stable equilibria which
move as indicated in Fig. 2. As AP decreases below —1,
the left equilibrium moves through the noncausal set into
the adjacent sheet and becomes unstable. Further decreases
in AP cause the two equilibria to meet and annihilate each
other. As shown in [14], if the parameter B is reduced with
all others held fixed, then the “radius” of the cylindrical
state space decreases so that the state space shrinks to a
line as B — 0.

Another, and quite different, example of a power system
with DAE description is given in [18], [25]. Here again,
a 2-D state space is divided by a 1-D submanifold of
noncausal points. The analysis in [18], [25] illustrates a
one-parameter variation that causes an equilibrium point
to cross the noncausal set and shows that the crossing is
accompanied by an exchange of stability of one eigenvalue
that diverges through infinity. This is called a singularity-
induced bifurcation.

B. Equilibria
1) Equilibria: As we have noted, an equilibrium point
of (1) is a point (z*,y*, p*) that satifies (3). We need to

examine this idea in more detail. First, let G denote the set
of points that satisfy the relation g(z,y, ) =0

G={(z,y,p) € R |0 =g(z,y,1)}. (8

This set forms a regular manifold of dimension n + p in.
R™™+P provided

=mon G. (8b)

PROCEEDINGS OF THE IEEE, VOL. 83, NO.:11, NOVEMBER 1995



noncausal sets

| stable equilibria

(@) (b)

© ()]

Fig. 2. (a) The cylindrical state space is divided into two sheets
by the noncausal sets or “impasse” surfaces. (b) The cylindrical
space is flattened out in order to illustrate the state trajectories on
the two sheets. (c) As AP decreases below —1, the left equilibrium
point migrates into the right sheet and changes from stable to
unstable. (d) Further decreases in AP causes a bifurcation that
leaves no equilibria. The post-bifurcation trajectories are illustrated
here.

Similarly, the set
F={(z,y,n) € R0 = f(z,y,1)} ()

forms a regular manifold of dimension m + p in R*+™+P

provided
afofaf| _
ank {i%a—ya] =n on F. (9b)

Equilibria are the points in the intersection of these mani-
folds. We will assume a transversal intersection of F and
G. Otherwise an arbitrarily small perturbation in either f or
g will cause it to be transversal. A transversal intersection
implies that either F and G do not intersect at all or the
intersection forms a regular p-dimensional submanifold of
R ™+? (and, of course, F and ).

2) Basic Assumptions: In the following, we will assume
(8b), (9b), and a transversal intersection of 7 and G.

Notice that our basic assumptions do not imply either

dg dg| _
rank [£ ay] =mong (10a)
or
ofof| _
rank {%a—y] =n on F. (IOb)

SFor a discussion and definitions of transversal intersections, see [31].
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We have already noted that (10a) ensures that the state
space is a regular n-dimensional manifold. There may be
meaningful instances in power systems where (10a) can fail.
Clearly, failure of (10a) automatically implies noncausality,
but its implications are deeper than that, indicating a
degeneracy of the underlying state space geometry.

Failure of either (10a or b) at equilibria are special cases
of static bifurcations to be considered below. We will not
attach special significance to these bifurcations beyond what
has already been said [32], [33].

3) Stability of Equilibria: The concept of stability in the
sense of Lyapunov applies generally to flows on manifolds
and, in particular, it applies to equilibria of DAE’s. Thus an
equilibrium point of (1) is stable if it is stable in the sense of
Lyapunov. This concept of stability can be useful even for
noncausal equilibria. We will not develop these ideas here.
If the equilibrium point is causal, then (7) defines the flow
near it, so that classical notions of stability of equilibria
of vector fields apply. We will summarize some important
concepts for this case.

4) Hartman—Grobman: Consider the ordinary differential
equation

& = ¢(z),z € R (11)

with equilibrium point at the origin, ¢(0) = 0. Let A :=
D, $(0). We wish to know how much information about the
behavior of (11) near the origin can be determined from its
linearization. The answer is given by the following theorem
[21], [34].

Theorem 1 (Hartman—Grobman Theorem): If A has no
eigenvalues on the imaginary axis, then there is a
continuous map with continuous inverse h defined on
some neighborhood U of the origin in R™ locally taking
trajectories of the flow defined by (11) to those of the linear
flow e4fz. The mapping preserves the sense of time and
can be chosen to preserve the parameterization of time.

Equilibria for which A has no eigenvalues on the imag-
inary axis are called hyperbolic. The theorem guarantees
that the stability of hyperbolic equilibria can be determined
from the linearization of the vector field. But it does much
more than that by establishing the local equivalence of the
nonlinear and linear flows.

Let us describe what this equivalence means. Recall that
for a linear system with a hyperbolic equilibrium point
we can define the eigenspaces E°, E“ corresponding to
the eigenvalues with negative real parts and positive real
parts respectively, and the behavior of the system can
be completely characterized in terms of the motion on
these subspaces. For a nonlinear system with a hyperbolic
equilibrium point there are correspondingly (local) stable
and unstable manifolds W*, W*" of the same dimension as,
and tangent to E°, E* at the equilibrium point. Equally
important is the fact that ‘small’ perturbations of the
function ¢ in (11) will not alter the dimensions of £, E*
or W, W* [35].

5) The Center Manifold: Local behavior of (11) near
a nonhyperbolic equilibrium point is not completely
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characterized by its linearization. The following important
theorem explains the general case.

Theorem 2 (Center Manifold Theorem): Consider (11)
with ¢ a C* function,” an equilibrium point at the origin,
¢(0) = 0 and with A := D,¢(0). Let the spectrum of A
be divided into three sets o, 0., 0, With

<0 ifAeo,
Red=<{=0 ifAeo,.
>0 if A€oy,

Let the (generalized) eigenspaces of os,0.,0, be
E®,E°, E*, respectively. Then there exist C* stable and
unstable manifolds W*¢ and W* tangent to £E° and E",
respectively, at z = 0 and a C*~1 center manifold W¢
tangent to £° at x = 0. The manifolds W*, W€, and W*
are all invariant® with respect to the flow of (11). The
stable and unstable manifolds are unique, but the center
manifold need not be.

Notice that the theorem decomposes the local flow into
three parts: a flow on the stable manifold (trajectories
converge to the origin), a flow on the unstable manifold
(trajectories diverge from the origin) and flow on the
center manifold (the behavior of the flow has yet to be
determined). An equilibrium point is stable if and only if
W™ is absent and the flow on W* has a stable equilibrium
at the origin. Even though the center manifold may not
be unique, the flows on all possible center manifolds are
(topologically) equivalent in a sense to be defined below.

Example 2: A simple example often used to exhibit the
nonuniqueness of the center manifold is

.’i?l = 33%
j?g = —I9

which has solutions: z1(t) = z1(0)/(1 — ¢z1(0)), and
22(t) = z2(0)e~*. Combining these, we get

za(21) = [xg(())e‘l/ml(o)]el/zl

which allows us to plot the state trajectories as shown in
Fig. 3. Note that (0, 0) is an equilibrium point with

0 0 s 0 c 1
A_{O _1} E _Span{l}, E _span{o}.

Let us consider how to compute the center manifold and
the flow on it. It is always possible to separate out the linear
part of right hand side of (11) and apply a linear coordinate
transformation so that (11) is of the form

#1 = Bz1 + f(z1,72)
B9 = Czy + g(x1,22)

7 has continuous derivatives up to order k.

8Recall that a manifold is invariant with respect to the flow of a
differential equation if any trajectory beginning in the manifold remains
in it.
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Fig. 3. Notice that the center manifold can be defined using any
trajectory beginning with 3 < 0 and joining with it the positive
z1-axis. Also, the center manifold can be chosen to be the entire
zy-axis. This is the only choice which yields an analytic center
manifold.

where
e 11 € RM 25 € R,
* f,g and their gradients vanish at the origin,
* the eigenvalues of B have zero real parts, those of C'
nonzero real parts.

In these coordinates

Eczspan{ I, }
Onyxny

The center manifold is tangent to F° so that it has a local
graph, zo = h{z1), ie,

W ={zx = (z1,22) € R" | z2 = h(z1)}
h(0) = 0,8h(0)/8x1 = 0.
To compute h, observe that

_ Bh(xl) .

T2 = z1
8301

so that using the equations we obtain a partial differential
equation

8h($1)

Z

Ch(z1) + g(1, h(z1)) = [Bz1 + f(;cl, h(z1))]

which is to be solved for h(z1) along with the boundary
conditions: h(0) = 0, 9h(0)/0z; = 0. Since only a
solution near the equilibrium point is needed, one is gener-
ally obtained using a power series expansion in z;. Some
simple examples are given in [36]. Once h is obtained,
the projection of the center manifold flow onto the
coordinates is

&1 = Bz + flz1, h(z1)).

C. Bifurcation of Flows Near Equilibria

Perhaps the most important factor contributing to im-
proved understanding of nonlinear phenomenon is the sim-
ple notion that it is far more profitable to study families of
nonlinear systems rather than individual nonlinear systems.
It is the differences in behavior that exist between members
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of a family that is most revealing. For instance, the detailed
investigation of a system containing a limit cycle is not
nearly so informative as the study of a family that contains
the system and that exhibits the birth and extinction of the
limit cycle.

1) Equivalence of Flows and Structural Stability: A model
of a power system, such as (1), is at best an approximation
and there is always a concern that conclusions drawn from
it may not be consistent with reality. One basic question
that should be asked is how sensitive are the predictions of
the model to small perturbations of it? We are particularly
interested in qualitative properties of the system—namely
stability—hence it is essential to know whether qualitative
features of the flow change under perturbations of the
model. Thus the classical definition of equivalence of flows
is appropriate [19], [21], [34].

Definition 2: Two flows ¢, and % are said to topo-
logically equivalent if there exists a homeomorphism (a
continuous map with continuous inverse) taking trajecto-
ries of ¢, into trajectories of ¢, preserving their time
orientation.

Roughly speaking, this implies that one flow can be
transformed to the other by a continuous deformation of
the state space. ,

Let U be a bounded open set in R™*™ and suppose F(U)
denotes the set of all smooth (C') maps F : U — R"*™
defined on U. The magnitude of any map F € F(U) is
taken to be its Cl-norm, i.e.,

) n4+m n+m SF
|Fll = sup |Fil + - (12)
gev ; ”2:1 0€j

An e-neigborhood of F in F(U) is
Ne(F)={GeFU)|||G-Fll<e}. (13

The magnitude of a DAE or a neigborhood of a DAE can
be characterized by identifying F with {f, g}.

Definition 3: Let {f,g} € F(U) have an equilibrium
point at (z*,y*) € M, then {f,g} is locally structurally
stable at (z*,y*) if there is a neighborhood U of (z*, y*)
in M and an & > 0 such that for every {f, 3} € No({f,9})
there is a corresponding neighborhood I of (&*,3*) € M
such that the flows @, | & and ¢; | U are topologically
equivalent (locally topologically equivalent.)

The main results of interest here regarding structural
stability are summarized in the following proposition.

Proposition 1: Suppose the DAE {f, g} has an equi-
librium point at (z*,y*) € M, then {f,g} is locally
structurally stable at (z*,y*) if and only if the equilibrium
point is causal and hyperbolic.

Remarks on Proof: Sufficiency is very straightforward
because the fact that the system is causal at (z*, y*) implies
that there is a local representation of the dynamics as an
ordinary differential equation and hence standard results
apply based on the Hartman-Grobman theorem [21], [34].
The only additional requirement to establish necessity is to
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verify that a noncausal equilibrium point is not structurally
stable. But this is clearly true in view of Theorem 2 in [18].

2) Bifurcation Points: A p-parameter family of DAE’s is
aC* k> 1, map ¢: P C RP — F(U). Here P represents
a parameter space and we tacitly assume that ¢(P) is a p-
dimensional submanifold of F(U). We denote a family of
DAE’s by {f(p), g(1)}, where o € P is the parameter. Our
goal is to characterize the changes in qualitative behavior
that occur in a family {f(u),g(n)} when its parameters
are varied. But as we have seen above, a small change
from a given parameter value o can induce a behavioral
change only if the system {f(uo),g(p0)} is structurally -
unstable. Hence we have the following definition of a
(local) bifurcation point [21], [37].

Definition 4: A value yi for which the flow {f(u), g(1)}
is not locally structurally stable near an equilibrium point
(z§,y8) of {f(10),9(po)} is a bifurcation value of u. The
pair, po, {f(10),9(1o)}, is called a bifurcation point.

This definition of a bifurcation point in a given family
{f(),g(p)} has a deficiency in that the family may
include a structurally unstable member, but may not exhibit
any distinctive behavior. For example, the trivial system
{f =0,y —p = 0},z,y,p € R, defines a flow that is
structurally unstable and unchanged for all values of m.
A common alternative definition is [34]: the family has
a bifurcation point at u = pg if in every neighborhood
of po there are family members that exhibit topologi-
cally different behavior. While this definition ensures the
existence of dissimilar behaviors near bifurcation points,
it suffers annoying technicalities that arise from the fact
that while all bifurcation points are structurally unstable,
not every structurally unstable point is a bifurcation point.
Moreover, the essential difficulty is not really eliminated,
just postponed. The remedy is to introduce the concept of
a generic family.

3) Genericity: Given a well defined set G of mathemat-
ical objects, such as a set of algebraic equations, vector
fields, or DAE’s, it is useful to identify properties that
are common to virtually all elements in the given set.
Such properties are called generic properties. Formally, a
property is said to be generic if it is shared by a residual
subset (a countable intersection of open dense sets) [19]
of the set G. The elements in G which exhibit a generic
property (the generic points) form an open set in G, and
typically the nongeneric points lie on submanifolds of G
with codimension >1. In some contexts structural stabilty
is a generic property in which case structurally unstable
elements are referred to as nongeneric.

When examining an arbitrarily selected individual object
from G one expects to observe only generic properties.
However, in applications it is often necessary to consider
a collection or family of objects within which individual
members that do exhibit nongeneric properties are encoun-
tered. It is useful to distinguish between those nongeneric
behaviors that are likely to be found in families and those
that are not. A p-parameter family in G is a C' map
s: P C RP — G. Here we again assume that s(P) is
a p-dimensional submanifold of G. The family s contains
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nongeneric points if it intersects a manifold A of nongeneric
points. If the intersection of s(P) and A is transverse
then the intersection is stable in the sense that small
changes in the family do not eliminate it. We can say that
these nongeneric points contained in s(P) persist or are
nonremovable under perturbations.

