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Abstract

A new approach to control system design for systems containing sandwiched, uncertain, non-smooth friction is proposed. The method
is based on a multi-state backstepping approach to variable structure control design. Stability and robustness properties are investigated
and examples are given. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many important control systems contain ‘non-smooth’
nonlinearities such as dead zone, backlash, hysteresis and
coulomb friction that profoundly in<uence performance.
While models exist for these e>ects, the parameters asso-
ciated with them are almost always highly uncertain and
can vary with time. Our main interest is precision pointing
where friction is a dominant issue. Friction is typically non-
di>erentiable and uncertain, often of unknown functional
form. Most high performance friction compensation meth-
ods are parameter adaptive systems that identify parameters
of friction models of various degrees of complexity, e.g.,
(Armstrong-Helouvry, Dupont, & Canudas de Wit, 1994).
When position-dependence or other e>ects encountered in
practice are signiCcant, the added model complexity can
make this strategy unworkable. In this paper we seek robust
controllers in which the non-smooth uncertainty is charac-
terized simply in terms of a smooth bound. We impose no
a priori structure on the friction function.
Although there is an extensive literature addressing robust

control of systems with smooth uncertainties, non-smooth
uncertainties have received comparatively little attention.
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Exceptions include the work of Tao and Kokotovic (1996)
on the adaptive control of systems with non-smooth actua-
tors and sensors and the growing literature on the adaptive
control of non-smooth friction as noted above. To achieve
‘ideal’ performance nondi>erentiable signals are generated
to cancel or invert the nonlinearity. When the non-smooth
nonlinearities are embedded in the dynamics of the sys-
tem, it is not possible to produce the required nondi>eren-
tiable signals even when the nonlinearities are known with
certainty. In this paper, we consider uncertain embedded
or ‘sandwiched’ nonlinearities. We propose a control strat-
egy based on sequential variable structure (VS) control de-
sign that generates approximately non-smooth cancelling
signals.
If the system is smooth, input–output linearizable, and

minimum phase, standard approaches to VS and adaptive
control design require successive di>erentiation of the func-
tions that deCne the system. Recently, Yip and Hedrick
(1998) proposed a parameter adaptive control design strat-
egy that avoids repeatedly di>erentiating the uncertainty.
But they still require uncertainties with continuous Crst
derivatives and the uncertainties need to be characterized as
linear functions of uncertain parameters. Friction typically
does not Ct these criteria.
SpeciCcally, we will consider single-input single-output

systems (SISO) of the form:

ẋ = f(x) + �(x; t) + g(x)u;

y = h(x); (1)
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where the uncertainty �(x; t) is piecewise continuous and
the nominal system (f; g; h) is smooth and input–output lin-
earizable.

2. A preliminary example

One approach to dealing with non-smooth plant nonlinear-
ities is to approximate the non-smooth function by a smooth
one. A naive application of that approach will almost cer-
tainly fail. Let us consider the following simple example
that highlights the essential issues. Suppose we reduce the
system

ẋ1 = x2; ẋ2 =−
fr(x2) + x3; ẋ3 = u

to normal form. Let us write the friction model in the form
of a nominal plus an uncertain part: 
fr(x2) = 
fr0(x2) +
�
fr(x2), where the nominal part 
fr0(x2) is smooth and the
uncertainty �
fr(x2) is bounded. Then we have the coordi-
nate transform

z1 = x1 ż1 = z2;

z2 = x2 ⇒ ż2 = z3;

z3 =−
fr(x2) + x3; ż3 =−
′
fr0(z2)− �
′

fr(z2) + u:

Any error in the friction function produces an uncertainty
that depends on the derivative �
′

fr(z2). Obviously, if the
friction function is nondi>erentiable this will produce an un-
bounded, although matched, uncertainty. A feedback con-
trol cannot be made robust to this type of uncertainty. Let
us instead base the normal form reduction on the smooth
nominal system. Then we have the coordinate transform

z1 = x1 ż1 = z2;

z2 = x2 ⇒ ż2 = z3 + �
fr(z2);

z3 =−
fr0(x2) + x3 ż3 =−
′
fr0(z2) + u:

Now we have a bounded, although not matched, uncertainty.
Since it is generally not possible to reduce friction un-

certainty to a bounded and matched form, we will use a
backstepping approach. Backstepping was introduced in
Kanellakapoulos, Kokotovic, and Morse (1991) for adap-
tive control design and adapted for recursive Lyapunov
design in Freeman and Kokotovic (1993) for certain classes
of systems having nonmatched uncertainty. Zinober and Liu
(1996) have employed backstepping in conjunction with
VS control to address smooth nonmatched uncertainty.
In the above example, the non-smooth, unmatched un-

certainty is sandwiched between dynamical elements. A
bounded and matched discontinuous nonlinearity could be
cancelled (if known) by a bounded discontinuous control.
In the application of backstepping to this example, we
would want z3 to act as a discontinuous pseudo-control that
cancels �
fr(z2). This is of course not possible, unless u
were allowed to be a singularity function. Our strategy will
be to design a discontinuous VS control and then regularize
it to achieve a smooth pseudo-control as required.