In many important cases it is possible to prove that
the set of p-parameter families that are transverse to a
given submanifold A of P form a residual set (in the
set of all p-parameter families). Theorems of this type,
called ‘transversality theorems,” are important in bifurcation
analysis. Transversality concepts are discussed at length in
[31], [38], [39], [40]. The important implication is that
it makes sense to speak of ‘generic families’ relative to
a generic property of interest. This is particularly useful
when structural stability is a generic property. In this case,
generic families that contain structurally unstable members
(bifurcation points) have the property that such members
remain even when the family is perturbed. By focusing
on bifurcations contained in generic families, we avoid
having to deal with special cases that can be eliminated
by a small change in the family. Roughly speaking, the
main result of significance to us is that generic p-parameter
families contain bifurcation points of codimension p or
less.

4) Normal Forms: A normal form is a convenient way of
representing a class of equivalent systems. It is a member
of the class which is ‘simple’ in some convenient and
acceptable sense. Unlike a canonical form, the normal
form is not chosen to meet any specific criteria; but the
general idea is that it should clearly exhibit the essential
features of the system. In view of the Hartman—Grobman
theorem, the local behavior of a nonlinear vector field
at a hyperbolic equilibrium point is completely described
by its linearization. Indeed there is a transformation of
‘coordinates which establishes the equivalence. Hence we
need only look at the linearization to determine whether
two such nonlinear systems have similar behavior. The
linear dynamics (or perhaps its Jordan form) represent a
normal form for comparing local dynamics. But behavior
near a hyperbolic equilibrium is not particularly interesting
because it is not sensitive to perturbations. We need to
establish normal forms of vector fields for nonhyperbolic
equilibria.”

The basic idea is to seek a transformation of coordinates
that brings the given vector field into an ‘almost’ linear form
leaving only the nonlinear terms that are not removable
by any smooth transformation. These nonlinear terms are
essential to the local behavior. An algorithm for reduction
to normal form and examples can be found in [21], [34]. We
state the basic result following some necessary definitions.

Definition 5: Let L = Ax be linear vector field on R™.
Then we define H}, := the linear space of vector fields
whose components are homogeneous polynomials of degree

9We confine our discussion of normal forms to vector fields which, for
DAE’s, means normal forms near causal equilibria. There is, however, an
emerging theory for constrained differential equations [23].
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Table 1  Codimension 1 Bifurcations of Vector Fields

Name Normal Form/Versal Unfolding

Saddle-Node
21

Hopf 0 -a X, ~X,

121,341 x‘:[w 0]x+(xf+x§){4,[;]+b{x':l}+0(‘x1’), >0, a0

L_[H @ 2, 5 ~K 5
x~!:a] P ]xﬂ.x, +x3){a{xj+bll: xzv]}-&- oxf)

or, in polar coordinates

i=-x"+0(x’) = k= p~x* +0(x")

F=ar F=yprtar’
=

=w+br®  B=oxbr’

k, and ady: Hy — Hp is a map defined by

Y 0L
adr(Y) :=[L,Y] = 8:cL 8:cY’Y € Hy.

Theorem 3 (Normal Form Reduction Theorem): Let & =
¢(x) be a smooth system of differential equations. with
$(0) =0and L := D,¢(0)z. Choose a complement G, for
adp(Hy) in Hy, so that Hy, = adr,(Hy) + G. Then there
is an analytic change of coordinates in a neighborhood of
the origin which transforms the system to

g=Az+g°(y)+-+ 9 () +o(ly")

with

A:=D,$(0)and ¢* € G, 2< k<

Proof: A constructive proof is given in [21]. . O

Some examples of normal forms are given in
Tables 1 and 2. ‘

5) Deformations and Unfoldings: Versal unfoldings pro-
vide an efficient characterization of all behaviors exhibited
by systems in the vicinity of a system that is locally struc-
turally unstable near an equilibrium point. The following
summary follows [31], [34].

Consider the smooth DAE {f, g} defined in some neigh-
borhood of {z*,y*) € R™ x R™. For convenience, we
will take (2%,9%) = (0,0). Any family {f(u),9(n)},
locally defined at (z,y,p) = (0,0,0) in R™ x R™ x
RP, with {fo,90} = {f,g}, is said to be a deforma-
tion of {f,g}. Two deformations of {f, g}, {f(n),q(1)}
and {f(p),d(n)}, are equivalent if there is a continuous
transformation of coordinates h : NN € R™ x R™ x
R? — R™ x R™ N, a neighborhood of (0,0,0), with
h(0,0,0) = 0, such that for each p, h'is a homeomorphism
that exhibits the topological equivalence of their flows. A
deformation {f(u),g(p)} defined on B™ x R™ x RP is
induced by a deformation {f(v),g(v)} on R™ x R™ x RY
if there is a continuous change of parameters h: R? —
RP,y = h(), with 0 = h(0), such that {f(n),3(u)} =
{F(n(1)), g(R(1))}. A deformation {f(7v),g(v)} with ¢
parameters is versal if every other deformation is equivalent
to one induced by it, and miniversal (sometimes called
universal [41]) if ¢ is the smallest number of parameters
needed to define a versal deformation.

If {f, ¢} is structurally unstable, then a deformation of
it is said to “unfold the singularity” and a deformation
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Table 2 Codimension 2 Bifurcations of Vector Fields

Name Normal Form/Versal Unfolding
Cusp, R E=-2+00x) = t=p +px-x+0(x)
Cusp, R® i= [o l:lx +[a}x,2 +0(x), a%0, b20
(or double zero) 00 b
(21,34 % =[£l]+[l: (1)]X+{:]x‘2 +0(x)
Generalized Hopf 0 - X,
(degenerate Hopf) x= |: 10 ]x +ataf+ ) [x:] a=0
(224 i= [‘u" —1}{ + 0 (x +x)x+a(xl +x2 )zlixl]
Lok ) e
or, in polar coordinates
F=ar* + 007 - F =:[.10r+;llr3 +ar’ +0(")
=1 6=1
Imaginary pair 0 -~o 0 01 [y ~@ O
& zero i=lo 0 Ol+=i=|0|+o y Ofx+
[21] 0 0 0 wl o 0 0
or, in cylindrical coordinates (a,,b,,b,,b, — a; # 0)
F=arz F=pr+arz
i=bhr+b = iz, +hrt b
9= =0
Two nonresonant 0 - 0 O 4 -, 0 0
imaginary pairs e, 0 0 0 . . 4, 0 0
(21 o 0 0 -eTT* 0w - [T
0 0 o O 0 0 o u
in polar coordinates (a; # 0, a,,a, — 8,0, #0; mo, +nw, #0,|mliHnl< 4)
o= ayrt +apnrs +OUre) A = n +ayd + agng + 00
Fy = ayriry +anrs +O0r’)  Fy = pary +agrie, +ayry +O(0rt)
8, =, +0(r*) 8, = o, +0(r)
8, = w, + O(Irf) 8, =, +0(r®)

is often refered to as an unfolding. Versal deformations
or unfoldings are important because they reveal all pos-
sible behaviors which might be observed in perturbations
of {f,g}. Miniversal unfoldings are especially significant
because they do this with a minimum number of parameters.
The dimension of the «y-space (g) is a measure of the
degeneracy of the singularity. It follows from analysis
of the minversal unfolding {f(7),g(~)}, that there exists
a neighborhood of 0 in y-space (RY) which is divided
into open regions by surfaces of codimension 1 such that
throughout each region {f(v),g{)} exhibits equivalent
behavior. The surfaces across which the behavior changes
are called bifurcation surfaces. These bifurcation surfaces
can intersect thereby defining (bifurcation) surfaces of
higher codimension. The origin lies at an intersection
of codimension g. We refer to this as a singularity of
codimension gq.

6) Deformations and Unfoldings in Other Contexts: The
concept of deformation, described above for DAE’s, is
frequently applied to other mathematical objects. It is only
necessary that it makes sense to speak of parameter depen-
dent families of those objects and to have an appropriate
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concept of equivalence. For example, in addition to DAE’s
and vector fields, we note the following:

» Algebraic equations (the study of zeros of equations
f = 0 under perturbations [37], [41]): Two deiiorma—
tions of a map f: R — R™, f(e,u) and f(e,u)
are equivalent (locally at (0, 0)) if there exists a
continuous, near-identity transformation of coordinates
x = h(y,p) defined on a neighborhood of (y,p) =
(0,0), and a continuous, invertible matrix S(y, u)
such that f(y,u) = S(y, ) f(h(y, p), p). Since S is
invertible, the zeros of f(e, u) correspond to those of
f (e, 1) (in the domain of definition of h). Because of
the relevence of this topic to the study of the solution
structure of load flow equations, we will discuss the
bifurcation of algebraic equations in some detail below.

e Matrices (the study of Jordan forms of matrices under
perturbations [31]): Two deformations of an n X n
matrix A, A,, and A, are equivalent if they are
related by a near-identity similarity transformation,
itself dependent on the same parameters, T'(x) with
T(0) = I
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Table 3  Bifurcations of Algebraic Equations (Up to Codimen-
sion 4) [41]

Name Codim Normal Form Unfolding
Fold (saddle-node) [40, 41, 1 b =
4]
Cusp (40, 41. 44] 2 = X
Swallowtail {40, 41, 44] 3 < Xt
Buuerfly [40. 41, 441 4 % g+ o xT
Hilitop [41] 4 %=y =y Ly
2n 2xy+ i,
Hilltop {41) 4 [zf] 2+ Ly
y Y+t Ux

¢ Pencils (the study of the zero structure of linear sys-
tems under perturbations [42]): Two deformations of
an n X m pencil sA + B,sA, + B, and sﬁp + BM
are equivalent if they are related by a near identity,
strict equivalence transformation [43], i.e., s4,+ B, =
P(u)[sA,+B,]Q () with P(0) = I and Q(0) = I.

D. The Generic Bifurcations

In Tables 1 and 2 we summarize the generic codimension
1 and codimension 2 bifurcations of vector fields from an
equilibrium point, that is, the local bifurcations that will
be found in one and two parameter generic families. The
normal form and a versal unfolding is given in each case.
We can not describe herein all of the behavior exhibited by
these bifurcations, but references which do so are given.

Similarly, in Table 3 we summarize the bifurcations of
algebraic equations (called singularities) up to codimension
4. Bifurcations of algebraic equations are important to
us because it is often useful to study the equilibrium
point structure, and parametrically induced changes to it,
separately from, or as an adjunct to, considering dynamical
issues (vector field properties). Notice that the bifurcations
of codimension less than 4 in Table 3 involve only one
independent variable, whereas bifurcations of codimension
4 may involve two. Singularities involving two or more
independent variables have not been completely classified
[37, Chap. 7], [41, Chap. 9]. It is also useful to note that any
singularity involving a single independent variable directly
corresponds to a ‘catastrophe’ which gives some additional
interpretations [40], [44].

Example 3: (The Saddle-Node Bifurcation): In this exam-
ple we give an illustration of the phase portrait variations
associated with a saddie-node bifurcation. Consider the 2-D
system

B=x?+u

J'?z = —X2

Three different state space diagrams are illustrated in Fig. 4
showing the prebifurcation, critical, and postbifurcation
cases. Notice that two equilibria, one stable the other
unstable, merge into a single semistable equilibrium and
then the equilibrium point vanishes as the parameter
changes from a negative to a positive number.
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Fig. 4. Phase portraits associated with saddle-node bifurcation.

06 O

(4 .
u<0 =0 u>0 <0 =0 ©>0
£ =—1, supercritical £ =1, subcritical

Fig. 5. State space trajectories for the supercritical and subcritical
Hopf bifurcations.

N

£=—1, supercritical € =1, subcritical

Fig. 6. Bifurcation diagrams for the supercritical and subcritical
Hopf bifurcations. 7 = 0 corresponds to the equilibrium point.
Stable equilibria and orbits are indicated by bold curves.

Example 4: (The Hopf Bifurcation): Consider the system

1 uo =1z 2, .2 z1 —29
I A R Pl
or, equivalently, in polar coordinates (zy = rsinf,zo =
7 ¢os )

F=r(p+er?), 6=1+r2

We will consider two cases, ¢ = 1. p is the adjustable
parameter. The state space ftrajectories are illustrated in
Fig. 5. Let us consider the the supercritical (e = —1) case
first. For ;1 < O there is a hyperbolic, stable equilibrium
point at the origin. When y = 0, the equilibrium point at the
origin is no longer hyperbolic, it has a 2-D center manifold
with a pair of imaginary eigenvalues +¢. The equilibrium
point of the (nonlinear) system'is, however, asymptotically
stable although not exponentially stable. When -y > 0, the
origin is again hyperbolic, but it is unstable and there exists
a stable periodic orbit with constant radius r = /2,

Another pictorial view of the Hopf bifurcation is provided
by the bifurcation diagrams of Fig. 6. The oscillation ampli-
tude r is plotted versus the parameter u. Here we again see
that in the supercritical case, the stable equilibrium becomes
unstable as u changes from negative to positive and a
stable periodic trajectory emerges. In the subcritical case the
periodic trajectory is unstable and exists for negative values
of p. For applications this is a crucial distinction. In the
supercritical case, even though the origin is unstable -after
bifurcation, trajectories are still attracted into its vicinity
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if the oscillation amplitude is small. The subcritical case
can be very dangerous because the unstable limit cycle
bounds the domain of attraction of the stable origin and
this domain shrinks as the bifurcation point is approached
from the left.

III. COMPUTATIONS AND EXAMPLES

When investigating bifurcations in power systems we
want to acomplish three things: 1) locate bifurcation points,
2) characterize the associated behavior, and 3) identify
remedial actions. Our basic strategy is as follows: Suppose
a power system is operating in a stable equilibrium state
corresponding to a particular parameter value. In order to
ensure continued, reliable operation, we seek to identify
nearby bifurcation points since points of incipient instability
are always bifurcation points. The term ‘nearby’ can assume
different meanings, but we intend it to mean that the
bifurcation parameter value is close to the parameter value
of the current operating state. The choice of parameter set
can be especially important to the practical significance of
this measure. Some parameters may be uncontrollable (such
as load parameters) while others may be controllable (such
as generation distribution parameters or tap positions). In
such a context we can try to find the closest bifurcation
point. Once having located a bifurcation point it is nec-
essary to identify the kind of behavior that is associated
with it—some may be more dangerous than others. This
can be accomplished by computing enough information to
identify its normal form, after which one consults a finite,
pre-established catalog. Recognizing that the bifurcation
point lies in a set of points which form a boundary in the
parameter space, we seek to characterize the boundary so
as to identify remedial changes of controllable parameters
if necessary. :

It is useful to distinguish between the study of bi-
furcations of the equilibrium equations (static bifurcation
analysis) and the study of bifurcations of vector fields (dy-
namic bifurcation analysis). Clearly, since the equilibrium
equations identify equilibrium (or fixed) points of the asso-
ciated vector fields, static bifurcation is always associated
with dynamic bifurcation. In addition to the implications
that static bifurcation has with regard to dynamics, static
bifurcations are of interest in their own right because in
load flow analysis questions about existence and number of
equilibria are significant. Static bifurcation analysis is a far
simpler problem than dynamic bifurcation analysis and the
analytical technology is more mature.