3. VS control with matched uncertainty

Our approach will require the design of smoothed
VS controllers. We need to establish that our smoothed
controller preserves the crucial property of the original
(non-smooth) VS controller—robust stability with respect
to matched, bounded uncertainty. Replacing an ideal switch
with a smooth approximation in a variable structure con-
troller does not always result in a stable system. We note
one of several counter-examples in the literature.

Example 3.1. In Byrnes and Isidori (1989) it is shown that
the origin of the system

ẋ1 = x22 + u; ẋ2 = x21 − x52 ; y = x1

cannot be stabilized by any smooth output feedback
controller. On the other hand; it is easy to verify that the
switching control u=− sgn y; ¿ 0 does asymptotically
stabilize the origin. But any smooth approximation to the
switch results in a smooth output feedback controller and
hence must be unstable.

3.1. VS control design

There are two basic steps to designing a VS control: (1)
design of the sliding control or equivalently the sliding sur-
face, and (2) design of the reaching or switching control (see
Utkin, 1978). Typically, a preliminary step reduces the sys-
tem to normal, or regular, form. We will take as our starting
point the system, already reduced to normal form:

�̇= F(�; z); (2)

ż = Az + b[�(x(�; z)) + �(�; z; t) + �(x(�; z))u]; (3)

where � is a bounded function that can represent uncertain-
ties, disturbances and=or nondi>erentiable functions. We as-
sume

|�(x(�; z); t)|¡��(�; z) ∀t;
where �� ¿ 0 is a continuous function. For the system
(2), (3) with stable zero dynamics, we construct a variable
structure control law with switching surface of the form,
s(x) = Kz(x), where K is chosen to stabilize the sliding
mode dynamics (see Kwatny & Kim, 1990).
To insure that sliding occurs, we specify control functions

u±(x) such that the manifold s(x)=0 contains a stable sub-
manifold. There are many ways of approaching the reaching
design problem. One approach is to consider the positive
deCnite quadratic form in s; V (x) = sTQs. A sliding mode
exists on a submanifold of s(x) = 0 that lies in a region of
the state space on which the time rate of change of V is neg-
ative. Assume that � is bounded by a continuous function,
|�(x)|¡��(x), similar to the bound on �. Upon di>erenti-
ation of V (x), it is easy to verify that the choice of control

u=−�(x) sgn(s∗(x)); s∗(x) = �(x)QKz(x);
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where

�(x)|�(x)|¿ T�(KA)‖z(x)‖+ ��(x) + ��(x)

leads to

V̇ 6 2( T�(KA)‖z(x)‖+ ��(x) + ��(x)− �(x)|�(x)|)
‖QKz(x)‖;

T�(KA) denotes the maximum singular value of KA. In this
case it follows that V̇ is negative wherever it is deCned
(everywhere but on the sliding manifold), so that the sliding
manifold is indeed attractive.

3.2. Smooth approximation of VS controllers

Suppose that the switch is replaced by a smooth ver-
sion of a switch. SpeciCcally, u = −�(x) sgn(s∗(x)) →
−�(x) tanh(s∗(x)=�); �¿ 0. Then V̇ is not necessarily neg-
ative for s small. However, for any given �¿ 0 there exists
a suUciently small �¿ 0 such that V̇ ¡ 0, for |s|¿� and all
trajectories enter the strip |s(x)|¡�. We can establish more
than that. Namely, the smoothed control steers the state into
a neighborhood of z = 0, the size of which shrinks with the
design (smoothing) parameter �.

Proposition 3.2. Consider the system (3). Assume

(1) a smooth bound on �; |�(x)|¡��(x);
(2) a smooth bound on �; |�(x; t)|¡��(x) ∀t;
(3) K =[a1 a2 : : : ar−1 1]; where the coe>cients are cho-

sen such that the following matrix is stable

As =




0 1 0 · · · 0
...

. . .
. . .

. . .

...
. . .

. . . 0

0 0 · · · 0 1

−a1 −a2 · · · · · · −ar−1



;

(4) u=−�(x) tanh(s∗(x)=�); where s∗(x)=�(x)QKz(x) and
�(x)¿ T�(KA)‖z(x)‖+ ��(x) + ��(x).