Local bifurcations of the vector fields that accompany
DAE descriptions of power systems are associated with
equilibria that are either noncausal or nonhyperbolic. When
a causal, nonhyperbolic equilibrium point has a simple
eigenvalue at the origin and no other eigenvalues on the
imaginary axis all necessary information'® can be ob-
tained from static bifurcation analysis based on the Lya-
punov—Schmidt reduction. If it has only a pair of simple

10This includes local characterization of the bifurcation sets, and the
number of equilibria and their stability under small perturbations.
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complex eigenvalues on the imaginary axis, the associ-
ated generic bifurcations (the Hopf and generalized Hopf
bifurcations) are dynamic but they can be investigated
using essentially the same tools as static bifurcations.
Other, more complex situations, require a fundamentaly
dynamic treatment based on center manifold theory. In the
following paragraphs we will describe tools for locating
and classifying static and generalized Hopf bifurcations.
While we will not specifically address locating noncausal
points, the method we describe for static bifurcation can be
modified to find noncausal points.

A. Static Bifurcation

In this section, we consider bifurcation of the load flow
(3). For convenience, we collect the dependent variables
z and y into a single vector which we denote z. This
admittedly abusive notation will not lead to confusion
because there is no reason to distinguish between these
variables in the following discussion. Similarly, collect
the pair of functions f and g into the single function
F: R x R® — RN, N = n 4+ m, so that (3) can be
rewritten as F'(z, u) = 0. We seek to investigate the zeros
of F' (equilibria) as a function of the parameter vector .

Conventional numerical methods for computing equi-
libria, such as the Newton-Raphson method,  -must be
modified in order to obtain reliable results near bifurcation
points.!! Two methods have been applied to power system
analysis: the continuation (or homotopy) method [46] and
the direct (or point of collapse) method [47]. The direct
method proposed by Seydel [47] to compute the branch
points in single-parameter nonlinear algebraic equations
has proved remarkably effective in power system appli-
cations. Many investigators have implemented variants of
this approach, imaginatively tailored to the special features
and requirements of power systems [48]-[51]. We refer to
these as a group as the Newton—Raphson—Seydel method.
The continuation method has also been applied to power
systems [52]-[56]. Caiiizares and Alvarado [55] compare
performance of the two methods for a variety of large power
systems.

In the following, we summarize both the direct method
and the continuation method for single parameter problems
and their application to power systems. Then we show how
the direct method can be extended to find static bifurcation
points in multiparameter power systems. When this method
is combined with the Lyapunov—-Schmidt reduction we not
only obtain reliable determination of equilibria but' also
a complete classification of the local equilibrium point
structure.

1) Locating Static Bifurcation Points: The Single Param-
eter Case—Direct Method: The Newton—Raphson method
breaks down near (static) bifurcation points, i.e., when
F, is singular (rank[F,] < N). In generic one-parameter
families the dimension of Ker[F,] at a bifurcation point is
precisely one (rank[F,] = N — 1). Thus to locate such a

' Dynamic simulation near static bifurcation points is also a challenge
[45].
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point we seek values for z € RY,u € R and nontrivial
v or w € RN which satisfy

F(z,u)=0 (14a)
Ey(zs,p)v=0 or w'F(z;n)=0. (14b)

The requirement of nontriviality of v, w may be stated
loll=1 or [uw|]=1. (14c)

The solution set & = {(z, ) € RN+ | F(z, 1) = 0} is a
regular imbedded submanifold of dimension one in RN+1
if and only if rank[F,F,,] = N on €. If this is the case, then
the requirement that v, w be nontrivial can be reformulated

F(z,mjv=1 or wTFu(x,/L) =1. (14d)

One basic approach to finding bifurcation points is to
apply the Newton—Raphson method to (14). This is the
basic Newton—Raphson—Seydel method. Data that satisfies
(14) will be denoted xp, p, vy, wp and we designate the
Jacobian J := F,(zp, ). Note that the vectors vy, wp
have special significance. They are, respectively, the right
and left eigenvectors corresponding to the zero eigenvalue
of Jy. The eigenvector v, spans the kemel of J, and
wy spans the kernal of JbT . Moreover, v identifies those
dependent variables that play a role in the bifurcation.
That is, only those elements of z that correspond to
nonzero entries in v will exhibit the bifurcation behavior.
wp will be seen, below, to provide useful information in
multiparameter problems [16], [57].

Once a bifurcation point is located, it is feasible to modify
the above method to compute points around the fold (nose)
of the equilibrium surface

F(z,p)=0 1s)
[Fp(z,p) — M]v=0
for values of A € [—e1,es] with 1,69 > 0.12 This allows
computation of equilibrium points close to the bifurcation
point where conventional Newton—-Raphson calculations
would fail. Of course, A = 0 corresponds to the bifurcation
point. _
The above method can be effective but it has the disad-
vantage that is significantly more computationally intensive
than a standard load flow. It involves solving 2N + 1
equations as opposed to [NV, and it requires computing
second order derivatives of F. However, since (14b and
¢) are linear in w and v it is possible to devise potentially
more efficient alternatives. An approach suggested in [51]
will be briefly summarized. Choose a smooth scalar valued
function h(z) and replace p with the new parameter 7
12The bifurcation point (A = 0) data zp, up,vp is a regular so-
lution of (15) along with the nontriviality condition for v so that the

Implicit Function theorem guaranties the existance of a unique solution
z(A), n(A),v(X) on a neighborhood of X = 0.
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according to u = nh(z),n € R. First, multiply (14d) by
nhI(z) and add the result to (14b) to obtain

(Fe(z,nh(z)) + b (z)F); (z,nh(z))lv = nhl(z). (16)
It is intended that
Jm = [Fy(z,mh(z)) + nhl (z)F} (z,nh(z))]

will be nonsingular at solutions of (14) even though J =
D, F must be singular. In this event, (16) determines v. It
remains to solve (14a) and (14d) for (z,n). Let us collect
(14a, d) and (16) to form

F(z,nh(z)) =0 (17a)
(@, )0 = nh3 (2) (17b)
Ff(x,nh(a:))v =1. (17¢)

In principle, we can solve (17b) for v = J, AL 7 so that
(17¢) can be written

(F (@, nh(2)) o (@, m)hg (@)n = 1.
Thus we need solve the remaining equations for (xz,7)

Flz,nh(z))=0" (18a)
a(z,mn =1. (18b)

where the scalar function a(z,7) is
a(z,n) = Fy (@,nh(z)) 1! (@, m)hs (). (19)

One approach to finding solutions to (19) would be to
employ a standard Newton—Raphson iteration. To do so
requires computation of da/0z and da/0n. The standard
Newton—Raphson iteration applied to (19) yields

JE AP 4 FER(z)AnPTt = —FF
ak AzFT 4 [oF + aﬁnk]Ank"'l = —akpF 4 1.
Because of the presence of a,(z,7n) and a,(z,7), second
derivatives of F' are still required. An alternative suggested
in [51] is to apply a standard Newton—Raphson iteration

with respect to z to (18a) and then solve (18b) for 7 (in
Gauss—Seidel fashion) to obtain

Tl zivr — 25) = —F(zq, mih(z;))
N1 = 1/a(zit1,m:)- 20)

In order to discuss the convergence of this method, note that
(20) constitute an iteration of the map ¢: RV — RN+!

z — J7UX, ) F(z,nh(z))

PO = ate — I (@ m) Pla, b)) m)t | D

Proposition 2: Suppose z*, u*,v* satisfies (14), h(z) #
0 on a neighborhood of z*,a(z*,7*) # 0 and J,,,(z*, n*)

is nonsingular where n* = p*/h(z*). Then the map ¢ is
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well defined on a neighborhood of (z*,7*) and (z*, n*) is
a fixed point of ¢. Furthermore, if '

In*%as(z*, 0*) I " ") Fu(a®, n*h(z*))h(z")
—n*%ay(z*,n") < 1

then ¢ is a contraction on a neighborhood of (z*, h*).

Proof: The first conclusion that (z*,n*) is a fixed point
is obvious. To show that ¢ is a contraction on a neighbor-
hood of (z*,v*) it is sufficient to show that the spectral
radius of Dy(z*,n*) is less than 1. Direct computation
leads to

o1 o *—1

D (P* _ | O= on — 0 Jm

G oo 0 0 2ai i Erht — n*ta),

Clearly, all of the eigenvalues of Dy* are zero except one:

A =n*?a} g FEh* —n*?a). Thus the conclusion follows.
O

Remarks:

1) The Proposition simply states that, provided the con-
ditions are satisfied and if initial estimates (x°, u°) are
sufficiently close to (z*, 4*) the iteration

pitl o
{hi+1:| = ‘p(xl7 R

will converge to (z*,n*). Obviously, we take 7° =
40 [ h(z).

2) The choice of h(z) is arbitrary except that A must be
differentiable, the zeros of A must not coincide with
bifurcation values of z, and .J,,, must be nonsingular
at bifurcation points. The last point is the reason for
introducing h(z) in the first place. If the manifold £ is
regular at (z*, u*) and if p* # 0 (so that n* # 0) then
almost any vector hxz(z*) results in J,, nonsingular
at z*.

3) In actual computation, one would implement

Im,i{Tig1 — ;) = —F(z;, nh(z — 0))
Jmiv1biv1 = B (i41) (22)
Nit1 = 1/ (Fu(@iv1, nih(@it1)bivs.

Notice that b is just a scaled verson of v hence, it is
the null space spanning vector for J. For computa-
tional efficiency, especially for large systems, it is a
significant advantage to use J,, ; rather than J, ;41 in
the second equation.

4) The computational experience of Carpaneto et al. [51]
shows that for several standard power systems, includ-
ing the TEEE 57-bus system, the application of the
iteration of the last remark convergences very quickly.

5) The function A(z) can influence the convergence prop-
erties of the algorithm. A specific choice is discussed
in [51]. An analogous “regularization” function is typ-
ically introduced when continuation methods are ap-
plied to load flow calculations near bifurcation points
[53], [58].
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6) Chiang and Jean-Jumeau [59] have recently reported
results using a similar method on a 234-bus power
system. In fact, both [51] and [59] consider the (com-
monly used) special case in which the parameter enters
the load flow equation linearly

Fle,u) = §(x) - pb. 3)

In this case it is easy to confirm that, with the choice
h(z) = bTz, (19) above constitute the N + 1 equations
solved in [59]. The main difference appears to be that [51]
uses the mixed method of (20) to solve (19). whereas [59]
successively applies Brent’s method (an interval method
[60]) to solve (18b) for n and then a Davidon-Fletcher-
Powell method (a quasi-Newton method [60], [61]) to
solve (18a) for z. Both methods effectively reduce the
number of equations solved from the 2N + 1 equations
required by straight forward implementation of the New-
ton—Raphson—Seydel method to N + 1, and neither require
computation of second derivatives.

2) The Single Parameter Case: Continuation Method:
Continuation methods for the numerical solution of
nonlinear problems have been around since at least the
1930’s [46], [62], [63]. Applications of continuation
methods to power systems are described in [52], [55],
[56], [64]. The basic idea of continuation is simple and has
many applications. Consider a parameter dependent family
of mathematical problems P(u). Suppose the problem
P(uo) is easy to solve, but we wish to find a solution to
P(p*). Then the idea is to sequentially solve a sequence of
problems P(u;), ¢ = 0,..., K, terminating with px = p*.
Successive solutions are extrapolated to get a starting value
for an iterative solution of the next problem.

Let us apply this approach to the one-parameter family
(14a). Suppose that a solution (zq,po) is known, ie.,
F(zg,po) = 0. We wish to find the solution z* corre-
sponding to the parameter value p*. Applying the con-
tinuation method, we divide the interval [ug,p*] into a
large number K of subintervals and generate successive
solutions, z;, ¢+ = 1,..., K, as follows. To generate the
first solution, we take as a starting value w? = xo and then
apply Newton’s method (for example) to determine ;. For
subsequent starting values, z?, ¢ > 1, we could continue
the zeroth order extrapolation, i.e.,

:z:? =T;,1 (24a)
or we could use a linear extrapolation (called the secant
method in [56])

@0 = 3y + (io1 — mimg) L (24p)
Hi—1 — Hi-2

followed by Newton’s method. If one takes this to the
extreme so that K — oo, Au — 0, then the successive
solutions are connected by the differential equation

Fo(z, p)dz + Fu(z, p)dp =0
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or

dz

Folz, p) i + Fy(z,u) =0. 25)

In principle, an implicit ordinary differential equation solver
can be used, with p as the independent variable, to obtain
the curve z(p) for p € [uo, 1*].

Obviously, this method must be modified when collapse
points exist in the interval [uo, 4*] because the Jacobian
F,(z;u) is singular at such points. There are a number
of ways to remedy this situation. They are based on the
fact that a generic one-parameter equation F'(z, ) = 0 has
a smooth solution curve in the N + 1 dimensional (z, u)
space [31]. This means that

rank[Fy(z, 1) Fu(z,w)]
= N on the set {(z, ) € RN | F(z,p) = 0}.

In other words, the matrix [F, F,] has N linearly in-
dependent columns. Consequently, it is always possible to
rearrange the variables so that an appropriate state variable
plays the role of the independent varable and the parameter
is one of the n dependent variables. This is essentially
the problem of identifying N linearly independent columns
from [F, F,]. When [ is singular, the highly sensitive
states appear as nonzero entries in the null space spanning
vector. Any one of these is an appropriate replacement for
. Caflizares and Alvarado [55] suggest tracking the relative
change in system variables (z and p) and switching to the
most sensitive for use as the parameter as the singular point
is approached.

An attractive alternative ‘blends’ the IV + 1 independent
columns into /N independent columns by the use of a state
dependent transformation of parameters u = nh(z),n € R,
precisely as was done in deriving (16) above. Thus we seek
to find the curve z(n) C RN *!, passing through the point
(20,m0) = (Xo, p10/h(w0)), and satistying F(z,nh(z)) =
0. Then the Jacobian F, is replaced by

[Fe(,nh(2)) + Fu(z,nh(z))hz ()]
and the differential (25) is replaced by

[y, 1h() + Fula,wh(a)) B (@)]5- + Fub(z) = 0.

(26)
The solution terminates when 7; = pih(z1). The idea of
course is that the matrix [Fy; + F,2Z] will not be singular
on the interval of interest. Continuation methods with this
type of ‘reglarization’ are applied to power systems in
[53], [54]. We have already noted the connection between
regularization used with the continuation method and the
direct method described above.

A third approach, perhaps the most common, for dealing
with singularities in F}, is to reparameterize the problem
in terms of -the arc length s. This is accomplished as
follows. First, we treat the parameter 4 as a dependent
variable. To make this explicit define # = [z, 4]T, and

1468

F(z) := F(z,p). We seek a curve 7(s) ¢ RN*? that
satisfies

F(z(s)) =0 (272)

and passes through the point (Z,s) = ((@o, o), 0), where
s is defined with respect to any convenient local reference
point on the curve, (Z(s,), s.), by the relation

(s — 5 = ||a(s) - #(s.) % @7b)

Equations (27) may be viewed as NV + 1 equations in N 41
unknowns, T, with a single parameter s. We generate a
sequence of solutions Z;, ¢ = 1,..., K, corresponding
to a specified sequence s;, ¢ = 1,... K. At each stage,
we can generate a starting value for Z, using formulas
(24)—with z replaced by z—and then apply an iterative
process to (27) with s = s; and s, = s;_1 in (27b).
Specific implementations of this process to power systems
are described in [55], [56].

The differential equation approach can also be used with
the arc length parameterization. In this case the arc length
is defined by the differential equation

2

da =1 (28a)

ds

and the differential equation (25) is replaced by

F; dz =0. (28b)
ds

The system of N +1 differential equations (27a and b) is to
be solved for Z(s) C RM T2, Note that the special structure
of (28) allows reduction to quadratures. Since Fi(a"c) has
rank N along the solution curve, there is an N + 1-vector
() whose span is the kernel of Fz(Z) at any point on the
curve. -y can be chosen to have unit length. Then (28a and
b) are satisfied by solutions of

dz _
= ¥(Z). (29

To our knowledge, the only application of the differential
equation solution method to power systems appearing in the
literature is Thomas ef al. [65], although Chiang ef al. [56]
use an equivalent to (29) to extrapolate a starting estimate
for a solution via Newton’s method but only for the first
step after which they use linear extrapolation.

3) The Multiparameter Case: When the = number of
parameters is k = 1, 2, 3 the generic situation is
dim(Ker(D,F)) = 1 (see the discussion in [37, Chap. 7],
[41, Chap. 9], and Table 3). In the following treatment of the
multiparameter case we assume that dim(Ker(D,F)) = 1.
The strategy is to locate the bifurcation value closest to
a given parameter value . Since coordinates used to
define 1 may be arbitrarily shifted, we take po = 0. The
problem of locating the closest static bifurcation point in
multiparameter power systems has been raised by several
investigators including [66]-[71].
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Redefine (14a-c) as ¢¥(z,v,u) = 0

F(z,p)
’lp(.’L’,’U,,LL) = DmF(w,,u)v
o]l - 1

withz € H ~ RN v e d ~ RV, u e M ~ RF. We
seek a point (z,v,p) in Y 1= H X U x M ~ RNtk
such that ||uf|? is minimum with ¥(z,v, ) = 0. To do
so, introduce a Lagrange multiplier 1, and construct the
Lagrangian function

L=pl® +ATy(z,0,p) A€ RPNFL - (30)
Then necessary conditions are
oL
a - '(,/)(1‘,71,#) - 0
oL oY
2\ -
dr Oz 0
oL _  poy¢
o A v 0
@:2MT+,\T-6—1£:0. (31)
O O

We can rewrite the last three equations as
TN =10 (32)

where

o oy oy T
b ==, =, — b=1[0 -2 .
[axaavrau ) [ 1x2Ns 1% ]
Now, Let ®* denote the right inverse of ®'* and obtain
from (32) ‘

=& (33a)
[ - &*®]Tb = 0. (33b)

Notice that [/ — ®*®] has only k& — 1 linear independent
rows. Having eleminated A, our problem is now completely
characterized by (33b) along with the first of (31). Thus we
have increased the dimension of the system from 2N + 1
in the one parameter case to 2N + k. Points (z, v, s) that
satisfy the enlarged system are the extremal bifurcation
points. One way to compute them using numerical iteration
is given by the following algorithm. Let the parameter
vector v be expressed y = me, where m is a scalar and e
is a unit vector that specifies a direction in parameter space.

Algorithm

Step 1. Initialize: choose an intial search direction ey €
RF; and initial values zq € RV, vy € RYN.

B3For a generic function ¢ : R2NTE . R2N+1 the solution set
of ¥ = 0 is a smooth kK — 1 dimensional (regular) manifold and
rank[®] = 2N + 1, its maximum rank, on the set [72, Section 31]).
Thus for a generic family, ®* exists on a neighborhood of any solution
of ¥ = 0.
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while ||e; — e;—1|| > tolerance and i < ¢pax

Step 2: Solve ¥(z,v,me;_1) = 0 for z;,v;,m;); use

starting values (;Ui,l,viél,mi_l).

Step 3. Update the search direction e;_; to ¢; in order to

reconcile [I — ®*®|Tb = 0.

Step 4: Update 4: ¢ = ¢+ 1

end
Step 2 is solved using the Newton—Raphson-Seydel
method. Step 3 is achieved by using one of the recursions
described below.

4) Geometric Interpretation: Consider the set B =
{{z,v,n) € HxU x M} | Y(z,v,m = 0} Bis a
regular, £ — 1 dimensional submanifold of ) provided
= rank[®] = 2N + 1 (full rank) on B. Consider a point
p € B. Then p + Ker(®(p)) is the tangent space to B at p.
Define v(z, v, 1) = ||u||? and the family of sets (cylinders)
C(c) = {(z,v,p) € H xU X M} | y(z,v,m) = c}. Each
set C(c) is a regular submanifold of codimension one in
Y provided i # 0. Equations (32) are equivalent to the
geometric conditions b € Im(®7) or Ker(F) C Ker(b7T)
which simply means that the curve B is tangent to the
cylinder C(c) at the point of contact. Thus we have the
following result.

Proposition 3: Suppose the point p € B. Then there
exists a unique c* such that p € C(c*). Furthermore,
lll? = ¢* is a minimum only if Ker®(p)) C Ker(b” (p))
or, equivalently, b(p) € Im ®7(p)).

Let ;1 = me, m a real valued scalar and e a unit vector
in M. Suppose that a point p = (z;,w;,m;e;) € B has
been located by scalar search with respect to m and with
e; fixed. Note that if Im ®T(p)) ~ R*V+1 and M ~ RF
are considered as subspaces of J =~ RNtk then their
intersection Z is at least (also generically) of dimension one.
Furthermore, it is clear that b(p) € Im ®T(p)) if and only
if e; € Z. The natural projection which maps any element
of Y onto M is P = [Okx2n Iixi]- The bifurcation set
in the parameter space M is the projection ¥ := PB.
Even when B is smooth and regular, ¥ is likely not be.
Note that the natural projection of Ker ®(p)) ~ R*~1 onto
M =~ RF generically produces a codimension-one linear
surface in M. In fact, this surface is a tangent hyperplane
to the bifurcation surface ¥ C M at u; = m;e;. In view
of these remarks, we suggest the following recursions for
implementing step 3 of the algorithm.

Recursion Method 1: 1If p; = mje; is a regular point of
the bifurcation surface ¥, then the condition Ker ®(p)) C
Ker (b7 (p)) requires that e; is orthogonal to 7 := Pg. If
it is not, then choose a new direction: e; that is so. The
constructions may be implemented as follows:

— Let @ := ®*®, where ®* is a right inverse of

¢. Then Ker ®(p)) = Ker(Q) = (I — Q)Y and
T = PG = P(I - Q)).

— To obtain e;.; othogonal to 7, choose e;y1 €
Ker ([I — Q)T PT). This space is generically of
dimension one.

Recursion Method 2: Note that Y = Im®T(p)) @

Ker ®&(p)). Now, we require b(p) € Im T (p)). If it does
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not, then project b onto Im ®7(p)) along Ker (®(p)) to
obtain b. The new direction vector, €i+1, 1s obtained as the
natural projection of b onto M. In general e;41 will not
belong to Z. One implementation of these constructions is
the following:
— Let @ := ®*®, where ®* is a right inverse of ®.
Then Q is a projection on Im ®7(p)) = Im (Q) =
QY along Ker ®(p)) = Ker (Q) = (I — @)Y Thus
b = Qb.
— Project this result onto M and renormalize to obtain
eip1 = aPgt = aPQg’ (a is the renormalization
factor) which yields the recursion

eir1 = aPQPe;. (34)

Remarks:

1) Method 1 may converge if 1) there exists a u*
which satisfies the necessary conditions for a closest
static bifurcation point, 2) p* is a regular point
of the bifurcation set ¥, and 3) 3 satisfies certain
curvature conditions at u*, and 4) the search begins
with a vector ug = mgeg sufficiently close to u*.
This is essentially the method used in [68], [70]
and detailed convergence conditions can be found
in those references. In general, this method will
not locate bifurcation points which are of higher
codimension than one. Such points are not regular
points of 3. Recently, a method has been proposed
that incorporates estimates of the curvature of o to
improve the convergence rate [71].

2) The conditions for convergence of method 2 are
similar to those stated for method 1 except that the
conditions 2) and 3) for regularity and curvature for
the set ¥ are replaced by conditions on the set B.
B is generally a smooth and regular submanifold of
Y whereas 3] is typically badly structured as it can
contain cusps and other nonregular structures. This
method is useful for finding bifurcation points of
higher codimension.

The following arguments provide some insight into the

convergence properties of the algorithm.

Proposition 4: Let p* = (z*,w*,u*) € B and let U =
{p € R*NT!||lp - p*||* < r*} be a spherical neighborhood
of p* in . Suppose that {|x*]|> > 0 is a unique extremum
of ||u||? contained in B N U, and:

1) For each py = (zg,wo,p0) € U, the New-
ton—Raphson—Seydel method converges to p =
(z,w,mug) € BNU.

2) For each py,p; € BN U, the inequality

||a1PQ(el)Ptel — OézPQ(ez)Ptegn S K||e.1 — 62”,
for some real number K,0 < K < 1.

Then for any initial pg € U, the algorithm converges

to p*. ‘ '
Proof: Condition 2) states that (24) is a contraction. Thus
conditions 1) and 2) together ensure that the recursion
produces a well defined map g : BNU — BNU. To see
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this, consider a single iteration of the algorithm beginning
with a point p = (£,0,7,€) € BU U. Now use (24) to
update the search direction, so that é — é. The next step
is application of the Newton—Raphson—Seydel method with
starting value p = (Z, ¥, mé). We need to show that p € U
so that 1) ensures convergence to B N U. This requires
direct calculation beginning with

m*e*||?

m>"e*||2 —~ [|mé — m*e*||2.

I ="l = 12 — 2" |1 + |6 — v*||* + ||mé —
=5 —p"II° + [lmé -

Using the fact that é, €, and e* are unit vectors, it can be
verified by direct computation that
* 6* ||2

[[/hé —m — ||mé — m*e*||?

= mm*{[|é — e*||* — [|& — e*[|*}
with which we obtain
15— p*11> = 15 — p*|I> + mm* {||é — &*||* - l|& — ¢*||*}.

Since é = @PQ(8)PT¢ and e* = o* PQ(e*)PTe*, condi-
tion 2) implies that ||é — e*|| < K||€ — e*||. It follows that
mm*{||é —e*||> - ||é—e*||?} < 0, and hence we must have

6 —p*I1> <l — p*II> < r*

Consequently, p € U. Moreover, the fact that B is a
smooth manifold and (10) is a contraction implies that
g is a contraction. Any fixed point p’ of g must satisfy
e/ = PQPt'. But then p’ is an extremum of ||m||?, and
by assumption p* is the only extremal peint contained in
BnU. O

Computing Unfoldings:

Lyapunov-Schmidt Reduction and Reduced Bifurcation
Equation: Consider the map F: R™ x R — R", and
for convenience assume that (0,0) € R™ x RP and it is a
bifurcation point. Using the method of Lyapunov—Schmidt
the study of the zeros of F'(z, 1) can be reduced to the study
of the zeros of the so-called (reduced) bifurcation equation,
which typically involves only a few dependent variables.
The essentials of the method of Lyapunov—Schmidt will
be briefly reviewed in a somewhat simplified version
that is adequate for our immediate needs. We give the
more general construction below when addressing Hopf
bifurcation [37], [41].

Define J = D, F(0,0) so that

F(z,1) = Jo + N(z, )

(35)

where
N(0,0) =0, D,N(0,0)=0. (36)

Thus we wish to study the solution set of the equation
Jz+ N(z,u)=0 (37)
in a neighborhood of (0,0).
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If J has rank r then there exist full rank matrices L, R
of dimension n X r and r X n, respectively, such that
J = LR. Furthermore, L has a left inverse L* and R
has a right inverse R*. Now, we can decompose R™ =
Ker (R*T)®@Im (R*). Let U be a matrix with n—r columns
that span Ker (R*7).1 Thus we can define new coordinates
z < (u,v) via the transformation

z=Uu+ R*v. (38)

Proposition 5: Let W be a matrix with n — r columns
that span Ker (L*), then (37) is equivalent to

v+ L*N{Uu+ R*v,pu) =0
WIN(Uu+ R*v,p) =0 (39)

where v € R"™", v € R" are new coordinates as defined
by (28).

Proof: This is a well known result that is easily obtained
by substituting (38) into (37) and then premultiplying (37)
by the nonsingular matrix

T:[Vf,}].

Note that nonsingularity follows from the fact that R* =
Ker (L*) @ Im (L*T). O

Applying the Implicit Function Theorem to the first equa-
tion in the proposition, we conclude that there is a (smooth)
unique function v*(u, u) defined on a neighborhood of (0,0)
which satisfies it. Thus on a neighborhood of (0,0) second
equation of (39) becomes

flu,p) = WTN(UU + R*v" (u, ), ) = 0. (40)

Equation (40) is referred to as the (reduced) bifurcation
equation.

Note also that the number of independent equations
represented by (39) is 7 := n — r. It is easily verified that

#(0,0)=0 and D,f(0,0)=0. (41)

We will focus on the case # = 1 in which case (40)
represents a single equation in one unknown.

5) The Unfolding: The zero structure of the family
F(x,u) near the singular point (z,p) = (0,0) is
completely characterized by the zero structure of the
reduced family f(u,u) near the point (u, ) = (0,0).

Our goal is to investigate the zero structure of a given
family f(u,u) near its singular point (0,0). One obvious
approach is to determine if the family f(u, ) is equiva-
lent to its universal unfolding at (0,0) (i.e., the universal
unfolding of fy). If so, we can infer all of the properties of
f(u, p) from an established catalog of unfoldings. To make
this determination we seek an appropriate (near identity)

4If we take R* = RT(RRT)71, then Ker (R*T) ~ Ker(R).
Similarly, if L* = (LTL)~1L7, then Ker (L*) ~ Ker (LT). -
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transformation (u,u) — (z,7), which reduces f(u, ) to
@(z,v(p)) such that on a neighborhood of (0,0), the zeros
of ¢ coincide with those of f, the parameter ~y is of some
minimum dimension ¢, and ¢ is a polynomial of some
degree in z. Thus the characterization of the zeros of the
function F(z,p) is ultimately reduced to the study of the
much simpler problem
w(z,7) =0, ¢ RP x R — RP. (42)
In the case of p = 1, the following result is well known.
Proposition 6: Suppose that the reduced bifurcation (40)
is smooth and that the first nonvanishing derivative is the
rth with » > 2.