Then for any �¿ 0 there exists a su>ciently small �¿ 0
such that all trajectories enter the ball ‖z‖¡� in @nite
time and remains therein.

Proof. Since Kb = 1; we can divide the state space into
Im b⊕ kerK . Thus we deCne a transformation:
z = b 1 + N 2;

where the columns ofN span kerK . In these new coordinates
the evolution equations are[
 ̇1

 ̇2

]
=

[
A1 A2

A3 A4

][
 1
 2

]
+

[
1

0

]
(�(x) + �(x; t)

−�(x)�(x) tanh(s∗(x)=�)):

In addition; s=Kz= 1. Furthermore;Re "(A4)¡ 0 by design
(A4 ∼ As). Hence; there exists matrices; Q0¿ 0; R¿ 0 such
that

(1) zTQ0z = 0 for z ∈ Im b and zTQ0z¿ 0 otherwise.
(2) d(zTQ0z)=dt=−zTRz6−"min ‖ 2‖2; where "min is the

smallest nonzero eigenvalue of R.

Now; consider the Lyapunov function

V (z) = zTQ0z + (Kz)TQKz¿ 0; ‖z‖ �=0
and compute

V̇ = 2{Az}TQ0z + 2[KAz + �+ �]TQKz + 2u�QKz:

Now; we have

[KAz + �+ �]TQKz + u�QKx

6 ( T�(KA)‖z‖+ �� + ��)‖QKz‖ − �| tanh(s∗=�)|
and

2{Az}TQ0z6− "min‖ 2‖2

so that

d
dt

V 6− "min‖ 2‖2 + 2[�̂ − �| tanh(s∗=�)|];

where

�̂ = ( T�(KA)‖z(x)‖+ ��(x) + ��(x))‖QKz(x)‖:
Thus since �¿ �̂ by assumption; for any speciCed �¿ 0
there is an �¿ 0 such that V̇ 6− c¡ 0. Consequently; we
have all trajectories entering the strip ‖s‖¡�(�) in Cnite
time. Now; since s= 1; it follows that ‖s‖¡� ⇒ ‖ 1‖¡�.
Consequently; from the evolution equations and since A4 is
asymptotically (exponentially) stable we can conclude that
all trajectories enter a ball with radius proportional to � in
Cnite time and remains therein.

Remark 3.3. Notice that the internal dynamics (2) can be
written �̇=F(�; 0)+WF(�; z(t)) with WF(�; 0)=0; both F
and WF smooth. Suppose the zero dynamics �̇0 = F(�0; 0)
are exponentially stable. In view of Proposition 3.2; we can
choose � to make � as small as necessary to insure that (2) is
ultimately bounded. If the zero dynamics are asymptotically
stable but not exponentially stable; ultimate boundedness
may not obtain. That is the diUculty in Example 3.1.

4. Backstepping design of VS controls

We will describe a backstepping procedure for SISO VS
control system design in the presence of uncertain, possi-
bly non-smooth, nonlinearities. The method di>ers from the
usual backstepping techniques in the following ways: (1)
the states are grouped in accordance with the appearance of
the uncertainty in the system, and (2) the control designed
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at each step is a VS control. Consider a SISO nonlinear
system in the (multi-state back-stepping) form 1

x(ni)i = xi+1 + �i(x; t); i = 1; : : : ; p− 1;

x(np)p = �(x) + �(x)u+ �p(x; t);

y = x1:

(4)

We assume that the (possibly non-smooth) uncertainties
�i(x; t) are bounded by smooth, non-negative functions
�i(x), i.e.,

06 |�i(x; t)|6 �i(x) ∀t: (5)

Such a model might arise by reduction of a smooth nominal
system to regular from and applying the transformation to
the uncertain system. The basic idea is very simple. At each
of p− 1 stages we design a ‘pseudo-control’ vk , at the kth
step, using the system (with v0 = 0)

x(ni)i = vi + �i(x; t); i = 1; : : : ; k ¡p;

yk = xk − vk−1(x1; : : : ; x
nk−1

(k−1)):

and at the last (pth) stage we design the actual control, u,
using the system

x(ni)i = vi + �i(x; t); i = 1; : : : ; p− 1;

x(np)p = �(x) + �(x)u+ �p(x; t):

Let us deCne the procedure in detail.

Algorithm 1 (VS Backstepping Algorithm). The state
transformation and control are constructed sequentially
as follows:

(1) k = 1. De@ne the vector @elds f̂ 1; g1 and the scalar
function ĥ1:

f̂ 1 =




ẋ1
...

x(n1−1)1

0


 ; g1 =



0
...