Dif(0,00=0, i=0,...,7—1and D7 £(0,0) % 0.
‘ 43)
Then 1) there exists a smooth change of variables z =
z(a,pu) and v = vi(p), ¢ = 0,...,7 — 2, so that (40)
is reducible to the following polynomial equation on a
neighborhood of (a,u) = (0,0)

go(p) + 911z 4+ Yrma()2" 22T =0 (44)

2) if, in addition, 2% is of full rank, then (40) is locally

equivalent to the universal unfolding of fo(a)
p(z,7) =v+ 2+ w22 42 (45)

Proof: The Proposition is a variant of well known results
[37, Section 6.8], [34, Section 4.1]. Conclusion 1) follows
from the Malgrange Preparation Theorem and 2) from the
Implicit Function Theorem. O

Remark: The condition that v(0)/0y is of full rank is
sometimes called a ‘genericity condition.” If this condition
obtains then the original family is ‘richly parameterized’
in the sense that variation of the original parameters can
produce all possible zero patterns that can be generated by
small perturbations of fo. If 8,(0)/0p is degenerate, then
even small changes in the model F(z, pu) are likely to alter
the codimension of the singularity and change the way in
which bifurcations associated with the singularity manifest
themselves. We say the singularity is generic or nongeneric,
respectively, if the genericity condition is satisfied or not
satisfied.

In actual computation, the transformations are typically
approximated using the Taylor expansion of f(u,u) [37].
Let

ao(p) == (0, 1) = w§ F(0, ) (462)

and compute the derivatives

a1 (n) := Do f (0, 1) = lim Da[wg F(0, )]

() == DL £(0, ) = limm DY F(0,10)] (46b)
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and stop at that value of = for which
ag=0,...,00—1 = 0,0, #0. 47

The following approximation Proposition provides the re-
quired construction.

Proposition 7: Suppose that f(u, ) is smooth and that
(47) holds. Then f(u,p) = 0 is equivalent to g(z, ), on a
neighborhood of (a, 1) = (0,0), where

9(z, 1) = vo(w)+m )7+ +7e—2(1)2" > +2"+0(|2[")

(48)
and
T— 65
pma= 2ty o, =2
fors=0,...,7r—2 (492)
5oy = S ) (7Y (o)L e
=2 = ) e + ().
j=s
(49b)
Proof: Direct computation. [

Remark: Notice that the unfolding given above describes
a bifurcation of codimension » — 1 the bifurcation surfaces
in the unfolding parameter (y—) space are simply v; =
0, i=0,...,7 — 2. In the physical parameter (u—) space
the surfaces are defined by ~;(#) = 0. Each of these
r — 1 functions defines a codimension one surface. These
surfaces intersect to define higher codimension manifolds,
the highest codimension being r—1 which is the intersection
of all of them. The normal vector to the surface at any g
on it is defined by ~v;(u) is Dyyi(p). If 7 = 2, so that the
bifurcation is a saddle-node, then it is easy to show that
Duvo(p) = Dypao(p) = wh F,(0, ). The significance and
utility of this observation is developed in [16], [57].

6) Static Bifurcation and Voltage Stability: By the early
1980’s various factors had caused power system operators
to seek maximum utilization of the transmission network.
Previously unobserved stability related difficulties emerged
and a vigorous effort was made to understand them and
find remedies [73]. Typically, these problems involved
the inability to maintain load bus voltage magnitudes and
became referred to as voltage instabilities. Static bifurcation
of the load flow equations is an appealing formalization
of voltage stability because it embodies key characteristics
associated with real voltage instability events: the presence
of multiple equilibria, a relationship between dynamic
stability and voltage collapse, a high degree of sensitivity of
certain bus variables to control parameters, and a relatively
long period of drift prior to collapse. Of course, static
bifurcation intrinsically involves multiple equilibria so we
will confine our brief remarks to the latter three points.

7) Static Bifurcation and Dynamic Stability: Bifurcating
equilibria can be (asymptotically) stable in the sense of
Lyapunov. We have seen examples of this. This type of
stability is not meaningful in a practical sense because
even an arbitrarily small perturbation of the dynamics can
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render it unstable in the sense of Lyapunov’l or can anihilate
the equilibrium point altogether. A practical concept of
stability of an equilibrium point requires that the flow is
locally structurally stable at the equilibrium point and that
the equilibrium point is stable in the sense of Lyapunov.
We use the term practical stability'® for - equilibria that
satisfy these conditions. Recall that Proposition 1 states
that local structural stability implies that the equilibrium
point is causal and hyperbolic. Thus practical stability of
an equilibria point implies that it is causal and hyperbolic.
But for causal, hyperbolic equilibria Lyapunov stability can
be ascertained from the ordinary differential (7) which has
linearization

§& = ASz, with A := [Dyf — D, f(Dyg) *Dagl* (50)

where * denotes evaluation at the equilibrium point. The
equilibrium point is stable in the sense of Lyapunov only if
all of the eigenvalues of A have nonpositive real parts, and
hyperbolicity further restricts the eigenvalues to the open
left hand plane. Thus practical stability implies exponential
stability.

We can easily show that static bifurcation points are not
stable in the sense of practical stability. Practical stability
implies causality which allows us to apply Schur’s formula
to write the determinant of the load flow equations

det{J}* = det{A} det{Dyg}". (5D

From this, we see that a (causal) static bifurcation point
corresponds to det{A}* = 0 = det{—A}*. Hence, static
bifurcation points are not stable in the sense of practical
stability, since the latter requires det{—A}* > 0.

Venikov et al. [6] recognized the significance of a de-
generacy in J with respect to the steady state stability of a
power system. They observed that under certain conditions
a change the sign of det{J} during a continuous variation
of system states and parameters coincides with the move-
ment of a real characteristic root of the linearized swing
equations across the imaginary axis into the right half of the
complex plane. Thus they recommended tracking det{J}
during load flow calculations and proposed a modification
of Newton’s method which allows precise determination
of the parameter value where such a sign change occurs.
Tamura er al. [75] discuss some computational experience
using this method.

8) Bus Variable Sensitivities: A discussion of the signif-
icance of a degeneracy in J in terms of bus variable
sensitivities was given by Abe et al. [76]. We see from the
Lyapunov-Schmidt analysis, that in the (u,v) coordinates,
the sensitivities of the v variables are well behaved. Simply
differentiate the first equation of (39) to obtain (at (0,0))

D,v(0,0) = —-L*D,N(0,0). (52)
15 Practical stability as used here is related to but not identical with the
notion of practical stability in [74].
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1.0. These curves are obtained with AP = 0, B = 0.

However, derivatives D, u are indeterminant. These are the
sensitive variables. It follows that the sensitive physical
variables can be identified from the basis vectors for
Ker(J). Specifically, components of z that correspond
to nonvanishing elements in the basis vectors are highly
sensitive to parameter variations—indeed their sensitivities
to parameter change tend to infinity as the parameter value
approaches its bifurcation value. The magnitudes of the
elements in the basis vectors is useful for identifying the
relative participation of the system dependent variables.

9) Slow Time Scale Behavior: Dobson and Chiang [15]
discuss the dynamical behavior associated with a saddle
node bifurcation. At a generic saddle-node bifurcation point
the equilibrium point has a 1-D center manifoid (see Fig. 4).
Motion on the center manifold is such that trajectories
beginning on it from one side of the equilibrium point
.approach the equilibrium point, and trajectories on the
other side diverge from it. The convergent trajectory, of
course takes infinite time to reach the equilibrium, and the
rate of divergence of the divergent trajectory approaches
zero near the equilibrium. Trajectories beginning off the
center manifold but near it exhibit similar behavior—a slow
approach followed by a slow divergence. Post bifurcation
behavior is similar as well. Even though there is no longer
an equilibrium point, its “fingerprint” is clearly evident.

Example 1 Revisited: Let us now return to the system of
Example 1. Consider the parameter values

n= [AP1B7P37Q3]t = [0707_170]t (53)
which results with an equilibrium point at (8*,¢*,V*) =
(0, —m/4,1/+/2). The line diagram in Fig. 7 illustrates the

equilibrium power flow.
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Fig. 9. A four bus system with load characterized as a mixed
constant admittance and constant power load.

Further analysis based on the calculations described
above reveal that the bifurcation is of codimension 1 with
universal unfolding as given by (45). We also compute
the null space spanning vector ug = [0, /2, —1]* and the
approximate transformation relation

A B P;—1
70(#)=—T—Z<1+Z>+ 32 +%- (54)

It follows from the structure of u( that we may anticipate
observation of the bifurcation in the variables ¢ or V
but not in §. Also in view of the relation between the
physical parameters, i, and the bifurcation parameter o
we may trigger the collapse by decreasing AP and B or
by increasing Ps and (3. These facts justify analysis of
this voltage collapse scenario in terms of load bus voltage-
power (either real or reactive) curves, a classical procedure
widely used in contemporary power system operations. For
the present example, these curves are illustrated in Fig. 8.

Example 5: (Higher Order Singularities and Load Mod-
els): In order to further illustrate the concepts and the
computations discussed above, consider the example system
[77] that consists of three machines and four buses with
combined constant admittance and P-Q load shown in
Fig. 9.

10) Constant Admittance Load: With the constant admit-
tance load, the load bus can be treated as an internal bus
and eliminated in the usual way by defining a reduced net-
work admittance matrix. We assume uniform damping. The
translational symmetry in the three resulting second order
differential equations allows reduction to two equations by
specifying bus one as a swing bus and defining the relative
angles

01 = 62 - 51, 02 = 53 - 51. (55)
Thus we obtain

61 + 61 + 2By sin(61) + Bazsin(fy — 6a) + Byzsin(fy)
+ Caz cos{fs — 01) — Chzcos(f2) = AP, (56a)
0y + 462 + 2B13sin(f2) + Bagsin(fy — 61) + Biasin(8;)
+ Ca3 cos(fs — 1) — Chacos(fr) = AP, (56b)

where AP} = P, — P; and AP, = Ps — P;.
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Fig. 16. (a) A view of the equilibrium surface of (56) with
Bis = Byg = Bog = 1, Cio = Ci3 = Co3 = .15, The
vertical axis corresponds to the variable 6; and the horizontal plane
is the parameter plane AP; — AP,. The surface consists of the
component corresponding to —w < 6; < w. The edge along the
top is parallel to the horizontal plane. There is a symmetrical edge
along the bottom so that the surfaces stack up and down the vertical
axis, connecting along these edges, to provide the 27« periodicity
in @y that is expected. (b) By looking straight down at the surface
onto the parameter plane without hidden line removal, the well
known star pattern that divides the parameter space is revealed.
Outside the egg shaped region, there are no equilibria, crossing
into the egg there are 2, within the star points there are 4, and
in the center region there are 6. These conclusions are readily
confirmed by careful examination of the equilibrium surface in
Fig. 2(a). The boundary of the egg and the edges of the star are
clearly bifurcation points.

Tavora and Smith [15] analyze the equilibrium solution
structure of these equations (without transfer conductances)
as a function of the two parameters AP, and AP,.10 It
is useful to review some of their conclusions. Tavora and
Smith show that the parameter space (the AP; — AP,
plane) partitions into regions and within each region the
number of equilibrium solutions is 0, 2, 4, or 6. Fig. 10(a)
and (b) illustrate this, but in the present example, the
calculations were performed for a system with transfer
conductances. Fig. 10(a) shows the equilibrium surface
associated with (56). By looking straight down at the
surface, as in Fig. 10(b), without removing hidden lines, the
regions identified by Tavora and Smith are clearly visible.

If we ignore all transfer conductances (C;; = 0) and set
B;; = 1, then this system reduces to one whose global
equilibium properties where analyzed in detail by Tavora
and Smith. The equilibrium equations are

2sin(f;) +sin(fq — b2) +sin(f2) — AP; =0
(57a)
2¢in(fy) + sin(fs — 1) +sin(61) — AP, = 0.
(87b)

16 Another approach to the study of equilibrium point structure of
lossless power systems is given in [78].
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There are several bifurcation points which appear as cusps
in the AP; — AP, plane. One of these corresponds to 6; =
7/2,02 = m, AP, = 1,AP, = 2. The algorithm locates
this point from appropriate initial conditions. Further com-
puter analysis to classify this bifurcation point establishes
that the dimension of the kernel of the Jacobian is one, but
fails to identify an integer & € {1,..., kmax} for which
ar > €. Note that £nax and € are parameters which must
be set consistent with available computational precision.
The point is that within our computational precision it was
not possible to identify an «j # 0. Hand calculations
confirm that this is a codimension oo bifurcation point.
This indicates the high degree of symmetry and degeneracy
associated with this idealized system.

Now we consider a case with transfer conductances,
retaining B;; = 1, we set C;; = 0.15. A bifurcation
point is found with 6; = 1.64962, 0, = 3.13274, AP} =
1.16961, AP, = 2.03570. The sequence of coefficients
ap = 0.000, @; = 0.000, oy = 0.000, ag = 0.026
indicates a singularity of codimension 2. We further obtain
the parameter sensitivity matrix

ay(u*)  [167.22 -100.22
o 0 0
4= [APL, AP (58)

Notice that although the singularity is of codimension 2 and
hence it is generic in two parameter families, the particular
two parameter family defined by (57) does not represent
a versal unfolding of the singularity. This means that not
all changes in the equilibrium point structure that might
be induced by small perturbations of the equations will be
observed by varying the parameters APy, AP;.

11) Mixed Load: We consider a combination of constant
admittance and constant impedance loads. In this case, the
load bus must be retained, but the translational symmetry
allows specification of a swing bus. The resultant set of
differential-algebraic equations are of the form

01 4 2Bg; sin(f;) — ByyVysin(fs — 61)
+ Bygsin(fy) = APy
fy + 2B3; sin(6z) — B34 Vasin(f3 — 03)
+ 312 sin(@l) = APz
By Vy sin(93 - 91) + BysVy Sin(ag - 92) —-P,=0
ByoVycos(03 — 61) + BasVicos(fs — 03)
~BuVE+Qs=0 (59)

where AP; = P, — Py and AP, = P; — P;. We consider
the case in which Blg = BIS = 1, B24 = B34 = 2,
B44 = —4, and Bi]' = Bji.

Computation identifies a singular point at 6
1.5709005 (=m/2),02 = 3.1415926 (=~x),03 =
2.3562465, V, = 70714361, AP, = 1, APy, =
Py = 0,Q4 = 0. The null space spanning vector. is
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determined to be

0.8528
0.0000
0.4264
0.3015

and the sequence of coefficients ag = 0.000, a3 = 0.000,
as = 0.000, ag = 0.372; indicating a singularity of
codimension 2. We further obtain the parameter sensitivity
matrix

Oy(w*)  [-8.596 4.298 —2.149 —6.446
ou | O 0 0 0

p=[AP, AP, Py, Q4] (60)

Once again, we see that that the local family defined by (59)
is not versal. It is easy to verify that this will always be the
case when the parameters enter the equations linearly.

12) Voltage Dependent Load: 1t has long been recognized
that the constant admittance and constant power load mod-
els represent only crude approximations to actual load

behavior and that more precise load models may be nec- -

essary for accurate characterization of voltage stability
issues. Proposed refinements include static representation
of frequency and voltage dependence and, in some cases,
the inclusion of load dynamics. Such modifications are
readily accommodated within the bifurcation framework.
In the present instance, we wish to show that even a
simple expansion of the load model can have a significant
qualitative effect.

We replace the constant reactive load of the previous
example with the voltage dependent model

Q4(Vy) = Qu0Vi4, Qa0  a constant. (61)

By so doing, it is determined that the singular point identi-
fied above remains a singular point, the null space spanning
vector and the codimension are unchanged. However, the
parameter sensitivity matrix is

Ov(p*) _ [-8.596 4.208 —2.149 —11.005
o | 0 0 0 ~1.944

n= [APhAP%P‘hQZIO]' (62)

The significance of this result is that the system with the
voltage dependent load represents a versal unfolding of the
singularity.

Example 6: (Real Power Transfer Limits): The increased
importance of megawatt transfer between areas has
spawned the development of methods for the identification
of the limits of feasible transfers as dictated by the
voltage and thermal constraints under both normal and
contingency outage operation. Although there are numerous
methods for identifying regions of secure power transfers
under transmission line loading and voltage magnitude
constraints, work on the identification of feasible megawatt
transfers (i.e., the set of all megawatt transfers which
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Area A

Fig. 11. The three-area power system.

guarantee the existence of a voltage profile) has only been
considered recently [79]-[81]. This is an excellent example
of how static bifurcation analysis can be used to address
important applications issues by appropriate definition of
the parameter space. We will outline the key ideas.

As in the above references, we consider a classical power
system model (2), in which the equilibrium equations can
be explicitly written

N,
fi = Z[ViVjBij sin(d; — 6;) + V;V;Gy;
=1

X COS(éi - (5])] - Pi,
i € Ingtar ={1,...,Np =ng +npv +npg} (632

Np
9; = Z[W‘/}G” sin(&i - (5]) - %V]BI]
7j=1
x cos(6; — ;)] — Qs, i€ Ipg.

(63b)

These comprise N = n, + npy + 2npg equations. The
N unknowns are the ny, + npy + npg bus angles and
the npg PQ-bus voltage magnitudes. As parameters, we
could consider any subset or combinations of the injections
P;, Q;, transmission line parameters B;;, G;; and voltage
magnitudes V; corresponding to generator and PV buses.
The transfer limit problem suggests a particular choice of
parameter space.

The interarea megawatt transfer problem considered here
is based on the interconnected three-area power system
model shown in Fig. 11 where P{*, PP, Pf denote the net
megawatt (MW) imports into areas A, B and C, respec-
tively. Since Pf* + P + PF = 0, only two of these are
independent so the real power interchange space (i.e., the
P;-space) may be considered the Pf* — PP plane shown in
Fig. 12. We wish to regulate the real power flow between
areas (of course, we can only regulate two of the three).
This is accomplished indirectly by adjusting the real power
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Fig. 12. Example of a load-flow feasibility region in the interarea
MW imports space.

injections at generator buses.!” We assume that the swing
bus is located in Area C and there is at least one generator
in each area A and B. To explicitly show the effect of
generator injections on real power imports we can compute

P = Y [302 - V206 - vy - 5)

jeféal_wc
K3 A
(64a)
1
PF = Z [E(sz — VJZ)G” - V@V]BU sin(éi - (2)?]
jellAIUJC
1€lp
(64b)

where 14,1, Ic are the bus index sets for areas A, B, C.
Now, we can replace two of the equations in the set (63a) by
(64a) and (b). In fact, it is easy to see, that independence of
the controllable parameters is maintained if they replace one
generator equation in area A, and one generator equation
in area B.

We assume that all load parameters, transmission line
parameters, independent voltage parameters and all gen-
erator real power injections'® other than the two replaced
generators (and the swing bus) are fixed. Then the modified
set of load flow equations take the form

F(x, Pf*, PP) = Fy(z) + u(P#,PP) = 0. (65)

Now, we are in a position to study the load flow solution
structure as a function of the MW interchange parameters.

In this discussion, we neglect all operating constraints
dictated by the thermal, voltage magnitude, and reactive
injection limits, so the problem of identifying the domain
of feasible interarea MW transfer reduces to the problem
of identifying the (static) bifurcation set of the load-flow
equations (53) in the Pi-space. Recall that under the usual

¥or our purposes here a generator bus is essentially a PV bus with
controllable P.

18This is, of course, not necessary. An equivalent condition is to
assume a set of generator participation factors is available from a dispatch
program. See the references.
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conditions, (55) defines a regular manifold € of equilibrium
points in R x Py = RN*2, The bifurcation points form
codimension 1 submanifolds (possibly intersecting) that
divide & into open regions called sheets. Let (z°,P9) € £
denote a base case operating point and suppose it belongs
to the sheet £°.
Definition 6: The load flow feasibility region at (z°, P9),
denoted RY,, is the natural projection of £° onto Py.
Points on the boundary of R%, denoted 9RY%, belong to
the bifurcation set. The notion of a load flow feasibility
region in this spirit goes back to {[3], [66]. The key to
obtaining the graphical representation of R% is finding the
boundary of JR%. One approach to finding this RY% is
described in [80], [81]:
1) Obtain a feasible base-case point,
2) radial search at specified angles to obtain boundary
points, and
3) connect the boundary points using straight line seg-
ments.

Step 2) can be accomplished with a one-parameter static
bifurcation calculation as described in Section II-A. A
typical result illustrated in Fig. 12. A detailed application
to the Klos-Kerner 11 bus test system is described in [80].

B. Hopf and Generalized Hopf Bifurcation

Oscillations associated with instability in the power sys-
tems are well known and frequently described in an exten-
sive literature which spans several decades. However, the
connection with bifurcation analysis has been developed
only recently. Van Ness ef al. [82] suggest that an observed
oscillation is associated with a Hopf bifurcation. Abed
and Varaiya [83] illustrate subcritical Hopf bifurcations
in several electric power system models. Alexander [84]
provides a thorough local stability analysis of Hopf bi-
furcations for a model of two machines connected with
a lossy transmission line and demonstrates the occurrence
of both subcritical and supercritical Hopf bifurcations. An
example of Hopf bifurcation in a three machine classical
network with lossy lines is given by Kwatny et al. [77],
[85]. Another example is given by Rajagopalan et al. [86]
in which a three machine system is modeled with a two-
axis representation and excitation is included. Iravani and
Semlyen [87] show Hopf bifurcation in a single machine
system with a flexible turbine-generator shaft. Chen and
Varaiya [88] illustrate a degenerate Hopf bifurcation in
a two generator network with excitation and an infinite
bus. Venkatasubramanian et al. [25] illustrate a different
type of degenerate Hopf (double zero eigenvalues) in a
single line network including a generator with voltage
control (either excitation or a thyristor controlled reactance)
and a constant power load. Subcritical and supercritical
Hopf bifurcations are naturally encountered in studies of
chaos in power systems [2], [89]. One could justifiably
conclude that Hopf bifurcations are pervasive in power
systems.

As we will describe, Hopf bifurcations in power systems
can be analyzed using the same basic tools as static
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bifurcations, namely, the Newton—Raphson—Seydel method
and the Lyapunov—Schmidt reduction.

1) Locating Hopf Bifurcation Points: Variants of the
Newton—Raphson-Seydel method can be used to locate
Hopf bifurcation points [90]. We will apply this method to
the DAE (1). Thus we need to locate an equilibrium point

Flz,u)=0 (66)

which is causal and so that the linearization of (7) has a
pair of purely imaginary conjugate roots

det{jwln m — J(z,p)} =0
where
_ In OnXm
Tnm = [omxn O ] 67

As in the static case, we prefer to reformulate (67) as

w' [ J(z,p) — jwlnm] =0
or
[J(z,p) — jwInmlv =0 (68)

along with the requirement that w or v is nontrivial. Since
w(v) is complex, we can write it in polar form, w; =
8;€9% (v; = 6;¢7%), and require

n+m n+m

S 67=1 and Y ¢i=0. (69)
i=1 i=1
Equivalently, we can state the nontriviality requirement
wlEy(z,p) =1 or Fu(z,pv=1 (70)

2) Computing Unfoldings: As in the case of static bifur-
cations, we want to determine the important qualitative
characteristics associated with Hopf bifurcation, e.g., the
number and stability characteristics of period trajectories,
as well as to characterize the bifurcation surfaces in the
physical parameter space. There are two basic approaches:
compute the center manifold and normal form and study
the unfolding of the normal form (see Table 2), or use
a variant of the Lyapunov—Schmidt reduction in which a
reduced bifurcation equation needs to be computed, and
from which the desired information can also be obtained.
Hopf bifurcations are studied from the former point of view
in [21], [34] and from the latter in [37], [41]. In terms
of power system applications, there is simply not enough
experience to prefer one approach over the other.

3) Lyapunov-Schmidt Reduction—A Second Look: In deal-
ing with Hopf bifurcations we need a more general for-
mulation of the Lyapunov—Schmidt reduction that applies
to mappings on infinite dimensional spaces. Consider @ to
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be a map between (possibly infinite dimensional) complete
linear vector spaces H and JV;® : H x R? — Y. We
seek to characterize the solution set of ®(x, ) = 0 near
(0,0) € H x RP, which we write as

®(z,p) = Lz + N(z,p) = 0 with L := D¢(0,0). (71)

Let P: H — H and Q: Y — ) denote projection
operators'® with Im(P) = Ker(L) and Im(Q) = Im(L).
Then we can split H and ),

H = Im(P) ® Im(I — P) 72)
Y =Im(Q)® Im(I - Q). 73)

We can state the following well known theorem:
Proposition 8: Let P: H — H and Q: Y — ) denote
projection operators with Im(P) = Ker(L) and Im(Q) =
Im(L). Then
1) (72) is equivalent to

Lv+QN(u+v,p) =0 (74a)
(I-Q)N(u+v,u)=0 (74b)

with
z = utv,v = Pz € Im(P),v = (I-P)z € Im(/-P)

2) there exists a linear map K: Im(Q) — Im(I — P),
called the right inverse of L, such that LK = [
on Im(Q) and KL = I — P on 'H so that (9a) is
equivalent to

v+ KQN(u+v, ) =0. (75)

Proof: See [37], [41]. O

Once again, the Implicit Function Theorem applied to
(75) assures the existence of a unique function v*(u, p)
defined on a neighborhood of (0,0) € H x RP that satisfies
it. Moreover, v*(0,0) = 0. Substituting this function in
(74b) yields the reduced bifurcation equation

(I-@Q)N(u+v*(u,p),p) = 0. (76)

In our applications, the subspaces Im(P) of H and Im(f —
Q) of Y will be of finite dimension 7, in which case (74)
reduces to 7 scalar equations in 7 unknowns.

4) The Reduced Bifurcation Equation: Following [41],
we will apply the Lyapunov—Schmidt method to analyze
a Hopf bifurcation which has been located as above. For
convenience, we assume that the bifurcation occurs at the
point (z,n) = (0,0) and that w = 1. Now, we rescale
time via the transformation s = (1 + 7)t where 7 is a

19Recall that if H = R®S, then there is a map Q: H — H, called the
projection on R along S, such that for each = = r + 5, Qz = r. Clearly,
Im(Q) = R and Ker(Q) = S. A map Q: H — H is a projection on
Im(Q) along Ker(Q) if @ = Q.
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new parameters introduced to keep the frequency of the
oscillation (in the new time scale) at unity as parameters
vary. Then, in terms of s we can write the system equations
in the form '

d
&z, p,7) == —(l—I—T)In)m—d—j—l—J:E—l—N(:C,u) —0. (77

We seek 2x-periodic solutions of (77). Hence, we consider
‘H and Y to be spaces of suitably smooth 2m-periodic
functions of s, and ® is a map from H x RP x R to Y. lts
linear part L: H — Y is

d
L:=2,(0,0,0) = ~T ==+ . (78)

To compute the reduced bifurcation equation, we need to
determine a basis for each of the 2-D subspaces Im(P) of
H and Im(I — Q) of Y. For Im(P) = Ker(L), we note
that Lz = 0 has two 2r-periodic solutions

wi(s) = Re(e™w), wa(s) = Im(e*w)
where

[=iZp,m + J]w = 0. (79)

Similarly, we can take Im(I — Q) = Ker(L*) where the
adjoint map is

L* = In,mﬁ +JT. (80)
ds

Let W™ denote the eigenvector of L* associated with
eigenvalue ¢ so that the two basis functions for Im(/ — Q)
are

wi(s) = Re(e®w™), wh(s) = Im(e**w"). 81

Now, we write u = w1(s)u1 + wa(s)uz, and define®

Qbi (ulv U2,y T)
= (w} (), N(wi(s)ur + wa(s)ug, v* (uy, ug, g, 7) i, 7
i=1,2 (82)

where

. d
N(u,v, p,7) = —TZn,mE(u +v) + N(u+v,u). (83)

The following proposition establishes the form of (82).
Proposition 9: The reduced bifurcation equation has the
form

P(u1,uz, py 7) ,
_ 2 2 U 2 2 —U2
= p(ug +uz, 1, 7) [UJ + q(uf +u27u,T)[ w ]
(84)

The- inner product used for 2m-periodic functions is (v1,v2) =
2 [27 5T (s)vz(8)ds where the overbar denotes complex conjugate.
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Fig. 13. Bifurcation diagrams for the codimension 2 Hopf bifur-
cation in terms of parameter ;. Each diagram plots the oscillation
amplitude a versus <;. Bold denotes stable. Note that in some
regions there are two periodic trajectories, one stable and one
unstable.

with the scalar functions p and ¢ satisfying

p(0,0,0) =0 and p,(0,0,7)=0 (85a)
9(0,0,0) =0 and ¢,(0,0,7)=—1.  (85b)

Proof: [41], see Proposition 2.3 in Chap. 8. O

It follows from (84) that nontrivial solutions of the
reduced bifurcation equation (¢ = 0) exist only if p = ¢ =
0. The form of p and g suggest a transformation to polar
coordinates: 4y = acosf,us = asin @ so that solutions are
defined by :

p(a®, u,7)a=0 and g¢(a?,p, T)a = 0. (86)
These equations should be viewed as deﬁning a? and 7.
In view of (75b), the Implicit Function Theorem provides
that g(a?, 4, 7) = 0 can be solved for 7 = 7(a?, 1), which
leaves us with the requirement that

g(a, 1) :==p(a®, i, 7(a®, p))a =r(a®, W)a=0 (87a)

where
r(a®, p) = p(a®, p, 7(a®, ). (87b)

Solutions of r(z,u) = 0 with z > 0 are in one-to-one
correspondence with the nontrivial periodic solutions of (1).
The function r(z, ) can be approximately computed using
a combination of Fourier and power series expansions. This
can be accomplished using the above formulas, but there
are many variants [37, Section 9.4]. Another alternative is
based on the ‘frequency domain’ formulation of the Hopf
theory [85], [91], [92].