0

1


 ;

y1 = ĥ1(x1) = x1:

Now de@ne the new state variables:

z1j = y( j−1)1 = Lj−1
f̂ 1

ĥ1; j = 1; : : : ; n1;

which leads to the state space description

Ż
1
= f1(Z1) + g1v1 =




z12
...

z1n1
Ln1
f̂ 1

ĥ1


+



0
...

0

1


 v1;

y1 = h1(Z1) = z11 ;

1 We leave out zero dynamics. If present, the same results obtain if
they are exponentially stable.

where Z1 = [z11 ; : : : ; z
1
n1 ]

T. Now; design the smoothed
variable structure controller v1.

(2) k = 2; : : : ; p− 1. De@ne f̂k ; gk ; and ĥk

f̂ k =




fk−1(Zk−1) + gk−1vk−2(zk−2)
ẋk
...

x(nk−1)k

0



;

gk =




0
...
...
0
1



;

yk = ĥk(Zk−1; xk) = xk − vk−1(zk−1):

De@ne the next group of new states

zkj = y( j−1)k = Lj−1
f̂ k

ĥk ; j = 1; : : : ; nk :

Write the state space equations in terms of the new
states: Ż

k
= fk(Zk) + gkvk ;

fk(Zk) =




fk−1(Zk−1) + gk−1vk−2(zk−2)

zk2
...

zknk
Lnk
f̂
ĥk



;

yk = hk(Zk) = zk1 − vk−1(zk−1);

where

zk = [zk1 ; : : : ; z
k
nk ]

T; Zk =

[
Zk−1

zk

]
∈Rn1 + · · ·+ nk

and design the smoothed variable structure control vk .
(3) k =p. f̂p; gp; and ĥp are de@ned as above for general

k. Now introduce the last group of new states

zpj = y( j−1)p = Lj−1
f̂p

ĥp; j = 1; : : : ; np

to obtain the state space equations.

Ż
p
= fp(Zp) + gp(�+ �vp); Zp =

[
Zp−1

zp

]
;

yp = hp(Zp) = zp1 − vp−1(zp−1):

Finally; design the variable structure controller vp.
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Now we apply this transformation to the actual
system (4).

Lemma 4.4. Consider the transformation de@ned recur-
sively according to Algorithm (1). When applied to the
actual system (4) the transformed evolution equations
are

y(ni)i = yi+1 + �i + �i + vi(yi; : : : ; y
(ni−1)
i );

i = 1; : : : ; p− 1;
y(np)p = �+ �p + �p + �u(yp; : : : y

(np−1)
p ): (6)

Proof. Notice that at each stage of Algorithm (1); for
k = 1; : : : ; p − 1; nk new state variables are deCned and
nk Crst-order equations are added to the system. The Crst
nk − 1 equations come from the state deCnitions; i.e.; the
deCning equations

zkj = y( j−1)k = Lj−1
f̂k

ĥk ; j = 1; : : : ; nk

imply

ẏ k = żk1 = zk2 ; : : : ; y
(nk−1)
k = żknk−1 = zknk :

The Cnal equation is obtained by di>erentiating the last def-
inition and using the evolution equation x(nk )k = vk in the
nominal case and x(nk )k =�k + vk in the actual case; leading
to

y(nk )k = żknk = Lnk
f̂k
ĥk + Lĝk

Lnk−1
f̂k

ĥkvk = Lnk
f̂k
ĥk + vk

in the nominal case; and

y(nk )k = żknk = Lnk
f̂k
ĥk + �k + vk

in the actual case. The case k = p is similar except that
�+ �vp is replaced by �+ �p + �vp.

Remark 4.5. In the above result; � and �i; i= 1; : : : ; p are
explicit functions of the original states and time; i.e.; �=�(x);
and �i = �i(x; t); i = 1; : : : ; p.

Stability is established in the following proposition.

Proposition 4.6. Consider the system (4) and suppose the
uncertainties �i satisfy the inequality (5) with continuous
bounding functions �i; and � also has a continuous bounding
function ��. Suppose that a controller is designed via the
backstepping procedure of Algorithm (1) and each control
vk ; k =1; : : : ; p is a smoothed variable structure controller
designed in accordance with the assumptions of Proposition
(3:2). Then for any given �¿ 0 there is a su>ciently small
smoothing parameter �¿ 0 such that all trajectories enter
the ball ‖y‖¡�.