The existence and number of solutions of (87) near
the origin can be investigated in terms of the unfolding
parameters of Proposition 6. However, it is also important to
identify the stability of periodic solutions. Stability depends
on the sign of the first nonzero derivative of g(a;p) =
7(a?, u)a with respect to a, or equivalently, its unfolding. If
we preserve sign by introducing the parameter ¢ = =41, then
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Fig. 14. The bifurcation picture for the four bus, constant admittance system.

the normal forms and unfolding associated with r(z, p) are

azk, and vo+m2z+ -+ fyk_gzk_Q + ez”
for k>2ande==1 (88)
and, hence for g(a, p1)
ea®*=1 and yoa + y10° + - - + Y2023 a1
for £ > 2 and € = +1. 89)

Stability is established by the following proposition.

Proposition 10: Suppose that (z, ) = (0,0) is an equi-
librium point with a simple pair of imaginary eigenvalues,
A1,2 = i, and with all other eigenvalues having negative
real parts. Then the periodic solution corresponding to
a pair {(a,p) satisfying g(a, p) is asymptotically stable
if D,g(a,p) > 0 and unstable if D,g(a, ) < 0. An
equivalent statement in terms of the unfolding is also true.

Proof: This follows from the results of [41, Chap. 8,
Section 5] and [37, Section 9.5]. O

Fig. 6 shows the bifurcation diagram for the codimension
1 Hopf bifurcations. The codimension 2 case is illustrated
in Fig. 13.

Example 5 Revisited: (Hopf Bifurcation): Let us return to
the system of Example 5 with constant admittance loads
as characterized by (46). Hopf bifurcations occur in this
system as described in [77], [85]. Let us focus on the
static bifurcation point at (61,62, AP, AP,) = (1.549,
0.759, 4.216, 2.794). The Lyapunov-Schmidt reduction
indicates that this bifurcation has codimension 1 and can be
efficiently observed in the variable ¢ and parameter AP,
as illustrated in Fig. 15. We observe the classical saddle
node bifurcation.

The curve in Fig. 15 is extended by decreasing AP;.
By computing the eigenvalues at equilibria along this
curve a dynamic bifurcation point is encountered in [67]
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Table 4 HOPF Bifurcation Points
Ci2=0,Ci13=0,Co3 =2, Bio =1, Bi3g = Bg3 = 5774

AP, APy Py v 0 02 w
4.042 2.887 —1.155 0.00 1.047 5236 1.2247
4.031 2.876 —1.144 0.05 1.041 5177 1.2278

at AP, = 4.042 with damping parameter v = 0.2! An-
other bifurcation was discovered by further decreasing the.
parameter AP;. Both are supercritical Hopf bifurcations,
so that a stable limit cycle emerges as AP; increases
from 3.244, and as AP, decreases from 4.042. The above
is information summarized in the bifurcation diagram of
Fig. 15. Simulation results that show trajectories before and
after the lower bifurcation are shown in Figs. 15 and 16. It
is interesting to ask about the interaction between the two
limit cycles as they move away from the equilibrium point.
At the present time such global studies. would be carried
out by extensive simulation. That has not been done for
this example. In general, we expect the global interaction
to be quite complex [2].

In [85], [94] the same system is investigated with positive
values of the damping parameter <. Hopf bifurcations
are sought using a variation of the method of [90] and
classified using the frequency domain method of [91]. Data
comparing the bifurcation points corresponding to v = 0.0
and v = 0.05 are shown in Table 4.

Remarks: Space precludes more examples on higher
codimension bifurcations, but a few comments are in order.
Notice that the essential feature of the (codimension 2)
generalized Hopf bifurcation (Fig. 11) produces bifurca-
tions involving the birth and death of multiple limit cycles.
There are essential four different normal forms (topological
distinct phase portraits) for this degeneracy arising from
the four possible combinations of signs for €, yg. The other
codimension 2 bifurcations of vector fields: the double zero
eigenvalue, the imaginary pair and zero eigenvalue, and the

21Even though the damping is zero, the system is not conservative
because transfer conductances are present [93], [77].
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Fig. 15. Simulation just below . Hopf bifurcation point
(AP; = 3.189).

two nonresonent imaginary pairs give rise to two, six, and
nine topological types, respectively. Each of these types has
to be unfolded individually [21].

IV. CONCLUDING REMARKS

We have attempted to provide an overview of local
bifurcation theory as it is now being applied in power
systems analysis. The discussion is based on the general
DAE description of power systems which includes classical
models and purely differential equation models as a special
cases. We have not considered supplemental inequality
constraints as they are beyond the scope of the present
paper. The formality of our presentation is, in our opin-
ion, necessary partly because terminology is increasingly
confused and because much of it may be new to some
readers. Hopefully, the geometric perspective that we take
is helpful in developing an understanding of the main issues
associated with local bifurcation in DAE models of power
systems. We have tried to make as many connections as
practical to the relevant mathematical and power systems
literature.

Clearly, the saddle-node bifurcation has become a widely
accepted paradigm for one important form of voltage insta-
bility. By far the most prevelent application of the concepts
and tools described herein has been to identify the point
of collapse—a saddle-node bifurcation point. However,
the importance of Hopf bifurcation has been increasingly
recognized as it has become clear that stability of the
equilibrium can be lost by this mechanism well before
reaching the point of collapse. This can be the initial
event leading to eventual system failure [2]. Moreover,
subcritical Hopf bifurcations can severely constrict the
transient stability domain of attraction even before the
stability limit is reached.

Higher codimension bifurcations have drawn only limited
attention even though they are clearly present in early
parametric studies [3] of power system equilibria and more
recent studies of Hopf bifurcation [88]. The prevailing
attitude is that the practical significance of a bifurcation
diminishes with increasing codimension. Nevertheless, mul-
tiparameter problems, such as Example 6, are intrinsically
important in power system operations and issues involving
higher codimension bifurcations will certainly emerge.
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We have, by necessity, left out some interesting and im-
portant topics. Among them is the issue of proximity indices
that measure nearness to collapse and their application to
voltage control. Many proposed indices have been based on
the presumption of a saddle-node bifurcation (or, at least,
a singular Jacobian) as the collapse mechanism [95]-[97].
Also, aspects of computing technology, like sparsity, that
are particularly important for very large systems and rou-
tinely included as part of conventional power engineering
analysis have not been addressed.

Nor have we discussed specific software packages for
power system bifurcation analysis. We might note that
several papers dealing with small scale power systems
cite application of the general bifurcation analysis package
AUTO [98]. As can be seen from our references, many
research groups have built special purpose software for
performing a limited bifurcation analysis on power systems
of moderate to very large scale. :

Some of the computational methods that we have de-
scribed invite the integration of numerical and symbolic
processing. In [14] the use of Macsyma to implement the
Lyapunov—Schmidt reduction is noted. One aspect of sym-
bolic manipulation is the assembly of power system models
and code generation for the more elaborate numerical
algorithms, i.e., the Newton—Raphson-Seydel method for
computing near bifurcation points. This modeling process
along with the Lyapunov-Schmidt reduction was imple-
mented in PROLOG [67] and used to investigate ‘small
(up to 10 bus) systems. A recent effort aimed at applying
symbolic tools to larger (up to 118 bus) systems is described
in [99].

REFERENCES

[11 F. M. A. Salam, J. E. Marsden, and P. P. Varaiya, “Armold
diffusion in the swing equations of power systems,” IEEE Trans.
Circ. and Syst., vol. CAS-31, pp. 673-688, 1984.

[2] H. O. Wang, E. H. Abed, and A. M. A. Hamden, “Bifuirca-
tion, chaos, and crisis in voltage collapse of a model power
system,” IEEE Trans. Circ. and Syst.—I: Fundamental Theory
and Applic., vol. 41, pp. 294-302, 1994.

[3] C.J. Tavora and O. J. M. Smith, “Equilibrium analysis of power
systems,” IEEE Trans. Power Applic. and Syst., vol.-PAS-91,
pp. 1131-1137, 1972.

[4] —, “Stability analysis of power systems,” IEEE Trans. Power:
Apparatus and Syst., vol. PAS-91, pp. 1138-1144, 1972.

[S]1 A. J. Korsak, “On the question of uniqueness of stable load-
flow solutions,” IEEE Trans. Power Apparatus and Syst., vol.
PAS-91, pp. 1093-1100, 1972.

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 11, NOVEMBER 1995



[6]

[71

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18}

[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26)

(271

[28]

[29]

V. A. Venikov, V. A. Stroev, V. I. Idelchick, and V. 1. Tarasov,
“Estimation of power system steady-state stability in load flow
calculations,” IEEE Trans. Power Apparatus and Syst., vol.
PAS-94, pp. 1034-1038, 1975.

T. Van Cutsem, ““Voltage collapse mechanisms’ a case study,”
in Proc. Bulk Power Syst. Voltage Phenomena II: Voltage Sta-
bility and Security, Deep Creek Lake, MD: ECC, Inc., 1991,
pp. 85-101.

K. T. Vu and C.-C. Liu, “Shrinking stability regions and voltage
collapse in power systems,” IEEE Trans. Circ. and Syst.-I, Fund.
Theory and Applic., vol. 39, pp. 271-289, 1992.

D. J. Hill, “Nonlinear dyhamic load models with recovery for
voltage stability studies,” IEEE Trans. Power Syst., vol. 4, pp.
166-176, 1993.

J. V. Milanovic and 1. A. Hiskens, “Effects of load dynamics
on power system damping,” IEEE Trans. Power Syst., vol. 10,
pp. 1022-1027, 1995.

T. Van Cutsem, “An approach to corrective control of voltage
instability using simulation and sensitivity,” IEEE Trans. Power
Syst., vol. 10, pp. 616-622, 1995.

M. A. Pai, P. W. Sauer, B. C. Lesieutre, and R. Adapa,
“Structural stability in power systems-effect of load models,”
IEEE Trans. Power Syst., vol. 10, pp. 609-615, 1995.

C. L. DeMarco and A. R. Bergen, “Applications of singular
perturbation techniques to power system transient stability
analysis,” in Proc. IEEE Int. Symp. on Circ. and Syst., 1984,
pp- 597-601.

H. G. Kwatny, A. K. Pasrija, and L. Y. Bahar, “Static bifurca-
tions in electric power networks: Loss of steady state stability
and voltage collapse,” IEEE Trans. Circ. and Syst., vol. CAS-33,
pp. 981-991, 1986.

I. Dobson and H.-D. Chiang, “Toward a theory of voltage

collapse in electric power systems,” Syst. and Contr. Lett., vol. |

13, pp. 253-262, 1989.
I. Dobson, “Observations on geometry of saddle node bifur-
cation and voltage collapse in electric power systems,” [EEE
Trans. Circ. and Syst., Part I, vol. 39, pp. 240-243, 1992.
J. H. Chow, “Time-Scale modeling of dynamic networks with
applications to power systems,” in Lecture Notes in Control and
Information Sciences, vol. 46. New York: Springer-Verlag,
1982.
V. Venkatasubramanian, H. Schittler, and J. Zaborszky, “A
taxonomy of the dynamics of the large power system with
emphasis on its voltage stability,” in Proc. Bulk Power Syst.
Voltage Phenomena II: Voltage Stability and Security, Deep
Creek Lake, MD: 1991, pp. 9-44.
M. W. Hirsch and S. Smale, Differential Equations, Dynamical
Systems, and Linear Algebra. New York: Academic, 1974.
K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numeri-
cal Solution of Initial-Value Problems in Differential-Algebraic
Equations. - New York: Elsevier, 1989.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-
namical Systems, and Bifurcation of Vector Fields. New York:
Springer-Verlag, 1983.
W. M. Boothby, An Introduction to Differentiable Manifolds
and Riemannian Geometry. San Diego: Academic, 1986.
L. O. Chua and H. Oka, “Normal forms for constrained non-
linear differential equations, Part I: Theory,” IEEE Trans. Circ.
and Syst., vol. 35, pp. 881-901, 1988.
1. Hiskins and D. J. Hill, “Energy functions, transient stability
and voltage behavior in power systems with nonlinear loads,”
IEEE Trans. Power Syst., vol. 4, pp. 1525-1533, 1989.
V. Venkatasubramanian, H. Schittler, and J. Zaborszky, “Volt-
age dynamics: Study of a generator with voltage control,
transmission, and matched MW load,” IEEE Trans. Autom.
Contr., vol. 37, pp. 1717-1733, 1992,
B. K. Johnson, “Extraneous and false load flow solutions,” IEEE
Trans. Power Apparatus and Syst., vol. PAS-96, p. 524, 1977.
H. Glavitsch, “Where developments in power system stability
should be directed,” in Proc. Int. Symp. on Power System
Stability, Ames, 1A, 1985, pp. 61-68.
I. A. Hiskins and D. J. Hill, “Failure modes of a collapsing
power system,” in Proc. Bulk Power Syst. Voltage Phenomena
II: Voltage Stability and Security, Deep Creek Lake, MD, 1991,
. 53-63.
gp E. M. de Oliveira, “Synchronizing and damping torque
coefficients and power system steady state stability as affected
by static VAR compensators,” IEEE Trans. Power Syst., vol. 9,

KWATNY et al.: LOCAL BIFURCATION IN POWER SYSTEMS

[30]

[31]

[32]

[33]

[34]

(351
[36]
[37]
(38]
[39]
[40]
[41]
[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]

(501

[51]

(521

[53]

[54]

[55]

[56]

pp- 109-119, 1994,

C. A. Caiiizares, “On bifurcations, voltage collapse and load
modeling,” IEEE Trans. Power Syst., vol. 10, pp. 512-518,
1995.

V. 1. Amold, Geometrical Methods in the Theory of Ordinary
Differential Equations. New York: Springer-Verlag, 1983.

R. A. Schiueter, I. P. Hu, and T. Y. Guo, “Dynamic/static
voltage stability security criteria,” in Proc. Bul. Power System
Voltage Stability Phenomena II: Voltage Stability and Security,
Deep Creek Lake, MD: ECC, Inc., 1991, pp. 265-303.

T. Guo and R. A. Schlueter, “Identification of generic
bifurcation and stability problems in power system differential-
algebraic model,” IEEE Trans. Power Syst., vol. 9, pp.
1032-1038, 1994.

D. K. Arrowsmith and C. M. Place, An Introduction to Dy-
namical Systems. Cambridge, UK: Cambridge Univ. Press,
1990.

J. K. Hale, Ordinary Differential Equations.
1969.

J. Hale and H. Kocak, Dynamics and Bifurcations.
Springer-Verlag, 1991.

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory.
New York: Springer-Verlag, 1982.

M. W. Hirsch, Differential Topology. New York: Springer-
Verlag, 1976.

M. Golubitsky and V. Guilleman, Stable Mappings and Their
Singularities. New York: Springer-Verlag, 1973.

R. Gilmore, Catastrophe Theory for Scientists and Engineers.
New York: Wiley, 1981.

M. Golubitsky and D. G. Schaeffer, Singularities and Groups in
Bifurcation Theory: Vol. 1. New York: Springer-Verlag, 1984.
J. Berg and H. G. Kwatny, “A canonical parameterization of
the Kronecker form of a matrix pencil,” Automatica, vol. 31,
pp. 669-680, 1995.

F. R. Gantmacher, The Theory of Matrices, vol. 1.
Chelsea, 1959.

J. M. T. Thomson and G. W. Hunt, Elastic Instability Phenom-
ena. New York: Wiley, 1984.

M. M. Begovic and A. G. Phadke, “Dynamic simulation of
voltage collapse,” IEEE Trans. Power Syst., vol. 5, pp. 198-203,
1990.

M. Kubicek, “Dependence of systems of nonlinear equations on
a parameter,” ACM Trans. Mathematical Software, vol. 2, pp.
98-107, 1976.

R. Seydel, “Numerical computation of branch points in nonlin-
ear equations,” Numerische Mathematik, vol. 33, pp. 339-352,
1979.

V. Ajjarapu, “Identification of steady-state voltage stability in
power systems,” Int. J. Energy Syst., vol. 11, pp. 4346, 1991,
F. L. Alvarado and T. H. Jung, “Direct detection of volt-
age collapse conditions,” in Proc. Bulk Power Syst. Voltage
Phenomena-Voltage Stability and Security, EPRI, 1988, pp.
5.23-5.38.

C. A. Caiiizares and F. L. Alvarado, “Computational experience
with the point of collapse method on very large AC/DC
systems,” in Proc. Bulk Power Syst. Voltage II Phenomena-
Voltage Stability and Security, Deep Creek Lake, MD: 1991,
pp.- 103-112.

E. G. Carpaneto, G. Chicco, R. Napoli, and F. Piglione,
“A Newton-Raphson method for steady-state voltage stability
assessment,” Proc. Bulk Power Syst. Voltage II Phenomena-
Voltage Stability and Security, Deep Creek Lake, MD: 1991,
pp. 341-345.

K. Iba, H. Suzuki, M. Egawa, and T. Watanabe, “Calculation of
critical loading with nose curve using homotopy continuation
method,” IEEE Trans. Power Syst., vol. 6, pp. 584-590, 1991.
Y. Kataoka, “An approach for the regularization od a power
flow solution around the maximum loading point,” IEEE Trans.
Power Syst., vol. 7, pp. 1068-1077, 1992.

T. Wu and R. Fischl, “Identification of load flow feasibility
region in megawatt transfer space,” in Proc. 24th Annu. North
Amer. Power Symp., Reno, NV, 1992, pp. 226-233.

C. A. Cafiizares and F. L. Alvarado, “Point of collapse and
continuation methods for large AC/DC systems,” IEEE Trans.
Power Syst., vol. 8, pp. 1-7, 1993.

H.-D. Chiang, A. J. Fluek, K. S. Shah, and N. Balu, “CPFLOW:
A practical tool for tracing power system steady-state stationary
behavior due to load and generation variations,” IEEE Trans.
Power Syst., vol. 10, pp. 623-630, 1995.

New York: Wiley,
New York:

New York:

1481



[57]

[58]

(591

[60]

[61]
[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

(791

[80]

1482

I. Dobson and L. Lu, “Computing an optimal direction in control
space to avoid saddle node bifurcation and voltage collapse in
electric power systems,” IEEE Trans. Autom. Contr., vol. 37,
pp. 1616-1620, 1992.

R. Jean-Jumeau and H.-D. Chiang, “Parameterizations of the
load-flow equations for eliminating ill-conditioning load flow
solutions,” IEEE Trans. Power Syst., vol. 8, pp. 10041011,
1993.

—, “A more efficient formulation for computation of the
maximum loading points in electric power systems,” IEEE
Trans. Power Syst., vol. 10, pp. 635-641, 1995.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vettering, Numerical Recipes: The Art of Scientific Computing.
New York: Cambridge, 1986.

R. Wait, The Numerical Solution of Algebraic Equations.
York: Wiley, 1979.

J. M. Ortega and W. C. Rheinboldt, Iterative Solutions of Non-
linear Equations in Several Variables. New York: Academic,
1970.

E. Wasserstrom, “Numerical solutions by the continuation
method,” SIAM Rev., vol. 15, pp. 89-119, 1973.

V. A. Ajjarapu and C. Christy, “The continuation power flow:
A tool for steady-state voltage stability analysis,” IEEE Trans.
Power Syst., vol. 7, pp. 416423, 1992.

R. J. Thomas, R. D. Barnard, and J. Meisel, “The generation of
quasi steady-state load flow trajectories and multiple singular
point solutions,” IEEE Trans. Power Apparatus and Syst., vol.
90, pp. 1967-1974, 1971.

J. Jarjis and F. D. Galiana, “Quantitative analysis of steady state
stability in power networks,” IEEE Trans. Power Apparatus and
Syst., vol. PAS-100, pp. 318-326, 1981.

X. M. Yu, “Stability and bifurcation of equilibria in electric
power networks,” Ph.D. dissertation, Drexel Univ., Philadel-
phia, 1991.

I Dobson and L. Lu, “Using an iterative method to compute a
closest saddle node bifurcation in the load parameter space of
an electric power system,” in' Proc. Bulk Power Syst. Voltage
II Phenomena-Voltage Stability and Security, Deep Creek Lake,
MD, 1991, pp. 157-161. :

H. G. Kwatny, “Stability enhancement via secondary voltage
regulation,” in Proc. Bulk Power Syst. Voltage Phenomena II:
Voltage Stability and Security, Deep Creek Lake, MD, ECC,
Inc., 1991, pp. 147-155.

L. Dobson and L. Lu, “New methods for computing a closest
saddle-node bifurcation and worst case load power margin for
voltage collapse,” IEEE Trans. Power Syst., vol. 8, pp. 905-913,
1993.

J. Lu, C. W. Liu, and J. S. Thorp, “New methods for computing
a saddle-node bifurcation point for voltage stability analysis,”
IEEE Trans. Power Syst., vol. 10, pp. 978-985, 1995.

V.1 Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical
Aspects of Classical and Celestial Mechanics. Heidelberg:
Springer-Verlag, vol. 3, 1988.

IEEE, “Voltage stability of power systems: Concepts, tools and
industry experience,” in [EEFE Syst. Dynamic Perf. Subcommit-
tee Rep. 90TH0358-2-PWR, New York, 1990.

J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct
Method. New York: Academic, 1961.

Y. Tamura, H. Mori, and S. Iwamoto, “Relationship between
voltage instability and multiple load flow solutions in electric
power systems,” IEEE Trans. Power Apparatus and Syst., vol.
PAS-102, pp. 1115-1125, 1983.

S. Abe, N. Hamada, A. Isono, and K. Okuda, “Load flow
convergence in the vicinity of a voltage instability limit,” JEEE
Trans. Power Apparatus and Syst., vol. PAS-97, pp. 1983-1993,
1978.

H. G. Kwatny and X. M. Yu, “Energy analysis of load-
induced flutter instability in classical models of electric power
networks,” IEEE Trans. Circ. and Syst., vol. 36, pp. 1544-1557,
1989.

J. Baillieul and C. I. Byrnes, “Geometric critical point analysis
of lossless power system models,” IEEE Trans. Circ. and Syst.,
vol. CAS-29, pp. 724-737, 1982.

P. W. Sauer, R. J. Evans, and M. A, Pai, “Maximum uncon-
strained loadability of power systems,” in Proc. 1990 PICA
Conf., 1990, pp. 1818-1821.

T. Wu and R. Fischl, “Load flow feasibility region region
identification in inter-area real power import space,” in Proc.

New

(811

(82]

[83]

[84]

[86]

(871
[88]

[89]
[90]

o1

[94]

[95]

[96]

971

[98]

[99]

11th Power Syst. Computation Conf., Avignon, France, 1993,
pp. 181-188.

S. Wunderlich, T. Wu, R. Fischl, and R. O’Connell, “An inter-
area transmission and voltage limitation (TVLIM) program,”
IEEE Trans. Power Syst., vol. 10, pp. 1257-1263, 1995.

J. E. van Ness, F. M. Brash Jr., G.L. Landgren, and S. I. Neu-
man, “Analytic 1nvest1gat10n of dynamic instability occuring at
powerton station,” JEEE Trans. Power Apparatus and Syst., vol.
PAS-99, pp. 1386-1395, 1980.

E. Abed and P. Varalya, “Nonlinear oscillations in power

systems,” Int. J. Electric Power and Energy Syst., vol. 6, pp.
3743, 1984.
J. C. Alexander “Oscﬂ]atory solutions of a model system of

nonlinear swing equations,” Int. J. Electric: Power and Energy
Syst., vol. 8, pp. 130-136, 1986.

H. G. Kwatny and G. E. Piper, “Frequency domain analysis
of Hopf bifurcations in electric power networks,” IEEE Trans.
Circ. and Syst., vol. 37, pp. 1317-1321, 1990..

C. Rajagopalan, P. W. Sauer, and M. A. Pai, “An integrated
approach to dynamic and static voltage stability,” in Proc. Amer. -
Contr. Conf., 1989, pp. 1231-1236.

M. R. Iravani and A. Semlyen, “Hopf bifurcations in torsional
dynamics,” IEEE Trans. Power Syst., vol. 7, pp. 28-35, 1992.
R. L. Chen and P. Varaiya, “Degenerate Hopf bifurcation in
power systems,” JEEE Trans. Circ. and Syst., vol. CAS-35, pp.
818-824, 1988.

H. D. Chiang et al., “Chaos in a simple power system,” IEEE
Trans. Power Syst., vol.- 8, pp. 1407-1414,.1993.

D. Roose and V. Hlavacek, “A direct method for the computa-
tion of Hopf bifurcation points,” SIAM J. Applied Mathematics,
vol. 45, pp. 879-894, 1985,

A. L. Mees and L. Chua, “The Hopf bifurcation theorem and its
applications to nonlinear oscillations in circuits and systems,”
IEEE Trans. Circ. and Syst vol. 26, pp. 235-254, 1979.

J. Moiola and G. Chen, ‘ Computanons of 11m1t cycles via higher
order harmonic balance approximations,” IEEE Trans. Autom.
Contr., vol. 38, pp. 782-790, 1993.

H. G. Kwatny, L. Y. Bahar, and A. K. Pasrija, “Energy-like
Lyapunov functions for power system stability analysis,” IEEE
Trans. Circ. and Syst., vol. CAS-32, pp. 1140-1149, 1985.

G. E. Piper, “Limit cycle analysis of ‘multivariable nonlinear dy-
namic systems,” Ph.D. dissertation, Drexel Univ., Philadelphia,
PA, 1990.

A. Tiranuchit and R. J. Thomas, “A posturing strategy against
voltage instabilities in electric power systems,” IEEE Trans.
Power Syst., vol. 3, pp. 87-93, 1988.

P-A. Lof, G. Andersson, and D. I. Hill, “Voltage stability
indices for stressed power systems,” IEEE Trans. Power Syst.,
vol. 8, pp. 326-332, 1993.

M. M. Begovic and A. G. Phadke, “Control'of voltage stability
using sensitivity analysis,” IEEE Trans. Power Syst., vol. 7, pp.
114-120, 1992. '

E. J. Doedel, “AUTO: A program for the automatic bifurcation
analysis of autonomous systems,” Cong. Num., vol. 30, pp.
265-284, 1981.

H. G. Kwatny, X. M. Yu, and C. Nwankpa, “Local bifarcation
analysis of power systems using MATLAB,” in Proc. 4th IEEE
Conf. on Contr. Applic., Albany, IEEE, 1995, pp. 57-62.

Harry G. Kwatny (Senior Member, IEEE) received the B.S.M.E. degree
from Drexel Institute of Technology in 1961, the S.M. degree in aeronau-
tics and astronautics from the Massachusetts Institute of Technology in
1962 and the Ph.D. degree in electrical engineering from the University
of Pennsylvania in 1967.

He is currently the S. Herbert Raynes Professor of Mechanical En-
gineering at Drexel University, Philadelphia, PA.:His main research
interests include the analysis and control of parameter.dependent nonlinear
dynamics and. the use of combined numeric-symbolic’ computation for
addressing these problems. He also has a strong interest in physical system
modeling, analysis and control of power plants and power systems, flexible
spacecraft and space robotics, flight control, ground vehicle dynamics, and
structural acoustics control.

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 11, NOVEMBER 1995



Robert F. Fischl (Life Fellow, IEEE) was born in Prague, Czechoslovakia,
in 1931. He received the B.S.E.E. degree from the City College of New
York in 1956 and the M.S. and Ph.D. degrees in electrical engineering
from the University of Michigan, Ann Arbor, MI, in 1958 and 1966,
respectively.

From 1956 to 1996 he was a Researcher at Willow Run and Cooley
Electronics Laboratories at the University of Michigan. In 1966 he joined
the faculty of Drexel University, where he is currently a Professor of
Electrical Engineering and Director of the Center of Electric Power
Engineering. His research interests are in the areas of power systems and
power electronics circuits design. His recent work has been in the areas
of voltage collapse and the application of data fusion and artifical neural
networks to power system security assessment and enhancement,

Dr. Fischl is a member of Eta Kappa Nu and Tau Beta Pi.

KWATNY et al.: LOCAL BIFURCATION IN POWER SYSTEMS

Chika O. Nwankpa (Member, IEEE) was born in Owerri, Nigeria, in
1962. He received the Magistr Diploma in electric power systems from
Leningrad Polytechnical Institute, USSR, in 1986. He received the Ph.D.
degree in electrical and computer engineering from Illinois Institute of
Technology in 1990.

He is currently an Associate Professor in the Electrical and Computer

‘Engineering Department at Drexel University. His research interests are

in power systems dynamics and effects of uncertanties in their modeling.
He is involved in work in the field of high power switching.

Dr. Nwankpa received the 1991 NSF Engineering Research Initiation
Award and a 1994 Presidential Faculty Fellow (PFF) Award.

1483