Proof. The pth system

y(np)p = �+ �p + �p + �vp(yp; : : : ; y
(np−1)
p ) (7)

satisCes the conditions of Proposition (3.2) with zi =
y(i−1)p ; i = 1; : : : ; np. Hence; we conclude that yp (and its
np − 1 derivatives) will be driven; in Cnite time; into a
�-neighborhood of the origin with a suitably small smooth-
ing parameter. Now; the p− 1 system is

y(np−1)
p−1 = yp(t) + �p−1 + �p−1

+ vp−1(yp−1; : : : y
(np−1−1)
p−1 ) (8)

and |yp(t)|6 �; ∀t ¿ t∗ ¡∞. Thus; we can incorpo-
rate yp(t) into �p−1(x; t). It follows that (8) satisCes the
conditions of Proposition (3.2) for t ¿ t∗; zi = y(i−1)p−1 ;
i = 1; : : : ; np−1; so that yp−1 (and its np−1 − 1 derivatives)
will be driven; in Cnite time; into a �-neighborhood of the
origin with a suitably small smoothing parameter. We con-
tinue in this way for systems k = p − 2; : : : ; 1 to establish
the conclusion of the theorem.

5. Example

Consider the two degrees of freedom, fourth-order
motor-load drive system illustrated in Fig. 1. It involves
friction at two di>erent locations and is representative of
systems of practical interest. The friction functions are de-
Cned by Eq. (9). The calculations that follow have been
carried out using Mathematica.

’1(!1) =− 1
2 !1 − 1

10 (1 +
1
10 e

−(50!1)2) sgn!1;

’2(!2) =− 1
2 !2 − 1

10 sgn!2: (9)

We begin by reducing the nominal system to normal form.
The required transformation is


01

!1

02

!2


=




x1

x2

(20x1 + x2 + 2x3)=20

(20x2 + x3 + 2x4)=20


 :

K
1
s

1

1J s

ϕ ω1 1( )

1
s

1

2J s

ϕ ω2 2( )

u
-

- ω1ω2 θ1θ2

Drive Motor Inertial LoadShaft

Fig. 1. A typical drive system consisting of a motor and an inertial
load. The nonlinear friction functions, ’1 and ’2, contain uncertain
discontinuous components.
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0.5 1 1.5 2
t

0.05

0.1

0.15

0.2

θ1 , θ2

Fig. 2. The closed loop transient response is illustrated for the system
intially at rest with the shaft o>set by 0:2 rad. Load angle 01 is the solid
line and motor angle 02 is dashed.

When the transformation is applied to the actual (perturbed)
system, we obtain

ẋ1 = x2;

ẋ2 = x3 − (0:1 + 0:01e−2500x22 ) sgn(x2);

ẋ3 = x4 + 0:005(10 + e−2500x
2
2 ) sgn(x2);

ẋ4 = 39
400 (10 + e

−2500x22 ) sgn(x2)− 1
4 (40x2 + 81x3

+ 4x4 + 4 sgn(20x2 + x3 + 2x4)) + 10u:

The backstepping procedure requires three steps, because
uncertainties enter the right-hand sides of the second, third
and fourth equations. The resulting controller is

u=−(5 + 1250 Abs[x2] + 500 Abs[x3] + 50 Abs[x4])
×tanh [250(x4 + 5 tanh [10(x3 + tanh
×[24:1x1 + 10x2])])]:

Numerous simulations have been run. A typical result is
shown in Fig. 2. From these initial conditions the ultimate
error appears quite small, but it is not zero. By decreasing
the smoothing parameter the error is reduced. On the other
hand the (peak) control e>ort increases. The switching con-
trol bounds were selected in accordance with estimates of
bounds required by Proposition (4.6). Experiments show
that these bounds (and hence the control peaks) cannot be

substantially reduced. Our example exaggerates the size of
the nondi>erentiable, uncertain friction component and the
shaft is more <exible than in the applications of interest to
us. These factors make the control problem more diUcult
and increase the required control magnitudes.

6. Conclusions

In this paper, we have introduced a new method for de-
sign of control systems for a class of SISO systems with
nondi>erentiable, uncertain nonlinearities such as friction.
The resulting feedback control is a smoothed, variable struc-
ture controller designed using a multi-state backstepping
procedure. In preliminary studies the controller appears to
be e>ective in dealing with the diUcult problem of friction
sandwiched between dynamical elements. Very little needs
to be known about the details of the friction model. Only
bounds on the friction function are required. This is espe-
cially important when friction depends on position, varies
with time, or is otherwise diUcult to characterize. The in-
tended application is to situations where uncertain friction
forces are relatively small, but nonetheless signiCcant by
virtue of the required precision.
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